3E4: Modelling Choice

Lecture 5

Network Flows Problems

Announcements

Coursework

- To be handed in:
 - on Mon 28 Feb, 4pm, Lecture Room 1, Eng. Dept.
- Filling in the coversheet:
 - MODULE: 3E4 MODELLING CHOICE
 - MODULE LEADER: GG278
 - TITLE OF COURSEWORK: Production planning and optimal decisions: The SteelPro case
- Cover sheet also available online

Solutions to Lecture 1-3 Homework

 now available from http://www.eng.cam.ac.uk/~dr241/3E4

2

3E4 : Lecture Outline

Lecture 1. Management Science & Optimisation Modelling: Linear Programming

Lecture 2. LP: Spreadsheets and the Simplex Method

Lecture 3. LP: Sensitivity & shadow prices

Reduced cost & shadow price formulae

3

Lecture 4. Integer LP: branch & bound

Lecture 5. Network flows problems

Lecture 6. Multiobjective LP

Lecture 7 – 8. Introduction to nonlinear programming

Introduction A number of business problems can be represented graphically as networks. Several types of network flow problems: Transshipment Problems Shortest Path Problems Minimal Spanning Tree Problems Maximal Flow Problems Generalized Network Flow Problems

Characteristics of Network Flow Problems

- Network flow problems can be represented as "graphs", i.e. a collection of nodes connected by arcs.
- There are three types of nodes:
 - "Supply" or "Source" (less flow goes in than comes out)
 - "Demand" or "Sink" (more flow goes in than comes out)
 - "Transshipment" (inflow = outflow)
- We'll use
 - Net inflow (=inflow outflow) to model the amount of flow passing through a node, hence we'll use negative numbers to represent supplies and positive numbers to represent demand.

Characteristics of

- Network Flow Problems
- Arcs can be directed or undirected
- Arcs can have a limited capacity
- A "cost" (or a "cost" function) can be associated to each arc
- A directed graph whose nodes and/or arcs have associated numerical values (costs, capacities, supplies, demands) is named "directed **network**".

Important properties of Network LPs

- The relatively simple structure of Network LPs means there is very **efficient** (fast) **software** specialised for these problems.
- If a Network LP with <u>INTEGER</u> data has any solutions then
 - -it has at least one solution with all integer flows

7

8

-the Simplex method will find an integral solution!

A Transshipment Problem: The Bavarian Motor Company

A luxury car importer, BMC, ships vehicles from Hamburg, Germany to Jacksonville (FLA) and Newark (NJ) in the USA, and then must distribute them as cheaply as possible to 5 other cities.

Defining the Objective Function

Minimize total shipping costs.

$$\begin{split} \text{MIN:} \quad & 30X_{12} + 40X_{14} + 50X_{23} + 35X_{35} \\ & +40X_{53} + 30X_{54} + 35X_{56} + 25X_{65} \\ & + 50X_{74} + 45X_{75} + 50X_{76} \end{split}$$

11

Constraints for Network Flow Problems: The Balance-of-Flow Rules

For Minimum Cost Network	Apply This Balance-of-Flow
Flow Problems Where:	Rule At Each Node:
Total Supply > Total Demand	Inflow-Outflow >= Supply or Demand
Total Supply < Total Demand	Inflow-Outflow <=Supply or Demand
Total Supply = Total Demand	Inflow-Outflow = Supply or Demand
	12

Solving the Problem

- There are two possible objectives for this problem
 - Finding the quickest route (minimizing travel time)
 - Finding the most scenic route (maximizing the scenic rating points)
- Model & solve (using Excel) either of these shortest path problems for **homework**.

19

Transportation & Assignment Problems • Some network flow problems don't have transshipment nodes; only supply and demand nodes. • Groves assignment problem: Processing Plants Groves Distances (in miles) Supply Capacity Mt. Do Ocala 200,000 275,000 50 1 4 40 35 <u>30</u> Orland Eustis 600,000 400,000 2 5 22 55 Clermo 20 Leesbur 300,000 225,000 3 6 25 These problems are implemented more effectively using the LP technique described in Lectures 2-3 20

An algorithm for the Minimal spanning tree problem

- 1. Select 1 as a starting subnetwork.
- 2. The cheapest arc is (1,5). The new subnetwork is $\{1,5\}$.
- 3. Four nodes remain unconnected. Go to step 2.

An algorithm for the Minimal spanning tree problem The cheapest arc is (4,5). The new subnetwork is 2. $\{1,2,3,4,5,6\}.$ No nodes remain unconnected. STOP. 3. £150 4 2 £75 £85 5 1 3 6 31

$$\begin{array}{l} Max\ Flow\ general\ formulation\\ \text{Network}\ G=(N,A)\\ N=set\ of\ nodes,\ A=set\ of\ (directed)\ arcs\\ s:\ source\ node,\ t:\ sink\ node,\ c_{ij}:\ capacity\ of\ arc\ (i,j)\\ f:\ value\ of\ an\ s-t\ flow\\ \max\ f\\ s.t.\ f-\sum_{j:(s,j)\in A} x_{sj}=0\\ -f+\sum_{j:(j,i)\in A} x_{ji}=0\\ \sum_{j:(i,j)\in A} x_{ij}-\sum_{j:(j,i)\in A} x_{ji}=0 \qquad \forall i\in N-\{s,t\}\\ 0\leq x_{ij}\leq c_{ij} \qquad \forall (i,j)\in A \qquad 38 \end{array}$$

Augmenting path

- Given a feasible *s*-*t* flow *x* over the network G=(N,A), an augmenting path P is a path from *s* to *t* in the undirected graph resulting from G by ignoring arc directions with the following properties:
 - For every arc $(i,j) \in A$ that is traversed by *P* in the forward direction (forward arc), we have $x_{ij} < c_{ij}$. That is forward arcs of *P* are unsaturated.
 - For every arc $(j,i) \in A$ that is traversed by *P* in the backward direction (forward arc), we have $x_{ji} > 0$.

