33. Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation.

T Makaryan, S Esconjauregui, M Gonçalves, J Yang, H Sugime, D Nille, P Renganathan, P Goldberg, J Robertson.

ACS Applied Materials & Interfaces (2014), Accepted

 

32. The role of the sp2:sp3 substrate content in carbon supported nanotube growth.

R Cartwright, S Esconjauregui, R Weatherup, D Hardeman, Y Guo, E Wright, D Oakes, S Hofmann, J Robertson.

Carbon (2014), Accepted.

 

31. Carbon nanotube forests growth using catalysts from atomic layer deposition.

B Chen, C Zhang, S Esconjauregui, R Xie, G Zhong, S Bhardwaj, C Cepek, J Robertson.

Journal of Applied Physics 115, 144303 (2014).

 

30. Carbon nanotube growth on conductors: influence of the support structure and catalyst thickness.

S Esconjauregui, S Bhardwaj, J Yang, C Castellarin-Cudia, R Xie, L D'Arsié, T Makaryan, H Sugime, S Eslava, C Cepek, J Robertson.

Carbon, 73, 13 (2014).

 

29. Effect of catalyst pretreatment on chirality-selective growth of single-walled carbon nanotubes.

M Fouquet, B Bayer, S Esconjauregui, C Thomsen, S Hofmann, J Robertson.

The Journal of Physical Chemistry C 118, 5773 (2014).

 

28. Diameter and wall number control of carbon nanotubes by chemical vapor deposition.

R Xie, G Zhong, C Zhang, B Chen, S Esconjauregui, J Robertson.

Journal of Applied Physics 114, 244302 (2013).

 

27. Evaluation of bimetallic catalysts for the growth of carbon nanotube forests.

H Tornatzky, D Hardeman, S Esconjauregui, L D'Arsié, R Xie, H Sugime, J Yang, T Makaryan, C Thomsen, J Robertson.

Physica Status Solidi B 250, 2605 (2013).

 

26. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports.

H Sugime, S Esconjauregui, J Yang, L D'Arsié, RA Oliver, S Bhardwaj, C Cepek, J Robertson.

Applied Physics Letters 103, 073116 (2013).

 

25. Synthesis of carbon nanotubes and graphene for VLSI interconnects.

J Robertson, G Zhong, S Esconjauregui, C Zhang, S Hofmann.

Microelectronic Engineering 107, 210 (2013).

 

24. Measurement of area density of vertically aligned carbon nanotube forests by the weight-gain method.

S Esconjauregui, R Xie, M Fouquet, R Cartwright, D Hardeman, J Yang, J Robertson.

Journal of Applied Physics 113, 144309 (2013).

 

23. Electrical conduction of carbon nanotube forests through sub-nanometric films of alumina.

S Esconjauregui, R Xie, Y Guo, SML Pfaendler, M Fouquet, R Gillen, C Cepek, C Castellarin-Cudia, S Eslava, J Robertson.

Applied Physics Letters 102, 113109 (2013).

 

22. Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronics.

S Eslava, L Zhang, S Esconjauregui, J Yang, K Vanstreels, M Baklanov, E Saiz.

Chemistry of Materials 25, 27 (2013).

 

21. The phase of iron catalyst nanoparticles during carbon nanotube growth.

CT Wirth, BC Bayer, A Gamalski, S Esconjauregui, R Weatherup, C Ducati, C Baehtz, J Robertson, S Hofmann.

Chemistry of Materials 24, 4633 (2012).

 

20. Catalyst design by cyclic deposition: nanoparticle formation and growth of high-density nanotube forests.

S Esconjauregui, M Fouquet, R Xie, R Cartwright, S Newcomb, J Robertson.

Physica Status Solidi B 249, 2428 (2012).

 

19. Chemical vapor deposition of carbon nanotube forests.

J Robertson, G Zhong, S Esconjauregui, C Zhang, M Fouquet, S Hofmann.

Physica Status Solidi B 249, 2315 (2012).

 

18. Plasma stabilisation of metallic nanoparticles on silicon for the growth of carbon nanotubes.

S Esconjauregui, C Cepek, M Fouquet, BC Bayer, AD Gamalski, B Chen, R Xie, S Bhardwaj, C Ducati, S Hofmann, J Robertson.

Journal of Applied Physics 112, 034303 (2012).

