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Abstract

Recently, nonlinear programming solvers have been used to solve a range of mathe-
matical programs with equilibrium constraints (MPECs). In particular, sequential
quadratic programming (SQP) methods have been very successful. This paper ex-
amines the local convergence properties of SQP methods applied to MPECs. SQP
is shown to converge superlinearly under reasonable assumptions near a strongly
stationary point. A number of examples are presented that show that some of the
assumptions are difficult to relax.
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1 Introduction

We consider mathematical programs with equilibrium constraints (MPECs) of the form

minimize f(z)
subject to cE(z) = 0

cI(z) ≥ 0
0 ≤ z1 ⊥ z2 ≥ 0,

(1.1)

where z = (z0, z1, z2) is a decomposition of the problem variables into controls z0 ∈ IRn

and states (z1, z2) ∈ IR2p. The equality constraints ci(z) = 0, i ∈ E , are abbreviated as
cE(z) = 0, and similarly, cI(z) ≥ 0 represents the inequality constraints. Problems of this
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type arise frequently in applications; see [7, 16, 17] for references. (Problem (1.1) is also
referred to as a mathematical program with complementarity constraints.)

Clearly, an MPEC with a more general complementarity condition such as

0 ≤ G(z) ⊥ H(z) ≥ 0 (1.2)

can be written in the form (1.1) by introducing slack variables. One can easily show
that the reformulated MPEC has the same properties (such as constraint qualifications
or second-order conditions) as the original MPEC. In this sense, nothing is lost by intro-
ducing slack variables.

One attractive way of solving (1.1) is to consider its equivalent nonlinear programming
(NLP) formulation,

minimize f(z)
subject to cE(z) = 0

cI(z) ≥ 0
z1 ≥ 0
z2 ≥ 0
zT
1 z2 ≤ 0,

(1.3)

and solve (1.3) with existing NLP solvers. This paper examines the local convergence
properties of sequential quadratic programming (SQP) methods applied to (1.3).

The NLP (1.3), obviously has no feasible point that satisfies the inequalities strictly.
This fact implies that the Mangasarian-Fromovitz constraint qualification (MFCQ) is
violated at every feasible point; see [4, 19]. There are other, MPEC-specific constraint
qualifications, such as the MPEC-LICQ explained below, which guarantee the existence of
multipliers at local optima of (1.3) and are not overly stringent, see [21]. MFCQ, however,
is a sufficient condition for stability of an NLP and the lack thereof has been advanced as
a theoretical argument against the use of standard NLP solvers for MPECs.

Numerical experience with (1.3) has also been disappointing. Bard [2] reports failure
on 50–70% of some bilevel problems for a gradient projection method. Conn et al. [5]
and Ferris and Pang [7] attribute certain failures of lancelot to the fact that the problem
contains a complementarity constraint. In contrast, Fletcher and Leyffer [10] recently
reported encouraging numerical results on a large collection of MPECs [15]. They solved
over 150 MPECs with an SQP solver and observed quadratic convergence for all but
two problems. The two problems that did not give quadratic convergence violate certain
MPEC regularity conditions and are rather pathological. The present work complements
these numerical observations by giving a theoretical explanation for the good performance
of the SQP method on apparently ill-posed problems of the type (1.3). We show that
SQP is guaranteed to converge quadratically near a stationary point under relatively mild
assumptions.

Recently, researchers have expressed renewed interest in the global convergence of
algorithms for MPECs. Scholtes [20] analyzes a regularization scheme in which a sequence
of parametric NLPs is solved. Fukushima and Tseng [11] analyze an algorithm that
computes approximate KKT points for a sequence of active sets.

The paper also complements the recently renewed interest in the convergence proper-
ties of SQP under weaker assumptions. See for example [8, 13, 22]. These studies suggest
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modifications to enable SQP solvers to handle NLP problems for which the constraint
gradients are linearly dependent at the solution and/or for which strict complementarity
fails to hold.

Anitescu [1] extends Wright’s analysis [22] to NLPs with unbounded multiplier sets.
The fact that (1.3) violates MFCQ implies that the multiplier set at stationary solutions
will be unbounded. Anitescu’s work therefore applies to MPECs in the given form. How-
ever, his assumptions differ from ours, and neither set of assumptions is implied by the
others. Most notably, Anitescu assumes that the QP solver employs an elastic mode,
relaxing constraint linearizations if they are inconsistent. We do not require such a mod-
ification and provide a local analysis of the SQP method in its pure form.

In this paper, we argue that the introduction of slack variables is not just a convenience
but plays an important role in ensuring convergence. In Section 7.2 we present an example
with a nonlinear complementarity constraint for which SQP converges to a nonstationary
point. All QP approximations remain consistent during the solve. With the introduction
of slack variables, on the other hand, SQP converges to a stationary point. Of course, this
does not mean that the use of slacks makes an elastic mode or a feasibility restoration
unnecessary. The example in Section 2.2 clearly shows that NLP solvers must be able to
handle inconsistent QPs.

This paper is organized as follows. The next section gives a few simple motivating
examples that highlight the key ideas of our approach and illustrate the numerical difficul-
ties associated with MPECs. In Section 3 we review optimality conditions and constraint
qualifications for MPECs. Section 4 shows that the optimality conditions of the MPEC
and its equivalent NLP are related by a simple formula. In Section 5 we show that SQP
converges quadratically in two distinct situations. The first arises when SQP is started
close to a complementary stationary point. If the starting point is not complementary,
then we show convergence under the assumption that all QP subproblems remain consis-
tent. Sufficient conditions for this assumption are introduced in Section 6. In Section 7
we present small examples that illustrate the necessity of some of these assumptions. We
conclude by briefly emphasizing the importance of degeneracy handling at the QP level
and pointing to future research directions.

Notation. Throughout the paper, g(z) = ∇f(z) is the objective gradient and the
constraint gradients are denoted by ai(z) = ∇ci(z). Superscripts refer to the point at

which functions or gradients are evaluated, for example, a
(k)
i = ai(z

(k)) = ∇ci(z
(k)). The

Jacobian matrices are denoted by AE := [ai]i∈E and AI := [ai]i∈I , respectively.

2 Examples

The fact that the NLP formulation (1.3) of an MPEC violates MFCQ at any feasible point
implies that (1.3) has certain features that pose numerical challenges to NLP solvers.

1. The active constraint normals are linearly dependent at any feasible point.

2. The set of multipliers is unbounded.

3. Arbitrarily close to a stationary point the linearizations of (1.3) can be inconsistent.
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These features are illustrated by the following examples. The examples also motivate the
analysis in subsequent sections. The main conclusion of this section is that while MPECs
possess these unpleasant properties, they arise in a well-structured way that allows SQP
solvers to tackle MPECs successfully.

In the remainder of this paper, *.mod refers to the AMPL model of the problem in
MacMPEC, an AMPL collection of MPECs [15].

2.1 Dependent Constraint Normals and Unbounded Multipliers

In this section we use a small example from Jiang and Ralph [14] (see also jr*.mod) to
illustrate the key idea of our approach. Consider the two MPECs

{
minimize

z
fi(z)

subject to 0 ≤ z2 ⊥ z2 − z1 ≥ 0
(2.1)

with f1(z) = (z1 − 1)2 + z2
2 and f2(z) = z2

1 + (z2 − 1)2. The problems differ only in their
objectives. The solution to both problems is z∗ = (1/2, 1/2)T ; see Figure 1.

z
1

f (z)
1

f (z)
2 z

1

z
2

z
2

1

1

Figure 1: MPEC examples 1 and 2

The equivalent NLP problem to these MPECs is given by





minimize
z

fi(z) multiplier

subject to z2 ≥ 0 ν ≥ 0
z2 − z1 ≥ 0 λ ≥ 0
z2 (z2 − z1) ≤ 0 ξ ≥ 0.

(2.2)

The first-order conditions for these NLPs differ only in the objective gradient and are
(

−1
1

)
or

(
1

−1

)
= λ∗

(
−1

1

)
− ξ∗

(
−1

2
1
2

)
.

Clearly, the two active constraint normals are linearly dependent. Since z∗
2 = 1

2
> 0 it

follows that ν∗ = 0. The multiplier sets, given by

M1 =
{
(λ, ξ) | ξ ≥ 0, λ − 1

2
ξ = 1

}

M2 =
{
(λ, ξ) | λ ≥ 0, −λ + 1

2
ξ = 1

}
,
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Figure 2: Multiplier sets of MPEC examples 1 and 2

are unbounded, as expected. The sets are shown in Figure 2.

This situation is typical for MPECs that satisfy a strong stationarity condition (see
Definition 3.3). The multiplier set is a ray, and there is exactly one degree of freedom in
the choice of multipliers.

Note, however, that if we restrict attention to multipliers that correspond to a linearly
independent set of constraint normals, then the following reduced sets are obtained:

M̃1 =

{(
1
0

)}

M̃2 =

{(
0
2

)}
.

These multipliers are bounded and well behaved. We should expect SQP to converge if
started near such a stationary point. The KKT multipliers that correspond to a solution
with linearly independent strictly active constraints are illustrated by the black circles in
Figure 2. The half-line shows the unbounded multiplier set.

Observe that in the first example, λ ≥ 0 at the solution, which implies that this is
also the solution for the NLP with the complementarity condition removed. In the second
example, no λ ≥ 0 can on its own satisfy the stationarity conditions, and ξ > 0 is required.
If we had interpreted z2 − z1 ≥ 0 as an equality constraint, then we could have chosen
λ = −1 in the stationarity conditions. However, an NLP solver would never return λ < 0
for an inequality constraint, and hence ξ = 2 ensures that the stationarity conditions are
satisfied.

