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Abstract. We study piecewise decomposition methods for mathematical programs with equi-
librium constraints (MPECs) for which all constraint functions are linear. At each iteration of a
decomposition method, one step of a nonlinear programming scheme is applied to one piece of the
MPEC to obtain the next iterate. Our goal is to understand global convergence to B-stationary points
of these methods when the embedded nonlinear programming solver is a trust-region scheme, and
the selection of pieces is determined using multipliers generated by solving the trust-region subprob-
lem. To this end we study global convergence of a linear trust-region scheme for linearly-constrained
NLPs that we call a trust-search method. The trust-search has two features that are critical to global
convergence of decomposition methods for MPECs: a robustness property with respect to switching
pieces, and a multiplier convergence result that appears to be quite new for trust-region methods.
These combine to clarify and strengthen global convergence of decomposition methods without re-
sorting either to additional conditions such as eventual inactivity of the trust-region constraint, or
more complex methods that require a separate subproblem for multiplier estimation.
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1. Introduction. We consider the following mathematical program with equi-
librium constraints (MPEC), all of whose constraint functions are linear:

min
x∈Rn

f(x)

subject to min
1≤j≤`

{pij(x)} = 0 i = 1, . . . ,mp

g(x) ≤ 0

h(x) = 0.

(1.1)

Throughout the paper we will always assume that f : Rn 7→ R is continuously differ-
entiable, while g : Rn 7→ Rmg , and h : Rn 7→ Rmh are defined as

g(x)
4
= G>x+ v and h(x)

4
= H>x+ w

where G ∈ Rn×mg , H ∈ Rn×mh , v ∈ Rmg , and w ∈ Rmh . Moreover for every (i, j),
with 1 ≤ i ≤ mp and 1 ≤ j ≤ `, pij is defined as

pij(x)
4
= P>ij x+ uij

where Pij is an n-dimensional real vector and uij is a scalar. MPECs in the form of
(1.1) are sometimes called mathematical programs with complementarity constraints

∗Dipartimento di Elettronica, Informatica e Sistemistica, Università della Calabria, 87036 Rende
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(MPCC), because the lower-level equilibrium problem is represented via min-functions
that require, for each i, at least one function pij(x) to be zero while the others must
take nonnegative values, i.e., complementarity between the nonnegative scalars pi1(x),
. . . , pi`(x). More generally, the lower-level constraints may consist of an equilibrium
system such as a variational inequality that is parametric in upper level variables, see
[32, 35].

A disjunctive approach for dealing with the MPEC (1.1) is based on a natural
local piecewise decomposition, e.g., [32, 34] when m = 2. For any feasible point x̄ of
(1.1) we choose a set of constraint indices I ∈ I(x̄), where

I(x̄)
4
= {I | I ⊆ {(i, j) : pij(x̄) = 0} and ∀i ∃j : (i, j) ∈ I} ,(1.2)

and define the following ordinary nonlinear program NLPI :

min
x∈Rn

f(x)

subject to pij(x) = 0 ∀(i, j) ∈ I
pij(x) ≥ 0 ∀(i, j) 6∈ I
g(x) ≤ 0

h(x) = 0.

(1.3)

The feasible set of the NLP (1.3) is referred to as a piece (or branch [32]) of the MPEC
feasible set at, or adjacent to, x̄. The NLP itself is called a piece of the MPEC at x̄.
The index set I is called a piece index at x̄, and hence the set I(x̄) is the family of all
piece indices at x̄.

It is clear that locally around x̄, the feasible set of (1.1) looks like the union of a
finite but possibly huge number of ordinary NLP feasible sets, indexed by I ∈ I(x̄); in
our situation, this would typically result in a non-convex polyhedral set. This shows
the intrinsically combinatorial nature of mathematical programs with complementar-
ity constraints. Nevertheless, as we explain next in a brief review, decomposition
methods can still work efficiently.