Finding an augmenting path The labeling algorithm

 To each node *i* is assigned a two part label λ(*i*)=(P(*i*),F(*i*)), where P(*i*) denotes the node from where *i* was labeled and F(*i*) the amount of extra flow that can be brought from *s* to *i*.

• There are two cases:

- If node *j* is unlabeled and succeeds *i*, then we may label *j* if $x_{ij} < c_{ij}$, in which case we set
 - P(j):=i and $F(j):=\min\{F(i), c_{ij} x_{ij}\}$
- If node *j* is unlabeled and precedes *i*, then we may label *j* if x_{ij} >0, in which case we set

43

• P(j):=-i and $F(j):=\min\{F(i), x_{ij}\}$

Finding an augmenting path The labeling algorithm

- The process of labeling outward from a given node *i* is called **scanning** *i*.
- The labeling algorithm amounts to look for an augmenting path by scanning the nodes of the network, starting from node *s*.
- In particular, a list containing all labeled but unscanned nodes is kept.
- The list is initialized by adding *s* to it.
- At each iteration an element *i* is selected from the list and scanned, and all nodes labeled from *i* are added to the list. 44

Finding an augmenting path The labeling algorithm

- The process terminates in one of two ways:
 - Either t gets labeled, in which case we can reconstruct an augmenting path backwards from t using P(i)'s, and increase the current flow along the augmenting path of F(t);
 - Or the list is empty, then the flow is maximal (to be proved later).

45

Solving the Max Flow Problem The Ford-Fulkerson algorithm Set x:=0; (Initialize the flow) Find, if any, an augmenting path P and increase the flow of

 $\delta = \min_{(i,j) \in P} \begin{cases} c_{ij} - x_{ij} & \text{along a forward arc} \\ x_{ji} & \text{along a backward arc} \end{cases}$

• If there does not exist any augmenting path, then terminate, the current flow is maximal.

Solving the Max Flow Problem The Ford-Fulkerson algorithm

- Set *x*:=0; (Initialize the flow)
- Repeat
 - Set all labels to zero;
 - Set LIST:={*s*};
 - While (LIST $\neq \emptyset$) and (t is unlabeled) do
 - Let *i* be any node in LIST,
 - Remove *i* from LIST and Scan *i*.
 - If t is labeled then increase the flow along the augmenting path of F(t)

47

Endwhile

Until t is unlabeled

The Ford-Fulkerson algorithm Termination and optimality

- When the capacities are integers or rational numbers, the Ford-Fulkerson labeling algorithm terminates after finitely many iterations.
- **Theorem:** When the Ford-Fulkerson labeling algorithm terminates, it does so at optimal flow.
- Proof: At termination of the algorithm, some nodes are labeled and some are not (at least the sink node). Call the set of labeled nodes V and the set of unlabeled nodes W. (V,W) is an s-t cut for the network G. All arcs (i,j), with i∈V and j∈W, must be saturated, otherwise j would have been labeled when i was scanned. Similarly, all arcs (j,i), with i∈V and j∈W, must be empty, otherwise j would have been labeled when i was scanned. Therefore, (V,W) is a min-cut, and the flow is optimal due to the max flow-min cut theorem. 48

Lecture 5 *3E4 Homework*

- **1.a.** Model the ACA's shortest path problem to find the quickest route (minimizing travel time).
- **1.b** Model the ACA's shortest path problem to find the the most scenic route (maximizing the scenic rating points)
- **1.c** Solve (using Excel) either of these shortest path problems.

The Compu-Train Company

- Compu-Train provides hands-on software training.
- Computers must be replaced at least every two years.
- Two lease contracts are being considered:
 - Each required \$62,000 initially
 - Contract 1:
 - Prices increase 6% per year
 - 60% trade-in for 1 year old equipment
 - 15% trade-in for 2 year old equipment
 - Contract 2:
 - Prices increase 2% per year
 - 30% trade-in for 1 year old equipment
 - 10% trade-in for 2 year old equipment
- Want to determine which contract would allow to minimize the remaining leasing cost over the next five years and when, under the selected contract, the equipment should be replaced. 59

3. a	
Give m us sh	en the network in the next slide, determine the aximum flow that is possible to send from <i>s</i> to <i>t</i> ing the Ford-Fulkerson algorithm. Arc capacities are owed in the picture along each arc.
3.b	
Cheo - 1	ck the optimality of the solution using the max flow min cut theorem.
3.c	
Solv	e the problem using Excel.