The effect of the multiplier of the complementarity constraint is to relax the condition
that λ, ν ≥ 0 for what is essentially an equality constraint. This is exploited in Section 4,
where we show that certain MPEC multipliers correspond to multipliers of (1.3). This
situation is typical for MPECs under certain assumptions. The key idea is to show that
SQP converges to a solution provided the QP solver chooses a linearly independent basis.
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2.2 Inconsistent Linearizations

The following example illustrates a possible pitfall for NLP solvers attempting to solve
MPECs as NLPs. Consider sl4.mod:





minimize
z

z1 + z2

subject to z2
2 ≥ 1

0 ≤ z1 ⊥ z2 ≥ 0.

(2.3)

Its solution is z∗ = (0, 1)T with NLP multipliers λ∗ = 0.5 of z2
2 ≥ 1, ν∗

1 = 1 of z1 ≥ 0,
and ξ∗ = 0 of z1z2 ≤ 0. In particular, this solution is a strongly stationary point (see
Definition 3.3). However, linearizing the constraints about a point that satisfies the simple
bounds and is arbitrarily close to the solution, such as z(0) = (ε, 1 − δ)T (with ε, δ > 0),
gives a QP that is inconsistent. The linearizations are

(1 − δ)2 + 2(1 − δ)(z2 − (1 − δ)) ≥ 1 (2.4)

z1 ≥ 0

z2 ≥ 0

(1 − δ)ε + (1 − δ)(z1 − ε) + ε(z2 − (1 − δ)) ≤ 0. (2.5)

One can show that

(2.4) ⇒ z2 ≥
1 + (1 − δ)2

2(1 − δ)
> 1

(2.5) ⇒ z2 ≤ 1 − δ < 1,

which indicates that the QP approximation is inconsistent. This is also observed during
our filter solves (we enter restoration at this point).

Clearly, any NLP solver hoping to tackle MPECs will have to deal with this situation.
The solver snopt [12] uses an elastic mode that relaxes the linearizations of the QP; filter [9]
has a restoration phase. In Section 5 convergence of SQP methods without modifications
is analyzed. This analysis is closer in spirit to the results obtained using filter.

3 Optimality Conditions for MPECs

This section reviews stationarity concepts for MPECs in the form (1.1) and introduces
a second-order condition. It follows loosely the development of Scheel and Scholtes [19],
although the presentation is slightly different.

Given two index sets Z1, Z2 ⊂ {1, . . . , p} with

Z1 ∪ Z2 = {1, . . . , p} , (3.1)

we denote their respective complements in {1, . . . , p} by Z c
1 and Zc

2. For any such pair of
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index sets, we define the relaxed NLP corresponding to the MPEC (1.1) as

minimize
z

f(z)

subject to cE(z) = 0
cI(z) ≥ 0
z1j = 0 ∀j ∈ Zc

2

z2j = 0 ∀j ∈ Zc
1

z1j ≥ 0 ∀j ∈ Z2

z2j ≥ 0 ∀j ∈ Z1.

(3.2)

Concepts such as constraint qualifications, stationarity, and a second-order condition for
MPECs will be defined in terms of the relaxed NLPs. The term “relaxed NLP” stems
from the observation that if z∗ is a local solution of a relaxed NLP (3.2) and satisfies
complementarity z∗T

1 z∗2 = 0, then z∗ is also a local solution of the original MPEC (1.1).
One can naturally associate with every feasible point ẑ = (ẑ0, ẑ1, ẑ2) of the MPEC a relaxed
NLP (3.2) by choosing Z1 and Z2 to contain the indices of the vanishing components of ẑ1

and ẑ2, respectively. In contrast to [19], our definition of the relaxed NLP is independent
of a specific point; however, it will occasionally be convenient to identify the above sets
of vanishing components associated with a specific point ẑ, in which case we denote them
by Z1(ẑ), Z2(ẑ) or use suitable superscripts. Note that for these sets the condition (3.1)
is equivalent to ẑT

1 ẑ2 = 0.
The indices that are both in Z1 and Z2 are referred to as the biactive components (or

second-level degenerate indices) and are denoted by

D(z) := Z1(z) ∩ Z2(z) or D := Z1 ∩ Z2.

Obviously, in view of (3.1), (Z c
1,Z

c
2,D) is a partition of {1, . . . , p}. A solution z∗ to the

problem (1.1) is said to be second-level nondegenerate if D(z∗) = ∅.
First, the linear independence constraint qualification (LICQ) is extended to MPECs.

Definition 3.1 Let z1, z2 ≥ 0, and define

Zj := {i : zji = 0} for j = 1, 2.

The MPEC (1.1) is said to satisfy an MPEC-LICQ at z if the corresponding relaxed NLP
(3.2) satisfies an LICQ.

In [19], four stationarity concepts are introduced for MPEC (1.1). The stationarity
definition that allows the strongest conclusions is Bouligand or B-stationarity.

Definition 3.2 A point z∗ is called Bouligand, or B-stationary if d = 0 solves the linear
program with equilibrium constraints (LPEC) obtained by linearizing f and c about z∗,

minimize
d

g∗T

d

subject to c∗E + A∗T

E d = 0

c∗I + A∗T

E d ≥ 0
0 ≤ z∗

1 + d1 ⊥ z∗2 + d2 ≥ 0.
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We note that B-stationarity implies feasibility because if d = 0 solves the above LPEC,
then c∗E = 0, c∗I ≥ 0, and 0 ≤ z∗

1 ⊥ z∗2 ≥ 0. B-stationarity is difficult to check because
it involves the solution of an LPEC that is a combinatorial problem and may require the
solution of an exponential number of LPs, unless all these LPs share a common multiplier
vector. Such a common multiplier vectors exists if an MPEC-LICQ holds.

The results of this paper relate to the following notion of strong stationarity.

Definition 3.3 A point z∗ is called strongly stationary if there exist multipliers λ, ν̂1

and ν̂2 such that

g∗ −
[
A∗T

E : A∗T

I

]
λ −




0
ν̂1

ν̂2


 = 0

c∗E = 0
c∗I ≥ 0
z∗1 ≥ 0
z∗2 ≥ 0

z∗1j = 0 or z∗
2j = 0

λI ≥ 0
c∗i λi = 0

z∗1j ν̂1j = 0
z∗2j ν̂2j = 0

if z∗1j = z∗
2j = 0 then ν̂1j ≥ 0 and ν̂2j ≥ 0,

(3.3)

where g∗ = ∇f(z∗), A∗
E = ∇cT

E (x∗), and A∗
I = ∇cT

I (x∗).

Note that (3.3) are the stationarity conditions of the relaxed NLP (3.2) at z∗. B-
stationarity is equivalent to strong stationarity if the MPEC-LICQ holds (e.g., [19]).

Next, a second-order sufficient condition (SOSC) for MPECs is given. Since strong
stationarity is related to the relaxed NLP (3.2), it seems plausible to use the same NLP
to define a second-order condition. For this purpose, let A∗ denote the set of active
constraints of (3.2) and A∗

+ ⊂ A∗ the set of active constraints with nonzero multipliers
(some could be negative). Let A denote the matrix of active constraint normals, that is,

A =


A∗

E : A∗
I∩A∗ :

0
I∗
1

0
:

0
0
I∗
2


 =: [a∗

i ]i∈A∗ ,

where A∗
I∩A∗ are the active inequality constraint normals and

I∗
1 := [ei]i∈Z∗

1
and I∗

2 := [ei]i∈Z∗

2

are parts of the p× p identity matrices corresponding to active bounds. Define the set of
feasible directions of zero slope of the relaxed NLP (3.2) as

S∗ =
{

s | s 6= 0 , g∗T

s = 0 , a∗T

i s = 0 , i ∈ A∗
+ , a∗T

i s ≥ 0 , i ∈ A∗\A∗
+

}
.

We can now give an MPEC-SOSC. This condition is also sometimes referred to as the
strong-SOSC.
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Definition 3.4 A strongly stationary point z∗ with multipliers (λ∗, ν̂∗
1 , ν̂

∗
2) satisfies the

MPEC-SOSC if for every direction s ∈ S∗ it follows that

sT∇2L∗s > 0,

where ∇2L∗ is the Hessian of the Lagrangian of (3.2) evaluated at (z∗, λ∗, ν̂∗
1 , ν̂

∗
2).

The definitions of this section are readily extended to the case where a more general
complementarity condition such as (1.2) is used. Moreover, any reformulation using slacks
preserves all of these definitions. In that sense, there is no loss of generality in assuming
that slacks are being used.

4 Strong Stationarity and NLP Stationarity

This section shows that there exists a relationship between strong stationarity of the
MPEC (1.1) and NLP stationarity conditions for (1.3). In particular, their respective
multipliers are shown to be related by a simple formula.

The NLP stationarity conditions of (1.3) are that there exist multipliers µ := (λ, ν1, ν2, ξ)
such that

g(z) −
[
AT

E (z) : AT
I (z)

]
λ −




0
ν1

ν2


+ ξ




0
z2

z1


 = 0

cE(z) ≥ 0
cI(z) ≥ 0

z1 ≥ 0
z2 ≥ 0

zT
1 z2 ≤ 0
λI ≥ 0
ν1 ≥ 0
ν2 ≥ 0
ξ ≥ 0

ci(z)λi = 0
z1jν1j = 0
z2jν2j = 0 .

(4.1)

The complementarity condition ξzT
1 z2 = 0 is implied by the feasibility of z1, z2. This

condition has been omitted.
We examine the difference between (4.1) and the strong-stationarity condition (3.3).

In (3.3), the multipliers ν̂1 and ν̂2 may be negative for components that satisfy second level
nondegeneracy, while in (4.1) ν1 ≥ 0, ν2 ≥ 0 is required. We will relate the multipliers
of (3.3) and (4.1) to show that stationarity in both senses is equivalent.