 

17. Growth of single-walled nanotubes with control of chirality and abundance.

M Fouquet, B Bayer, S Esconjauregui, C Baehtz, S Hofmann, J Robertson.

Physics Review B 85, 235411 (2012).

 

16. Applications of Carbon Nanotubes Grown by Chemical Vapor Deposition.

J Robertson, G Zhong, S Esconjauregui, BC Bayer, C Zhang, M Fouquet, S Hofmann.

Japanese Journal of Applied Physics 51, 01AH01 (2012).

 

15. Catalyst design for the growth of highly-packed nanotube forests.

S Esconjauregui, M Fouquet, BC Bayer, C Ducati, J Robertson.

Physica Status Solidi B 248, 2528 (2011).

 

14. Growth of carbon nanotubes on NiTi shape memory alloy thin films for improved thermal actuation.

BC Bayer, S Sanjabi, C Baehtz, CT Wirth, S Esconjauregui, RS Weatherup, ZH Barber, S Hofmann, J Robertson.

Thin Solid Films 519, 6126 (2011).

 

13. Use of plasma treatment to grow carbon nanotube forests on TiN substrate.

S Esconjauregui, BC Bayer, M Fouquet, CT Wirth, F Yan, R Xie, C Ducati, C Baehtz, C Castellarin-Cudia, S Bhardwaj, C Cepek, S Hofmann, J Robertson.

Journal of Applied Physics 109, 114312 (2011).

 

12. Support-Catalyst-Gas interactions during carbon nanotube growth on metallic Ta films.

BC Bayer, C Castellarin-Cudia, R Blume, C Baehtz, S Esconjauregui, CT Wirth, A Knop-Gericke, R Schlögl, A Goldoni, C Cepek, S Hofmann, J Robertson.

Journal of Physical Chemistry C 115, 4359 (2011).

 

11. Manipulation of the catalyst-support interactions for inducing nanotube forest growth.

S Esconjauregui, M Fouquet, BC Bayer, S Eslava, S Khachadorian, S Hofmann, J Robertson.

Journal of Applied Physics 109, 044303 (2011).

 

10. Ultra-high density carbon nanotubes on AlCu for advanced Vias.

J Dijon, H Okuna, M Fayolle, T Vo, J Pontcharra, D Acqiaviva, D Bouvet, AM Ionescu, S Esconjauregui, B Capraro, E Quesnel, J Robertson.

Tech Digest IEDM  33, 4 (2010).

 

9. Capacitive Nano-Electro-Mechanical Switch based on Suspended Carbon Nanotube Array.

Acquaviva, A Arun, S Esconjauregui, D Bouvet, J Robertson, R Smajda, A Magrez, L Forro, AM Ionescu.

Applied Physics Letters 97, 233508 (2010).

 

8. Growth of Ultra-High Density Vertically-Aligned Carbon Nanotube Forests for Interconnects.

S Esconjauregui, M Fouquet, BC Bayer, C Ducati, R Smajda, S Hofmann, J Robertson.

ACS Nano 4, 7431 (2010).

 

7. Carbon nanotubes growth: From entanglement to vertical alignment.

S Esconjauregui, M Fouquet, BC Bayer, J Robertson.

Physica Status Solidi B 11-12, 2656 (2010).

 

6. Growth of high-density vertically-aligned arrays of carbon nanotubes by plasma-assisted catalyst pre-treatment.

S Esconjauregui, BC Bayer, M Fouquet, S Hofmann, J Robertson.

Applied Physics Letters 95, 173115 (2009).

 

5. Use of carbon nanotubes for VLSI interconnects.

J Robertson, G Zhong, S Hofmann, BC Bayer, S Esconjauregui, H Telg, C Thomsen.

Diamond and Related Materials 18, 957 (2009).

 

4. The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies.

S Esconjauregui, C Whelan, K Maex.

Carbon 47, 659 (2009).

 

3. Patterning of metallic nanoparticles for the growth of carbon nanotubes.

S Esconjauregui, C Whelan, K Maex.

Nanotechnology 19, 135306 (2008).

 

2. Plasma assisted growth of nanotubes and nanowires.

H Griffiths, C Xu, T Barrass, M Cooke, F Iacopi, P Vereecken, S Esconjauregui.

Surface & Coatings Technology 201, 9215 (2007).

 

1. Carbon nanotube catalysis by metal silicide: resolving inhibition versus growth.

S Esconjauregui, C Whelan, K Maex.

Nanotechnology 18, 015602 (2007).