At the kth iteration of a decomposition method we are given a feasible point
xk of the MPEC and an adjacent piece NLPIk . If xk is not stationary for this
piece then we can improve it by finding another feasible point xk+1 of NLPIk such
that f(xk+1) < f(xk). Now suppose xk is actually stationary for this piece of the
MPEC, and let πk be the associated vector of Lagrange or Karush-Kuhn-Tucker
(KKT) multipliers. The obvious question for a decomposition approach is how to
choose Ik+1 ∈ I(xk) such that one step of a nonlinear programming method applied
to NLPIk+1 at xk will yield a new point xk+1 that decreases the objective function
and is feasible for NLPIk+1 , hence for the MPEC. Or, if such a piece index Ik+1 does
not exist, how to show this by verifying stationarity of xk for each NLPI adjacent
to it. The latter stationarity condition is termed piecewise stationarity [32] which is
equivalent to B-stationarity [40] of xk. Under certain constraint qualifications such
as the commonly assumed MPEC-LICQ (Definition 3.1) it can be seen that the signs
alone of particular components of πk allow us to choose a suitable Ik+1 or verify
B-stationarity of xk without further work. This dual-based approach to selection of
MPEC pieces appears in [43].

1.1. Development of the paper. Our goal is to understand the global con-
vergence to B-stationary points of decomposition methods that apply a trust-region
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(TR) method to each relevant piece of the MPEC, inspired by the work of Scholtes and
Stöhr [43] and Stöhr [44] on penalty-based decomposition methods for MPECs, trying
in particular to address some typical shortcomings arising in the global convergence
analysis of such methods. To this aim our first step is to introduce, in section 2, a
simple linear(-programming-based) trust-region scheme, for linearly-constrained NLP.
Apart from their simplicity and robustness, linear TR methods are attractive because
of their recent impact in numerical methods for large-scale nonlinear optimization
[6, 7, 10]. The key feature of our linear TR algorithm, unlike the standard TR ap-
proach [11], is that we do not allow the TR radius to be arbitrarily small at the start
of a serious step (cf. [10, 24, 27, 44]). We call it a trust-search method because it
combines some defining features of TR and line-search methods, i.e., it is analogous
to the standard Armijo line-search which takes an initial stepsize of 1 and, if a rate-of-
descent condition fails, decreases the stepsize geometrically until that condition holds.
This means, as in all standard linesearch methods [18] but in contrast to the standard
trust region approach, that the next iterate is sufficiently far from the current iterate;
this property yields some convergence advantages that we now describe.

We show that the trust-search has a robust global convergence property called
monotone uniform descent [36] or nonstationary repulsion [15]: every feasible nonsta-
tionary point has a neighborhood that the algorithm can visit at most once, irrespec-
tive of the (feasible) starting point. We next show convergence of the trust-region sub-
problem multipliers: accumulation points of the trust-search iterate-multiplier pairs
necessarily solve the KKT conditions of the NLP. This result appears to be new in that
it holds quite generally, without resorting either to a separate subproblem to estimate
multipliers, or restrictive assumptions such as strict complementarity at the eventual
KKT point or asymptotic inactivity of the trust-region constraint. We stress that
enforcing a lower bound on the initial TR radius at the start of each serious iteration
plays a fundamental role in proving both nonstationary repulsion and convergence of
multipliers of the trust-search method.

In section 3 we aim to extend the nonstationary repulsion property of the trust-
search method to the decomposition scheme based on the trust-search solver.

Suppose (x̄, π̄) is an accumulation point of the sequence of iterate-multiplier pairs
{(xk, πk)} generated by the decomposition method, where each xk is feasible for the
MPEC (1.1). Our main assumption, needed to validate dual-based selection of MPEC
pieces, is that the MPEC-LICQ holds at x̄. Section 3 explains this along with details of
other relevant stationary conditions and their relationships with one another, and also
presents the decomposition method TS-MPEC that uses the trust-search subroutine
as its NLP workhorse.

As usual, the algorithmic proof of B-stationarity of x̄ requires that π̄ be a KKT
multiplier for each piece of the MPEC adjacent to x̄. Toward this goal, decomposition
methods require multiplier convergence of the embedded NLP solver. In addition the
algorithm needs to identify, implicitly rather than explicitly, the so-called multi-active
complementarity constraints — i.e., those indices i such that more than one constraint
function pij takes the value zero at x̄ — in order to avoid converging to a point that
is stationary for one piece of the MPEC but not B-stationary. For the purpose of
identification it is convenient to assume that a weak strict complementarity property,
ULSC (Definition 3.5) holds at x̄. We also find that convergence to zero of the step
dk = xk+1 − xk, on an appropriate subsequence, is needed for identification. See §3.3
for details of global convergence of TS-MPEC, and §3.4 for some extensions.