The main observation in proving the following result is that the first-order condition
of (4.1) can be written as

g(z) −
[
AT

E (z) : AT
I (z)

]
λ −




0
ν1 − ξz2

0


−




0
0

ν2 − ξz1


 = 0,
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which is equivalent to the corresponding first-order condition in (3.3) if

ν̂1 = ν1 − ξz2 (4.2)

ν̂2 = ν2 − ξz1. (4.3)

Proposition 4.1 A point z is strongly stationary in the MPEC (1.1) if and only if it is
a stationary point of the NLP (1.3).

Proof. First we show that (4.1) ⇒ (3.3) by distinguishing three cases:
(a) If z1j > 0, then z2j = 0 = ν1j from complementarity and slackness. From (4.2) it

follows that ν̂1j = 0 and ν̂2j = ν2j − ξz1j satisfies (3.3).
(b) If z2j > 0, then transpose above argument.
(c) If z1j = z2j = 0, then (4.2) and (4.3) imply that ν̂1j = ν1j ≥ 0 and ν̂2j = ν2j ≥ 0.

Combining (a)–(c), one sees that (4.1) implies (3.3).
Next we show that (3.3) ⇒ (4.1) by distinguishing three cases:
(d) If z1j > 0, then ν̂1j = 0 and z2j = 0. This implies that ν1j = ξz2j + ν̂1j = 0 ≥ 0

for any ξ. To ensure that ν2j = ξz1j + ν̂2j is nonnegative, we need to choose ξ such that
ξz1j + ν̂2j ≥ 0, ∀j, or equivalently that ξ ≥ −ν̂2j/z1j, ∀j.

(e) If z2j > 0, then transpose above argument.
(f) If z1j = z2j = 0, then ν1j = ν̂1j ≥ 0 and ν2j = ν̂2j ≥ 0, for any ξ.
From parts (d) and (e) it follows that choosing ξ to be at least

ξ = max

{
0 , max

i∈Zc

2

−ν̂1i

z∗2i

, max
i∈Zc

1

−ν̂2i

z∗1i

}
(4.4)

will ensure that ν1, ν2 ≥ 0. Examining the expressions on the right-hand side of (4.4), one
can see that ξ is bounded. Combining (d) to (f) it follows that (3.3) implies (4.1). �

The interesting point about the proof is that it relates the multiplier ξ to the fact that
the NLP conditions (4.1) are more restrictive in the sense that they enforce ν1, ν2 ≥ 0,
while ν̂1, ν̂2 may be negative. In a way, ξ compensates for this: if, for instance, ν̂1j < 0,
then z2j > 0, and we can get the corresponding NLP multiplier ν1j = ν̂1j+ξz2j nonnegative
by choosing ξ sufficiently large.

Clearly, any value ξ̂ > ξ in (4.4) would also satisfy the stationarity conditions (4.1) and
this is how the unboundedness of the multiplier set arises. However, any such ξ̂ > ξ would
not correspond to a basic solution, in the sense that the constraint normals corresponding
to nonzero multipliers are linearly dependent. The main argument in our convergence
analysis is to show that an SQP solver that works with a nonsingular basis will pick the
multiplier defined in (4.4).

Definition 4.2 The multiplier defined by (4.4) is referred to as the basic multiplier.

The terminology of this definition is justified by the following lemma, which shows
that if MPEC-LICQ holds, then the MPEC multipliers and the multiplier in (4.4) are
unique and correspond to a linearly independent set of constraint normals.
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Lemma 4.3 If MPEC-LICQ holds at a local minimizer of (1.1), then it is strongly sta-
tionary, and the multipliers in (3.3) and the basic multiplier defined by (4.4) are unique.
Moreover, the set of constraint normals corresponding to nonzero multipliers is linearly
independent.

Proof. MPEC-LICQ implies the uniqueness of the MPEC multipliers (3.3); see [19]. The
uniqueness of the MPEC multiplier implies that all expressions on the right-hand side
of (4.4) are unique, hence implying the uniqueness of ξ. Finally, the uniqueness of the
corresponding NLP multipliers follows from (4.2) and (4.3) (if the NLP multipliers were
not unique, then we could find other MPEC multipliers).

To show that the constraint normals corresponding to nonzero multipliers are linearly
independent, we distinguish two cases: ξ = 0 and ξ > 0.

If ξ = 0, then the linear independence of constraint normals corresponding to nonzero
multipliers follows from MPEC-LICQ.

If ξ > 0, then there exists at least one component i ∈ Z c
1 or i ∈ Zc

2 such that ν2i = 0
or ν1i = 0.

It remains to show that the set of constraint normals corresponding to non-zero mul-
tipliers is linearly independent. By MPEC-LICQ, this is true for all but the complemen-
tarity constraint. Then we can exchange the normal of the complementarity constraint
for any normal whose multiplier is driven to zero by (4.4) and (4.2) or (4.3) in the basis
as explained in Lemma 5.8 below. �

The conclusions of this section can be readily extended to cover the case where the
complementarity condition is of the more general form (1.2).

5 Local Convergence of SQP Methods

This section shows that SQP methods converge quadratically near a strongly stationary
point under mild conditions. Section 7 discusses the assumptions and provides counter-
examples for situations where (some of) these assumptions are not satisfied. In particular,
we are interested in the situation where z(k) is close to a strongly stationary point, z∗, but

z
(k)T

1 z
(k)
2 is not necessarily zero. SQP then solves a sequence of quadratic programming

approximations, given by

(QP k)





minimize
d

g(k)T

d + 1
2
dT W (k)d

subject to c
(k)
E + A

(k)T

E d = 0

c
(k)
I + A

(k)T

I d ≥ 0

z
(k)
1 + d1 ≥ 0

z
(k)
2 + d2 ≥ 0

z
(k)T

1 z
(k)
2 + z

(k)T

2 d1 + z
(k)T

1 d2 ≤ 0,

where W (k) = ∇2L(z(k), µ(k)) is the Hessian of the Lagrangian of (1.3) and µ(k) =

(λ(k), ν
(k)
1 , ν

(k)
2 , ξ(k)). The last constraint of (QP k) is the linearization of the complemen-

tarity condition zT
1 z2 ≤ 0.
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Assumptions 5.1 The following assumptions are made:

[A1] f and c are twice Lipschitz continuously differentiable.

[A2] (1.1) satisfies an MPEC-LICQ (Definition 3.1).

[A3] z∗ is a strongly stationary point of (1.1) with multipliers λ∗, ν∗
1 , ν

∗
2 (Definition 3.3),

and z∗ satisfies the MPEC-SOSC (Definition 3.4).

[A4] λ∗
i 6= 0, ∀i ∈ E∗, λ∗

i > 0, ∀i ∈ A∗ ∩ I, and both ν∗
1j > 0 and ν∗

2j > 0, ∀j ∈ D∗.

[A5] The QP solver always chooses a linearly independent basis.

The most restrictive assumption is strong stationarity in [A3], which follows if z∗ is a
local minimizer from [A2]. That is [A3] (or [A2]) removes the combinatorial nature of
the problem. It is not clear that [A2] can readily be relaxed in the present context, since
it allows us check B-stationarity by solving exactly one LP or QP. Without assumption
[A2] it would not be possible to verify B-stationarity without solving several LPs (one for
every possible combination of second-level degenerate indices i ∈ D∗). It seems unlikely,
therefore, that a method that solves only a single LP or QP per outer iteration can be
shown to be convergent to B-stationary points for problems that violate MPEC-LICQ.
Note that we do not assume that the MPEC (1.1) is second-level nondegenerate, in other
words, we do not assume that z∗

1 + z∗
2 > 0. The strict complementarity Assumption [A4]

can in fact be weakened for all the results of Section 5.1 to only require positivity of the
biactive multipliers ν∗

1j and ν∗
2j, because Proposition 5.2, which underlies our convergence

analysis there, does not require λ∗
i 6= 0, ∀i ∈ E∗, and λ∗

i > 0, ∀i ∈ A∗ ∩ I, see [3]. Sec-
tion 5.2 however requires the all the conditions of [A4]. Assumption [A5] is a reasonable
assumption in practice, as most modern SQP solvers are based on active set QP solvers
that guarantee this. This section is divided into two parts. First, we consider the case
where complementarity is satisfied at a point sufficiently close to a stationary point. This
case corresponds to the situation where all iterates (ultimately) remain on the same face
of 0 ≤ z1 ⊥ z2 ≥ 0. The key idea is to show that SQP applied to (1.3) behaves identical
to SQP applied to (3.2).

The second case considered arises when z
(k)T

1 z
(k)
2 > 0 for all iterates k. In this case, the

previous ideas cannot be applied, and a separate proof is required. We make the additional
assumption that all QP subproblems remain consistent. This assumption appears to be
rather strong, especially in light of example (2.3), which shows that the QP approximation
may be inconsistent arbitrarily close to a solution. However, we will give several sufficient
conditions for it later that show that it is not unduly restrictive.

5.1 Local Convergence for Exact Complementarity

In this section we make the following additional assumption:

[A6] For some k we have that z
(k)T

1 z
(k)
2 = 0 and (z(k), µ(k)) is sufficiently close to a strongly

stationary point.
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Assumption [A6] implies that the correct face has been identified except for degenerate

or biactive constraints. Thus, for given index sets Zj = {i : z
(k)
ji = 0}, j = 1, 2, the

following holds:

z
(k)
1j = 0 ∀j ∈ Zc

2

z
(k)
2j = 0 ∀j ∈ Zc

1

z
(k)
1j = 0 and z

(k)
2j = 0 ∀j ∈ D.

In particular, it is not assumed that the biactive complementarity constraints D∗ are active
at z(k). Thus it may be possible that Z1 6= Z∗

1 (and similarly for Z2). However, it will be
shown that the biactive constraints become active after one step of the SQP method as a
consequence of [A4] (the positivity of biactive multipliers); see Proposition 5.2.

An important consequence of [A6] is that Z1 and Z2 satisfy

Z∗c

1 ⊂ Zc
1 ⊂ Z∗c

1 ∪ D∗

Z∗c

2 ⊂ Zc
2 ⊂ Z∗c

2 ∪ D∗

D ⊂ D∗;
(5.1)

in other words, the indices Z∗c

1 and Z∗c

2 of the nondegenerate complementarity constraints
have been identified correctly.

The key idea of the proof is to show that SQP applied to (1.3) is equivalent to SQP
applied to the relaxed NLP (3.2) on a face. For a given partition (Z c

1,Z
c
2,D), an SQP

step for (3.2) is obtained by solving the following QP:

(QPR(z(k)))





minimize
d

g(k)T

d + 1
2
dT Ŵ (k)d

subject to c
(k)
E + A

(k)T

E d = 0

c
(k)
I + A

(k)T

I d ≥ 0
d1j = 0 ∀j ∈ Zc

2

d2j = 0 ∀j ∈ Zc
1

z
(k)
1j + d1j ≥ 0 ∀j ∈ Z2

z
(k)
2j + d2j ≥ 0 ∀j ∈ Z1,

where

Ŵ (k) = ∇2f(z(k)) −
∑

λ
(k)
i ∇2ci(z

(k)) = W (k) − ξ(k)




0 0 0
0 0 I
0 I 0




is the Hessian of the Lagrangian of the relaxed NLP (3.2). Note that the relaxed NLP
(3.2) is never set up nor is (QPR(z(k))) ever solved. These two problems are merely used
in the convergence proof. The key idea is to show that SQP applied to the ill-conditioned
NLP (1.3) is equivalent to SQP applied to the well-behaved relaxed NLP (3.2), given by
the sequence defined by (QPR(z(k))).

The following proposition states the fact that SQP applied to the relaxed NLP con-
verges quadratically and identifies the correct index sets Z∗

1 and Z∗
2 in one step.

Proposition 5.2 Let Assumptions [A1]–[A6] hold, and consider the relaxed NLP for
any index sets Z1, Z2 (satisfying (5.1) by virtue of [A6]). Then it follows that
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1. there exists a neighborhood U of (z∗, λ∗, ν∗
1 , ν

∗
2) and a sequence of iterates generated

by SQP applied to the relaxed NLP (3.2), {(z(l), λ(l), ν
(l)
1 , ν

(l)
2 )}l>k that lies in U and

converges Q-quadratically to (z∗, λ∗, ν∗
1 , ν

∗
2),

2. the sequence {z(l)}l>k converges Q-superlinearly to z∗, and

3. Z
(l)
1 = Z∗

1 and Z
(l)
2 = Z∗

2 for l > k.

Proof. The relaxed NLP satisfies LICQ and a second-order sufficient condition. There-
fore, there exists a neighborhood U of (z∗, λ∗, ν∗

1 , ν
∗
2) such that for any (z(l), λ(l), ν

(l)
1 , ν

(l)
2 ) ∈

U , there exists an SQP iterate (z(l+1), λ(l+1), ν
(l+1)
1 , ν

(l+1)
2 ) that also lies in U ; and any se-

quence of SQP iterates {z(l)}l>k ⊂ U converges at second-order rate when applied to the
relaxed NLP. In fact Part 1. is a standard result whose proof can be found, for instance,
in [6, Theorem 15.2.2] or in or in [3]. Part 2. is due to [3]. Part 3 follows from the
fact that SQP identifies the correct active set in one step by the strict complementarity
assumption [A4]. �

Next, we show that the sequence of steps generated by SQP applied to the relaxed NLP
(3.2) is identical to the sequence of steps generated by applying SQP to the equivalent

NLP (1.3), provided that z
(k)T

1 z
(k)
2 = 0, that is [A6] holds for some k. If z

(k)T

1 z
(k)
2 = 0,

then an SQP step for (1.3) is obtained by solving the following (QP k) with z
(k)T

1 z
(k)
2 = 0

in the last constraint.
The two QPs (QP k) and (QPR(z(k))) have different constraints and Hessians. The

Hessian of (QP k) is

W (k) = Ŵ (k) + ξ(k)




0 0 0
0 0 I
0 I 0


 .

Despite these differences, however, one can show that the two QPs have the same solution
(from which second-order convergence follows). The following lemma shows that the
constraint sets are the same.

Lemma 5.3 Let Assumptions [A1]–[A6] hold. Then, a step d is feasible in (QP k) if and
only if it is feasible in (QPR(z(k))).

Proof. The constraint sets differ only in the way in which indices j ∈ Z c
2 and j ∈ Zc

1 are
handled. Thus it suffices to consider those constraints.

(a) Let d be feasible in (QPR(z(k))). Then it follows in particular that d satisfies

d1j = 0 ∀j ∈ Zc
2

d2j = 0 ∀j ∈ Zc
1.

If these constraints are split into two inequalities, we have that d satisfies

d1j ≥ 0 ∀j ∈ Zc
2 (5.2)

d1j ≤ 0 ∀j ∈ Zc
2 (5.3)

d2j ≥ 0 ∀j ∈ Zc
1 (5.4)

d2j ≤ 0 ∀j ∈ Zc
1. (5.5)



Local convergence of SQP methods for MPECs 15

Summing (5.3) over all j ∈ Zc
2 weighted with z

(k)
2j > 0 and (5.5) over all j ∈ Zc

1 weighted

with z
(k)
1j > 0, it follows that d satisfies the last constraint of (QP k) (the simple bounds

follow from (5.2) and (5.4)).

(b) Let d be feasible in (QP k). Since z
(k)
2j > 0, ∀j ∈ Zc

2 and z
(k)
1j > 0, ∀j ∈ Zc

1, it

follows from [A6] that z
(k)
1j = 0, ∀j ∈ Zc

2, and that z
(k)
2j = 0, ∀j ∈ Zc

1. Thus, (QP k)
contains the constraints

d1j ≥ 0 ∀j ∈ Zc
2 and d2j ≥ 0 ∀j ∈ Zc

1.

By [A6], the linearization of the complementarity constraint in (QP k) simplifies to

∑

j∈Zc

2

z
(k)
2j d1j +

∑

j∈Zc

1

z
(k)
1j d2j ≤ 0.

Since z
(k)
2j > 0, and z

(k)
1j > 0 in this sum, it follows that

d1j ≤ 0 ∀j ∈ Zc
2 and d2j ≤ 0 ∀j ∈ Zc

1.

Thus, d is feasible in (QPR(z(k))). �

Next, we show that near z∗, the stationary points of (QP k) and (QPR(z(k))) are
identical.

Lemma 5.4 Under Assumptions [A1]–[A6], any stationary point of (QPR(z(k))) near
zero is also a stationary point of (QP k) and vice versa.

Proof. From above, (QPR(z(k))) and (QPk) share the same feasible set. Consider a
feasible point d̄ that satisfies d̄ij = 0 for j ∈ D, i = 1, 2. Since all feasible points d have
d1j = 0 for j ∈ Zc

2 then d̄1j = 0 for j ∈ Zc
2 ∪ D = Z1. Likewise, d̄2j = 0 for j ∈ Z2. That

is, we have orthogonality between d̄1 and d2, and between d̄2 and d1, for any feasible d.
Thus the gradients of the objective functions of (QPR(z(k))) and (QPk) at d̄, which only
differ by ξ(k)(0, d̄2, d̄1), cannot be distinguished on the feasible set. It follows that d̄ is
stationary for (QPR(z(k))) if and only if it is stationary for (QPk). To complete the proof
we show that any stationary point, near zero, of either QP does indeed satisfy the above
conditions on d̄.

From Part 3 of Proposition 5.2, any stationary point d̄ of (QPR(z(k))), near zero,

satisfies z
(k)
ij + d̄ij = 0 for j ∈ D∗ and i = 1, 2. As D∗ ⊃ D ⊂ Z1, we get for j ∈ D that

d̄1j = 0. Likewise d̄2j = 0 for j ∈ D.

Conversely let d̄ be a stationary point, near zero, of (QPk). The associated KKT
conditions include

g(k) + W (k)d̄ −
[
A

(k)
E

T
: A

(k)
I

T
]
λ̄ −




0
ν̄1

ν̄2


+ ξ̄




0

z
(k)
2

z
(k)
1


 = 0

for some multipliers λ̄, ν̄1, ν̄2, ξ̄. As z(k) and d̄ approach z∗ and zero, respectively, where
µ(k) is within a given radius of (λ∗, ν∗

1 , ν
∗
2 , 0), we deduce from MPEC-LICQ and the first
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equation of (3.3) that ν̄1− ξ̄z
(k)
2 and ν̄2− ξ̄z

(k)
1 approach ν∗

1 and ν∗
2 , respectively. Therefore

Assumption [A4], with nonnegativity of z
(k)
1 , z

(k)
2 and ξ̄, ensures that ν̄ij > 0, hence

z
(k)
ij + d̄ij = 0, for j ∈ D∗ and i = 1, 2. The argument that d̄ij = 0 for j ∈ D and i = 1, 2

is given in the previous paragraph. �

Lemma 5.5 Let Assumptions [A1]–[A6] hold. Let (λ, ν̂1, ν̂2) be the multipliers of (QPR(z(k)))
(corresponding to a step d near zero). Then it follows that the multipliers of (QP k), cor-
responding to the same step d, are µ = (λ, ν1, ν2, ξ), where

ξ = max

(
0 , max

j∈Z1\D

−ν̂1j − ξ(k)d2j

z
(k)
2j

, max
j∈Z2\D

−ν̂2j − ξ(k)d1j

z
(k)
1j

)
(5.6)

ν1j = ν̂1j > 0 , ∀j ∈ D (5.7)

ν2j = ν̂2j > 0 , ∀j ∈ D (5.8)

ν1j = ν̂1j + ξ(k)d2j + ξz
(k)
2j , ∀j ∈ Z1\D (5.9)

ν2j = ν̂2j + ξ(k)d1j + ξz
(k)
1j , ∀j ∈ Z2\D. (5.10)

Conversely, given a solution d and multipliers µ of (QP k), (5.7) to (5.10) show how to
construct multipliers so that (d, λ, ν̂1, ν̂2) solves (QPR(z(k))).

Proof. If z(k) is sufficiently close to z∗, then the sign of the multipliers in (5.7) and
(5.8) follows from [A4], and the value for the multipliers of (QP k) follows similar to
Proposition 4.1. Similarly, the multipliers of (QP k) in (5.9) and (5.10) are nonnegative
by construction and satisfy first-order conditions by Lemma 5.4. �

Next, we show that both QPs have the same (unique) solution in a neighborhood of
d = 0.

Lemma 5.6 The solution d of (QPR(z(k))) is the only strict local minimizer in a neigh-
borhood of d = 0 that is independent of k, and its corresponding multipliers (λ, ν1, ν2) are
unique. Moreover, d is also the only strict local minimizer in a neighborhood of d = 0 of
(QP k).

Proof. The result for (QPR(z(k))) is due to Robinson [18] (see also Conn, Gould and Toint
[6]), since the relaxed NLP satisfies [A1]–[A4]. The statement for (QP k) follows in two
parts. First-order conditions are established in Lemma 5.5. Second-order conditions for
(QP k) follow from second-order conditions of (QPR(z(k))), as we explain now. The critical
cone at a stationary point is the set of directions in the tangent cone to the feasible set that
are orthogonal to the gradient of the objective function. From Lemma 5.3 and the proof
of Lemma 5.4, it can be seen that the critical cones of (QPR(z(k))) and (QP k) coincide;
denote this cone C. Next, we use a standard fact that relates an inequality constraint
with a positive multiplier to any direction d in the critical cone of (QP k), namely, dij = 0
if ν̄ij > 0. Hence, using the proof of Lemma 5.4, we have that dT

1 d2 = 0 for d ∈ C. It
follows that the Hessian matrices of (QPR(z(k))) and (QP k) are indistinguishable on C,
hence that the second order sufficient condition of the former transfers to the latter, and
the stationary point must be a local minimizer of the latter. �
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The following theorem summarizes the results of this section. As remarked earlier,
this result holds under a weak version of Assumption [A4] in which only positivity of the
biactive multipliers ν∗

1j and ν∗
2j is required.

Theorem 5.7 If Assumption [A1]–[A6] hold, then SQP applied to (1.3) generates a se-

quence {(z(k), λ(k), ν
(k)
1 , ν

(k)
2 , ξ(k))}l>k that converges Q-quadratically to a solution

{(z∗, λ∗, ν∗
1 , ν

∗
2 , ξ

∗)} of (4.1), satisfying strong stationarity. Moreover, the sequence {z(k)}l>k

converges Q-superlinearly to z∗ and z
(l)T

1 z
(l)
2 = 0 for all l ≥ k.

Proof. Under Assumption [A1]–[A4], SQP converges quadratically when applied to the
relaxed NLP (3.2), see Proposition 5.2. Lemmas 5.3–5.6 show that the sequence of iterates
generated by this SQP method is equivalent to the sequence of steps generated by SQP
applied to (1.3). This implies Q-superlinear convergence of {z(k)}l>k. Convergence of the
multipliers follows by considering (5.6)–(5.10). Clearly, the multipliers in (5.7) and (5.8)
converge, as they are just the multipliers of the relaxed NLP, which converge by virtue of
Proposition 5.2. Now observe that (5.6) becomes

ξ̂(k+1) = max


0 , max

j∈Z∗
c

2

−
̂
ν

(k+1)
1j − ξ(k)d

(k)
2j

z
(k)
2j

, max
j∈Z∗

c

1

−
̂
ν

(k+1)
2j − ξ(k)d

(k)
1j

z
(k)
1j


 .

The right-hand side of this expression converges, since
̂
ν

(k+1)
1j ,

̂
ν

(k+1)
2j and z

(k)
1j , z

(k)
2j converge

and d
(k)
1j , d

(k)
2j → 0. Note that the limit of (5.6) is the basic multiplier (4.4). Finally, (5.9)

and (5.10) converge to (4.2) and (4.3) by a similar argument.

Now z
(l)T

1 z
(l)
2 = 0 , ∀l ≥ k follows from the convergence of SQP for the relaxed

NLP (3.2) and the fact that SQP retains feasibility with respect to linear constraints.

Assumption [A4] ensures that d
(k)
1j = d

(k)
2j = 0,∀j ∈ D∗, since ν

(k)
1j , ν

(k)
2j > 0 for biactive

complementarity constraints. Thus SQP will not move out of the corner but will stay on
the same face. �

5.2 Local Convergence for Nonzero Complementarity

This section shows that SQP converges superlinearly even if complementarity does not

hold at the starting point, that is if z
(k)T

1 z
(k)
2 > 0. Example (2.3) shows that the QP

approximations can be inconsistent arbitrarily close to a stationary point. To avoid this
problem, we make the following assumption, which often holds in practice.

[A7] All QP approximations (QP k) are consistent.

This is clearly an undesirable assumption because it makes an assumption about the
progress of the method. However, we show in the next section that this assumption is
satisfied for some important practical applications.

Without loss of generality, we assume that Z∗c

1 = ∅, that is we will assume that the
solution has the form z∗

1 = 0 and z∗
2 = (0, z∗

22) and that z∗
22 > 0. This assumption greatly

simplifies the notation.
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Our convergence analysis is concerned with showing that for any “basic” active set,
SQP converges. To this end, we introduce the set of basic constraints

B(z) := E ∪ I ∩ A∗ ∪ Z1(z) ∪ Z2(z) ∪ {zT
1 z2 = 0}

and the set of strictly active constraints (defined in terms of the basic multiplier, µ),

B+(z) := {i ∈ B(z) | µi 6= 0} .

Moreover, we let B
(k)
+ denote the matrix of strictly active constraint normals at z = z(k),

namely,

B
(k)
+ :=

[
a

(k)
i

]
i∈B+(z(k))

.

Note that Lemma 4.3 shows that the optimal multiplier is unique. However, it may be
possible that for some iterates B

(k)
+ 6= B+(z∗), and our analysis will have to allow for this.

The failure of any constraint qualification at a solution z∗ of the equivalent NLP (1.3)
implies that the active constraint normals at z∗ are linearly dependent. However, the linear
dependence occurs in a special form that can be exploited to prove fast convergence.

Lemma 5.8 Let Assumptions [A1]–[A4] hold, and let z∗ be a solution of the MPEC
(1.1). Let I∗ denote the set of active inequalities cI(x), and consider the matrix of active
constraint normals at z∗,

B∗ =




0 0 0

A∗
E A∗

I∗ I 0

(
0

z∗22

)

0

[
I
0

] (
0
0

)




, (5.11)

where we have assumed without loss of generality that Z c∗

1 = ∅. Note that the last column
is the gradient of the complementarity constraint.

Then it follows that B is linearly dependent and any submatrix of columns of B has
full rank, provided that it contains [A∗

E A∗
I ] and either the last column of B is missing or

any column corresponding to z12 = 0 is missing.

Proof. The fact that the columns of B are linearly dependent is clear by looking at
the last three columns of B. Assumption [A2], MPEC-LICQ, implies that B without
the last column has full rank. The final statement follows by exchanging any column
corresponding to z∗

12 = 0 with the final column of B and observing that z∗
22 > 0. �

The proof shows that in order to obtain a linearly independent basis, any column of
z12 = 0 can be exchanged with the normal of the complementarity constraint. This idea is
precisely what lies behind (4.2) and (4.3). The corresponding basic multipliers are shown
as dots in Figure 2.

Next, we show that if we are close to z∗ and the QP solver chooses the full basis B,
then exact complementarity holds for all subsequent iterations. Thus, in this case the
development of the previous section shows second-order convergence.
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Lemma 5.9 Let z(k) be sufficiently close to z∗, and let Assumptions [A1]–[A5] and [A7]
hold. If the QP solver chooses the full basis Bk, given by

B(k) =




0 0 0

A
(k)
E A

(k)
I∗ I 0

(
z

(k)
21

z
(k)
22

)

0

[
I
0

] (
z

(k)
11

z
(k)
12

)




,

then it follows that z
(k)T

1 z
(k)
2 > 0 and that after the QP step, z

(k+1)T

1 z
(k+1)
2 = 0.

Proof. Assume that z
(k)T

1 z
(k)
2 = 0, and seek a contradiction. Since z(k) is sufficiently close

to z∗, it follows that there exists τ > 0 such that z
(k)
22 ≥ τ > 0. Hence, z

(k)
12 = 0. Now

consider the final three columns of B(k), and observe that if z
(k)
12 = 0, then the last column

lies in the range of the other two. Hence the basis would be singular, thus contradicting

Assumption [A5], and so z
(k)T

1 z
(k)
2 > 0.

Now, z
(k+1)T

1 z
(k+1)
2 = 0 follows simply by observing that the full basis B implies that

0 = z
(k)
1 + d1 = z

(k+1)
1 . �

Thus, once a full basis is chosen, the corresponding step will give z
(k+1)T

1 z
(k+1)
2 = 0 for

a point close to z∗. Second-order convergence then follows from Theorem 5.7.

Corollary 5.10 Let z(k) be sufficiently close to z∗, and let Assumptions [A1]–[A5] and
[A7] hold. If the QP solver chooses the full basis B, then it follows that SQP converges
quadratically from iteration k + 1.

In the remainder we can therefore concentrate on the case in which the full basis B is
never chosen and z

(k)T

1 z
(k)
2 > 0 for all iterates k (otherwise, we have convergence from the

results of the previous section).
Next, we show that for z(k) sufficiently close to z∗, the basis at z(k) contains both E

and I∗.

Lemma 5.11 Let z(k) be sufficiently close to z∗, and let Assumptions [A1]–[A5] and

[A7] hold. Then it follows that the optimal basis B of (QP k) contains the normals A
(k)
E

and A
(k)
I∗ of active constraints at the solution.

Proof. The proof follows by considering the gradient of the Lagrangian of (QP k),

0 = g(k) + Ŵ (k)d(k) −
[
A

(k)T

E : A
(k)T

I

]
λ(k+1) −




0

ν
(k+1)
1 − ξ(k+1)z

(k)
2

ν
(k+1)
2 − ξ(k+1)z

(k)
1


+ ξ(k)




0

d
(k)
2

d
(k)
1


 ,

where Ŵ (k) is the Hessian of the Lagrangian without the term corresponding to the
complementarity constraint (the last term above). For z(k) sufficiently close to z∗, it

follows from [A4] that λ
(k+1)
i 6= 0 for all i ∈ E ∪ I∗. �
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Thus, as long as the QP approximations remain consistent, the optimal basis of (QP k)
will be a subset of B satisfying the conditions in Lemma 5.9. The key idea is now to show
that for any such basis, there exists an equality constrained problem for which SQP
converges quadratically. Since there exist only a finite number of bases, this implies
convergence for SQP.

We now introduce the reduced NLP , which is an equality constraint NLP. Its con-
straints correspond to a linearly independent subset of the basis B∗ in (5.11) of Lemma 5.8.

minimize f(z)
subject to cE(z) = 0

cI∗(z) = 0
z11 = 0
z21 = 0

z12 = 0
zT
1 z2 = 0

}
subset of B∗ satisfying Lemma 5.8.

(5.12)

The next lemma shows that any reduced NLP satisfies an LICQ and an SOCS.

Lemma 5.12 Let Assumptions [A1]–[A4] and [A7] hold. Then it follows that any re-
duced NLP satisfies an LICQ and an SOSC.

Proof. Lemma 5.8 shows that the normals of the equality constraints of each reduced NLP
are linearly independent. The SOSC follows from the MPEC-SOSC and the observation,
that the MPEC and the reduced NLP have the same nullspace. �

Thus, applying SQP to the reduced NLP results in second-order convergence.

Proposition 5.13 Let Assumptions [A1]–[A4] and [A7] hold. Then it follows that SQP
applied to any reduced NLP converges locally and quadratically to (z∗, µ∗).

Proof. Lemma 5.12 shows that the reduced NLP satisfies LICQ and SOSC. Therefore,
convergence of SQP follows. In particular, it follows that for a given reduced NLP corre-
sponding to a basis B, there exists a constant cB > 0 such that

‖
(
z(k+1), µ(k+1)

)
− (z∗, µ∗) ‖ ≤ cB ‖

(
z(k), µ(k)

)
− (z∗, µ∗) ‖2. (5.13)

�

Summarizing the results of this section, we obtain the following theorem.

Theorem 5.14 Let Assumptions [A1]–[A5] and [A7] hold. Then it follows that SQP
applied to the NLP formulation (1.3) of the MPEC (1.1) converges quadratically near a
solution (z∗, µ∗).

Proof. Proposition 5.13 shows that SQP converges quadratically for any possible choice
of basis B, and Assumption [A7] shows that (QP k) is consistent and remains consistent.
Therefore, there exists a basis for which quadratic convergence follows. Thus, for each
basis, a step is computed that satisfies a contraction condition like (5.13) for a constant
cB > 0 that depends on the basis. Since there exists a finite number of bases, this condition
holds also for c = max cB independent of the basis, and SQP converges quadratically
independent of the basis. �
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5.3 Discussion of the Proofs

An interesting observation about the convergence proofs of this section is that if z
(k)T

1 z
(k)
2 =

0, then the actual value of ξ(k) has no effect on the step computed by SQP. This shows
that the curvature information contained in the complementarity constraint zT

1 z2 ≤ 0
is not important. Consequently, one could omit this contribution to the Hessian of the
Lagrangian. This can be easily implemented, and convergence results follow along similar
lines to the observation above.

The conclusions and proofs presented in this section also carry through for linear
complementarity constraints but not for general nonlinear complementarity constraints.
The reason is that the implication

z
(k)T

1 z
(k)
2 = 0 ⇒ z

(k+1)T

1 z
(k+1)
2 = 0

holds for linear complementarity problems but not for nonlinear complementarity prob-
lems, because in general, an SQP method would move off a nonlinear constraint. This is
one reason for introducing slacks to deal with complementarity of the form (1.2).

Similar conclusions can easily be derived for other NLP formulations of the MPEC
(1.1). For instance, the complementarity constraint in (1.3) can be replaced by

z1jz2j ≤ 0 , ∀j = 1, . . . , p.

In this case, a similar construction to (5.6) is possible, where ξ̂ is replaced by a vector
of complementarity multipliers, one for each constraint. Equations (4.2) and (4.3) then
become componentwise conditions and similarly, (5.9) and (5.10). In addition, one can
now see, that a basis that satisfies the conditions of Lemma 5.9 satisfies a complementarity
condition between the multipliers ξi and ν1i (and ν2i).

The strongest assumption in the present convergence analysis is Assumption [A7],
namely, that all (QP k) remain consistent. We show in the next section that this assump-
tion holds for several interesting cases. We also show that a simple restoration procedure
always ensures consistency after one step.

6 Sufficient Conditions for Consistency of (QP k)

Example (2.3) shows that the QP approximation to an MPEC can be inconsistent arbi-
trarily close to a stationary point. This section gives two situations in which consistency
of (QP k) can be guaranteed under Assumptions [A1]–[A5]. The first such situation
arises when there are no general constraints on control and state variables. Next, we
show that one step of a simple restoration procedure is guaranteed to find an iterate with

z
(k)T

1 z
(k)
2 = 0, thus ensuring consistency.
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6.1 Vertical Complementarity Constraints

This section shows that the QP approximations (QP k) are consistent arbitrarily close to
a strongly stationary point, provided that the MPEC has the following form:

minimize f(z)
subject to c(z0) = 0

0 ≤ G(z) ⊥ H(z) ≥ 0,
(6.14)

where G,H : IRn+2p → IRp are twice continuously differentiable. We note that the general
constraints are on the control variables only and that the only complementarity constraint
takes the form of a vertical complementarity constraints. This case was brought to our
attention by Mihai Anitescu.

In this section, we make the following additional assumption, which is related to the
mixed P0 property (e.g., [16]).

[A8] The matrix [∇c(z∗
0) : ∇G(z∗) : ∇H(z∗)] has full rank.

The motivation for considering this form of problem (6.14) is that the simple complemen-
tarity constraint 0 ≤ z1 ⊥ z2 ≥ 0 always produces feasible linearization if there are no
other constraints on z1, z2.

To see the relationship between Assumption [A8] and the mixed P0 property consider
the equivalent MPEC with slacks defined by

minimize f(z)
subject to F (z, s) = 0

0 ≤ s1 ⊥ s2 ≥ 0,
(6.15)

where

F (z, s) =




c(z0)
G(z) − s1

H(z) − s2.




One can see that a sufficient condition for Assumption [A8] is that the Jacobian matrix




∇s1F
∇s2F
∇zF


 =




0 −I 0
0 0 −I

∇zF




satisfies the mixed P0 property. This assumption has been used, for instance, in the
convergence analysis of MPEC solvers and holds for a range of test problems, such as
those arising from obstacle or packaging problems [17, Chapter 9].

Lemma 6.1 Let Assumptions [A1]–[A5] and [A8] hold. Then it follows that (QP k) is
consistent for all z(k) in a neighborhood of z∗ where G(k)T

H(k) ≥ 0. If, in addition, the
functions G(z) and H(z) are convex, then G(k+1)T

H(k+1) ≥ 0.
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Proof. Let z(k) be sufficiently close to z∗ so that the Jacobian matrix
[
∇c(z

(k)
0 ) : ∇G(z(k)) : ∇H(z(k))

]

has full rank.
The linearizations of the QP approximation to (6.14) has the following constraints:

c(k) + ∇c(k)T

d0 = 0 (6.16)

G(k) + ∇G(k)T

d ≥ 0 (6.17)

H(k) + ∇H(k)T

d ≥ 0 (6.18)

G(k)T

H(k) + G(k)T

∇H(k)T

d + H(k)T

∇G(k)T

d ≤ 0. (6.19)

We need to show that these constraints are consistent. By [A8] it follows that there exists
d̂ such that constraints (6.16)–(6.18) hold with equality (this corresponds to the origin in
the G − H coordinate system).

It can be shown that d̂ is also feasible in (6.19). The constraints (6.16) and (6.17) hold
with equality, thus implying that ∇G(k)T

d̂ = −G(k) and ∇H(k)T

d̂ = −H(k). Substituting
these last two equations into (6.19) simplifies that constraint to

G(k)T

H(k) + G(k)T

∇H(k)T

d̂ + H(k)T

∇G(k)T

d̂ = −G(k)T

H(k) ≤ 0,

where the last inequality follows from the assumption that G(k)T

H(k) ≥ 0.
To show that the QP step d∗ maintains nonnegative complementarity, we observe that

for z(k) sufficiently close to z∗, SQP converges and identifies the correct active set. Thus,
there exists a partition

G := {i : Gi(z
∗) = 0} and H := {i : Hi(z

∗) = 0} ,

and

G
(k)
i + ∇G

(k)T

i d∗ = 0 , i ∈ G (6.20)

H
(k)
i + ∇H

(k)T

i d∗ = 0 , i ∈ H. (6.21)

Note that d∗ is feasible for an LPEC approximation, because G ∪ H ⊃ {1, . . . , p} implies
that (

G(k) + ∇G(k)T

d∗
)T (

H(k) + ∇H(k)T

d∗
)

= 0. (6.22)

Hence, if G(z) and H(z) are convex, it follows that

G(k+1) = G(z(k) + d) ≥ G(k) + ∇G(k)T

d

and similarly for H (k+1). Combining this with (6.22) implies that

G(k+1)T

H(k+1) ≥
(
G(k) + ∇G(k)T

d
)T (

H(k) + ∇H(k)T

d
)

≥ 0.

�

The main conclusion of this section is that Assumption [A8] turns out to be satisfied
for a range of practical problems as long as the vertical complementarity problem has
certain properties. This assumption is satisfied, for instance, for obstacle and packaging
problems.
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6.2 Feasibility Restoration for Complementarity

This section examines the properties of (QP k) where z
(k)T

1 z
(k)
2 > 0. In this case, (QP k)

may be inconsistent. This section describes a simple restoration procedure that can
be invoked if (QP k) is inconsistent. The procedure finds a new iterate z(k+1) with

z
(k+1)T

1 z
(k+1)
2 = 0. Thus, after one step, all subsequent iterates retain feasibility of the QP

approximations by virtue of Theorem 5.7.
If (QP k) is inconsistent, then we consider solving the following LP:

(LP k
F )





minimize
d,θ

θ

subject to c
(k)
E + A

(k)T

E d = 0

c
(k)
I + A

(k)T

I d ≥ 0

z
(k)
1 + d1 ≥ 0

z
(k)
2 + d2 ≥ 0

z
(k)T

1 z
(k)
2 + z

(k)T

2 d1 + z
(k)T

1 d2 ≤ θ.

It follows from Assumption [A2] that any QP approximation to the relaxed NLP (3.2) is
consistent for z(k) sufficiently close to z∗ and thus that (LP k

F ) is consistent (since it is a
relaxation of the relaxed QP). If z(k) is far away from z∗, then clearly (LP k

F ) need not be
consistent. In that case we enter a restoration phase.

The following lemma shows that the solution d of (LP k
F ) satisfies (z

(k)
1 +d1)

T (z
(k)
2 +d2) =

0. The key idea of the proof is to show that the optimal active set includes Z1 and Z2.

Lemma 6.2 Let Assumptions [A1]–[A5] hold, and assume that z(k) is sufficiently close

to z∗ so that the linearizations of cE(z), cI(z) are consistent and z
(k)
1 , z

(k)
2 ≥ 0. Then it

follows that (LP k
F ) has a solution d such that z(k+1) = z(k) + d satisfies z

(k+1)T

1 z
(k+1)
2 = 0.

Proof. Assume without loss of generality that Z c
1 = ∅, namely, that z∗

1 = 0, and consider
the dual feasibility conditions of (LP k

F ) (primal feasibility follows from Assumption [A2]),




0
0
0
1


−




0 0 0

A
(k)
A I1 0 z

(k)
2

0 I2 z
(k)
1

0 0 0 −1







λA

ν1

ν2

ξ


 = 0, (6.23)

where A
(k)
A is the matrix of active constraint normals of cE(z), cI(z) at z∗, I2 = [ei]i∈Z2

and I1 = [ei]i∈Z1
.

It follows immediately that ξ = −1 and that this active set gives rise to a primal feasible
solution. Moreover, the columns of the basis matrix in (6.23) are linearly independent
by Assumption [A2]. Thus there exists a unique solution to (6.23). [A2] implies in
particular, that the following block of (6.23)




0 0

A
(k)
A I1 0

0 I2






Local convergence of SQP methods for MPECs 25

has full column rank. This implies that block of A
(k)
A corresponding to the first equation

in (6.23) has full column rank, and thus λA = 0 follows. This implies that

ν1 = z
(k)
2 ≥ 0 and ν2 = z

(k)
1 ≥ 0.

Complementary slackness of (LP k
F ) implies that z

(k+1)T

1 z
(k+1)
2 = 0. To see how this follows,

consider three cases:
Case 1: i ∈ Zc

2 implies that z
(k)
2i > 0. This implies that ν1i > 0, and thus z

(k)
1i +d1i = 0.

Case 2: i ∈ Z2 and z
(k)
1i , z

(k)
2i > 0. This implies that ν1i, ν2i > 0, and thus z

(k)
1i + d1i = 0

and z
(k)
2i + d2i = 0.

Case 3: i ∈ Z2 and z
(k)
1i > 0 but z

(k)
2i = 0. This implies that ν2i > 0, and thus

z
(k)
1i + d1i = 0. The case where z

(k)
1i = 0 but z

(k)
2i > 0 is analogous.

Putting all three cases together and recalling that Z1 = ∅, one has that z
(k+1)T

1 z
(k+1)
2 =

0.
It remains to prove that there exist multipliers λ with λI ≥ 0 such that (6.23) holds.

If λI∩A ≥ 0, there is nothing to show. Hence assume that there exists a multiplier λi < 0
for i ∈ I ∩ A. Then one can perform an iteration of an active set method on (LP k

F ) that
will not remove any columns of I1 or I2 from the basis. Since (LP k

F ) is bounded (θ > 0,
since (QP k) is inconsistent), after a finite number of such pivots a basis is found with
ν1, ν2 as above and, the conclusion follows. �

Solving (LP k
F ), if (QP k) is inconsistent, is related to the elastic mode of snopt. In the

elastic mode, some of the constraints are relaxed and an l∞-QP is solved. The application
of snopt to MPECs is explored in [1]. Unlike snopt, however, the present restoration will
occur only at one iteration.

An alternative to solving (LP k
F ) would be to move z(k) onto the “nearest” axis. This

is the effect of (LP k
F ), as can be seen from Lemma 6.2. However, solving (LP k

F ) avoids
the need to choose tolerances to break ties between “close” values.

We note that this restoration does not address the wider issue of global convergence.
It may be possible that the solution to (LP k

F ) is not acceptable to the global convergence
criterion of the SQP method. Clearly, this possibility has to be taken into account in
designing a globally convergent SQP method. It is beyond the scope of the present paper,
which deals exclusively with local convergence issues.

7 Discussion of Assumptions

This section discusses some of the assumptions made in the proof above. In particular,
examples are presented showing that SQP will fail to converge at second-order rate if some
or all of the assumptions are removed. The following table shows which assumptions seem
difficult to remove. Below, each example is presented in turn.

Example [A2] MFCQ [A3] Slacks SOSC Comments
scholtes4 no yes no yes yes ξ → ∞, linear convergence
sl2 yes yes yes no yes ξ → ∞, nonstationary limit
ralph2 yes yes yes yes no ξ < ∞, linear convergence
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7.1 Unbounded Multipliers & Slow Convergence

The following MPEC shows that if we remove Assumptions [A2] and, in particular, As-
sumption [A3], then the NLP multipliers are not bounded (and may not even exist).
Despite this, SQP converges linearly to the solution in the example presented here, al-
though quadratic convergence is lost.

Consider the following MPEC (scholtes4.mod) from MacMPEC, (see also [19]):

(P )





minimize
z

z1 + z2 − z0

subject to −4z1 + z0 ≤ 0
−4z2 + z0 ≤ 0
0 ≤ z1 ⊥ z2 ≥ 0 ,

whose optimal solution is z∗ = (0, 0, 0)T . Writing (P ) as an NLP gives

(P ′)





minimize
z

z1 + z2 − z0 multiplier

subject to −4z1 + z0 ≤ 0 λ1 ≥ 0
−4z2 + z0 ≤ 0 λ2 ≥ 0

z1z2 ≤ 0 ξ ≥ 0
z1 ≥ 0 ν1 ≥ 0
z2 ≥ 0 ν2 ≥ 0.

Next, we show that SQP converges linearly for this problem.

Proposition 7.1 SQP applied to (P ′) generates the following sequence of iterates

z(k) =




22−k

2−k

2−k


 , λ(k) =

(
1
2
1
2

)
, ξ(k) = 2k−1 + ξ(k−1)/2 =

k−1∑

j=0

2(k−1)−2j

for suitable starting values (e.g. z = (4, 1, 1)T ). Moreover, SQP converges linearly.

Proof. By induction. the assertion holds trivially for k = 0 (i.e., the starting point).
Now assume the assertion holds for k, and show it also holds for k + 1. At iteration k,
SQP solves the following QP for a step d:

(QP (k))





minimize
z

d1ξ
(k)d2 + d1 + d2 − d0

subject to −4d1 + d0 ≤ 0
−4d2 + d0 ≤ 0

z
(k)
1 z

(k)
2 + z

(k)
2 d1 + z

(k)
1 d2 ≤ 0

z
(k)
1 + d1 ≥ 0

z
(k)
2 + d2 ≥ 0.

We note that all QP approximations are consistent and that the first three constraints
are active. Subtracting the second from the first constraint, we have that d1 = d2.
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Substituting into the third constraint, we get d1 = d2 = −2−(k+1), from which it follows
that d0 = 4(−2−(k+1)). We verify the KKT conditions of (QP (k)):

0 =




−1
1
1


 +




0
−2−(k+1)ξ(k)

−2−(k+1)ξ(k)


 + λ1




1
−4

0


 + λ2




1
0

−4


 + ξ




0
2−k

2−k


 .

Subtracting the second from the first equation shows that λ1 = λ2. Substituting into the
third equation then verifies that λ

(k+1)
1 = λ

(k+1)
2 = 1

2
.

Finally, the second equation shows ξ(k) = 2k−1 + ξ(k−1)/2, the recurrence relation for
ξ. The explicit formula for ξ follows easily. The iterates clearly converge linearly to the
solution. �

Note that (P ) satisfies an MPEC-MFCQ [20] but violates an MPEC-LICQ (as can be
seen easily by observing that four constraints are active at the solution). In addition, (P )
fails to satisfy strong complementarity. For strong complementarity, it would be necessary
that λi ≥ 0 and νi ≥ 0, since z1 = z2 = 0. Checking the first-order condition,

0 =




−1
1
1


 + λ1




1
−4

0


 + λ2




1
0

−4


 − ν̂1




0
1
0


 − ν̂2




0
0
1


 ,

one can see that the system is underdetermined. Setting λ1 = t, we obtain λ2 = 1 − t,
ν1 = 1 − 4t, and ν2 = −3 + 4t. The condition νi ≥ 0 now implies that t ≤ 1

4
and t ≥ 3

4

which cannot hold simultaneously. Thus the solution of (P ) is not strongly stationary.

The linear inequalities always ensure that z
(0)
1 = z

(0)
2 ≥ 0, and the above analysis goes

through for alternative starting points. It is not clear what would happen if we allowed
z1 < 0, but sensible NLP solvers will always project the starting point into the set of
linear constraints (or at least the set of box constraints). The solvers filter, snopt and
lancelot behave in this way.

7.2 Formulations without Slacks

The next example shows that SQP methods can converge to nonstationary points if slacks
are not added to replace nonlinear complementarity conditions. Consider the following
MPEC (sl2.mod) from MacMPEC, which involves a nonlinear expression in the comple-
mentarity condition:

(P )





minimize
z

−z1 −
1
2
z2

subject to z1 + z2 ≤ 2
0 ≤ z2

1 − z1 ⊥ z2 ≥ 0 .

The problem has a global solution at z∗ = (2, 0)T with f ∗ = −2 and a local solution at
z∗ = (0, 2)T with f ∗ = −1. Both solutions satisfy Assumptions [A1]–[A4]. The feasible
set is illustrated by the bold lines in Figure 3.

Starting at z(0) = (−ε, t)T gives convergence to the nonstationary point z∞ = (0, t)T ,
where t ≥ 0 is arbitrary. Moreover, one can show that ξ → ∞ and that both the
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1

2

1 2

2

z
1

z

f-

z(0)

zoo

Figure 3: Example sl2

complementarity constraint and 0 ≤ z2
1 + z1 remain in the active set. Thus, the active set

is singular in the limit. Nevertheless, second-order convergence is observed!
It is straightforward to prove quadratic convergence to a nonstationary limit. Let

z(k) = (−ε, t)T with t ≤ 1. Then the following problem is solved for a step of the SQP
method:

(P )





minimize
d

−d1 −
1
2
d2

subject to d1 + d2 ≤ 2 + ε − t
(ε2 + ε) − (2ε + 1)d1 ≥ 0

t + d2 ≥ 0
t(ε2 + ε) − t(2ε + 1)d1 + (ε2 + ε) ≤ 0

whose solution is

d =

(
ε2+ε
2ε+1

0

)
, ξ =

1

2(ε2 + ε)
, ν1 =

1

2ε + 1
+ ξt.

One can see that z(k+1) = (−O(ε2), t)T and quadratic convergence occurs to z∞ = (0, t)T .
On the other hand, the multiplier ξ clearly diverges to infinity. Note that including the
Hessian of the Lagrangian leads to a similar conclusion. This example shows that it is
not sufficient to trigger the elastic mode only when QP become inconsistent. Clearly,
the elastic mode is also required if the multipliers become too large. The introduction of
slacks avoids the need for the elastic mode in this example.

When a slack variable is introduced, SQP converges quadratically. The SQP solver
filter exhibits this behavior, while lancelot and loqo converge even for the problem
without slacks. The reason for this apparently better behavior is that both introduce
slacks internally before solving the problem!

Another reason for using slacks (rather than linear or even nonlinear complementarity)
is that SQP solvers maintain linear feasibility throughout the iteration. Thus they guar-
antee that z

(k)
1 ≥ 0, z

(k)
2 ≥ 0 for all iterations k in exact arithmetic. In inexact arithmetic,

one can truncate QP steps such that z
(k)
1 ≥ 0, z

(k)
2 ≥ 0 for all iterations k. This approach

is not possible for general linear complementarity conditions even if iterative refinement
were used.
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Thus the use of slacks ensures that z
(k)T

1 z
(k)
2 ≥ 0 for all iterations k, and the trivial

pitfall of [4] where it was observed that perturbing the right-hand side of the complemen-
tarity constraint to −ε renders an inconsistent QP, cannot occur.

7.3 Lack of Second-Order Condition

The following MPEC (ralph2.mod) shows that if the second-order sufficient condition
[A3] is violated, then SQP may converge only linearly:

(P )

{
minimize

z
z2
1 + z2

2 − 4z1z2

subject to 0 ≤ z1 ⊥ z2 ≥ 0 .

The problem has a global solution at (0, 0). Starting at z = (1, 1) causes SQP to converge
linearly to the solution. Note that (P ) also violates any upper-level strict complementarity
condition.

The MPEC-SOSC is stronger than needed for MPECs in the sense that the set of
directions over which positive curvature is required for SQP is larger than the set of
MPEC-feasible directions. We illustrate this by the following example. The set of MPEC-
feasible directions at (0, 0) is

S∗
M =

{(
1
0

)
,

(
0
1

)}
,

while the set of directions over which curvature is required to be positive for SQP to
converge is the whole positive orthant (i.e., conv(S∗

M)). The linear rate of convergence is
due to the fact that the curvature in the direction (1, 1) is negative.

8 Conclusions and Future Work

We have presented a convergence analysis that shows that SQP methods converge quadrat-
ically when applied to the NLP equivalent of an MPEC. This analysis goes some way to-
ward explaining the extraordinary success of SQP solvers applied to MPECs, as we have
observed. The result is remarkable because MPEC violate the Mangasarian Fromowitz
constraint qualification.

Conditions are identified under which local second-order convergence occurs. These
conditions include the assumption that all QP approximations remain consistent. It

can be shown that this assumption always holds if z
(k)T

1 z
(k)
2 = 0 (i.e., for iterates which

satisfy complementarity), and this is often observed in practice. We have also shown that
MPECs whose lower-level problem is a certain vertical complementarity problem generate
consistent QP approximations. Further we have given a restoration phase that ensures
that this can always be guaranteed sufficiently close to a solution.

We have also experimented with an alternative to the restoration problem. In this
approach, the linearization of the complementarity condition is relaxed as

z
(k)T

1 z
(k)
2 + z

(k)T

2 d1 + z
(k)T

1 d2 ≤ δ
(
z

(k)T

1 z
(k)
2

)1+κ

, (8.1)
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where 0 < δ, κ < 1 are constants. Note that the perturbation to the right-hand side of
the complementarity condition is o(‖dNR‖), where dNR is the Newton step. This form
of perturbation allows the superlinear convergence proof to be extended by virtue of the
Dennis-Moré characterization theorem.

However, the perturbation alone is not sufficient to guarantee consistency of (QP k).
The following example illustrates the need for further assumptions. Consider the following
feasible set:

z1 + z2 − 1 ≥ 0 , 0 ≤ z1 ⊥ z2 ≥ 0.

It is easy to see that, for any z = (ε4, 1 − ε), the (QP k) relaxed by using (8.1) with
δ = κ = 0.5 is inconsistent. Note that if we restrict attention to points z that satisfy
the linear constraints (e.g. z = (ε, 1 − ε)) then (QP k) using (8.1) is consistent in a
neighborhood of z = (0, 1). Thus (8.1) seems to ensure consistency of (QP k) as long as
z(k) satisfies the linearizations of cE(z), cI(z) about z(k−1). Unfortunately, we have been
unable to prove any general results along those lines. Such a proof would clearly allow us
to bootstrap a convergence of SQP for MPECs with the relaxed equation (8.1).

We finish this paper with some observations on the role of degeneracy and point to
some future work. It has been observed that any QP approximation about a feasible point
of (1.3) is degenerate. Moreover, approximations about points that satisfy zT

1 z2 = ε > 0
are near-degenerate, and we would expect this property to play a role in the SQP method.
In our numerical experiment we use two SQP solvers, snopt and filter.

The solver snopt uses EXPAND to handle degeneracy. This procedure perturbs the
bounds of (QP k) to remove degeneracy. Some numerical experiments suggest that this
is not the best way to handle degeneracy in the case of MPECs. The QP solver in
filter, bqpd, applies a different methodology to handle degeneracy. It creates degeneracy
whenever near-degeneracy is detected and then handles the degenerate situation. This
approach has two implications.

1. If exact degeneracy exists (i.e., if z
(k)T

1 z
(k)
2 = 0), then bqpd will deal with it.

2. If near-degeneracy exists (i.e., if z
(k)T

1 z
(k)
2 = ε > 0), then bqpd creates degeneracy by

perturbing the bound ε to zero. This has the effect of pushing the solution onto the
axis. As we have shown, this is a favorable situation for SQP methods.

Future work will focus on relaxing some assumptions and providing a global conver-
gence analysis. Some numerical results suggest that SQP converges under even weaker
assumptions than those made above, and it may be possible to pursue the ideas of [22]
in this context. Another important question concerns the global convergence of SQP
methods. Anitescu [1] provides a framework for convergence (possibly under additional
assumptions) of Sl∞QP methods. However, the numerical results suggest that a similar
proof may be possible for filter methods.
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