The requirement on convergence of the step dk to zero leads to a slight modifi-
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cation of basic trust-search method in section 4. This yields global convergence of
the trust-search decomposition method, Theorem 4.5, without requiring either addi-
tional assumptions, such as asymptotic inactivity of the trust region (c.f. [43, Propo-
sition 5.1]), or a separate subproblem for multiplier estimation at each iteration as
in [44].

Having mentioned the key concepts, we can view the paper at an even higher
level. As we said, the linear trust-search approach for linearly constrained NLP has
two attractive properties: nonstationary repulsion, and convergence of multipliers
which has more obvious importance in its own right, e.g., see the theoretical and
algorithmic role of multipliers in [4, 21]. However neither property seems critical to
global convergence of TR methods in NLP, after all the standard TR approach appears
to satisfy neither property. What is more striking, then, is the critical role played by
each property in global convergence of the trust-search decomposition method for
MPECs with linear constraint functions. Nonstationary repulsion makes the trust-
search method robust to switching from one piece to another during the decomposition
algorithm, i.e., if a subsequence of iterates {xk}k∈K is such that Ik = I, a fixed piece
index, on this subsequence, then any limit point x̄ is stationary for NLPI . Yet more
is needed for x̄ to be a B-stationary point of the MPEC: a dual-based procedure for
updating the piece index relies on convergence of the multipliers, in whatever way
these are estimated, to a KKT multiplier for NLPI at x̄. The fact that the trust-
search method, a very simple modification of the standard trust-region method, yields
both properties recommends it strongly for MPEC decomposition methods by giving
a clearer and more direct global convergence analysis than hitherto available.

Looking beyond the global convergence analysis of this paper, a goal of NLP and
MPEC methods alike is fast local convergence. That is, this paper can be thought of as
an intermediate step towards methods that combine fast local convergence with robust
global convergence. This underlies our choice of a linear TR approach which has
worthy global convergence properties, that we strengthen, and also holds the prospect
of extension to hybrid NLP methods that achieve local superlinear convergence [6, 7,
10]. Unfortunately an investigation of superlinearly convergent MPEC methods is
outside the scope of the paper due to the rigours of the NLP investigation. We do
make some links to superlinear convergence of decomposition methods based on [32]
following Condition 3.14 in §3.4. Likewise, nonlinear constraints and computational
tests are important topics that are not addressed here.

1.2. Brief literature review. Trust-region methods are a well established class
of algorithms for the solution of nonlinear nonconvex optimization problems. We
refer the reader to the massive monograph of Conn, Gould and Toint [11], and the
extensive bibliography therein, for a comprehensive guide to TR methods applied
to both unconstrained and constrained problems. Our interest in such methods is
particularly focussed on sequential linear programming trust-region techniques. This
kind of approach has recently received some attention (see [6, 7, 10]) in the context of
active-set SQP methods for large-scale nonlinear programming. In fact, the basic idea,
first introduced in a paper of Fletcher and Sainz de la Maza [21], is to avoid solving
an inequality constrained QP at each iteration by splitting the SQP iteration in two
parts, the first one being devoted to the identification of the active set through a trust-
region linear program, and the second one to the solution of an equality constrained
QP to determine the new iterate. What seems to be lacking in the NLP framework is a
deeper study of convergence of multipliers; see further comments after Theorem 2.11.
On one hand, multiplier convergence is generally not needed to prove stationarity of
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accumulation points of the sequence of the iterates, even when multipliers are used in
the practical implementation (see [9]), while on the other, whenever convergence of
multipliers is needed for the algorithm, it is very common to estimate them by solving
a supplementary least squares problem (see [6] and, for MPECs, [44]).

We mention some globally convergent methods for MPECs that are based on
decomposition ideas, typically for problems where each complementarity constraint
involves only two mappings (m = 2), starting with approaches that apply to linearly-
constrained MPECs. Fukushima and Tseng [23] propose an ε-active set method for
linearly-constrained MPECs that satisfy MPEC-LICQ globally; identification of active
complementarity functions is achieved via a careful updating rule for ε. In each of the
three methods of [28, 42, 45], one iteration requires exact solution, at least in principle,
of a piece of the original, nonlinear MPEC. Jiang and Ralph [28] show global conver-
gence of the PSQP decomposition method [32, 33] for quadratic programs with linear
complementarity constraints; MPEC-LICQ is avoided by, if necessary, enumerating
all pieces of the MPEC adjacent to the current iterate. Global convergence is also
shown for the decomposition method of Scholtes [42], for nonlinear problems with
more general constraints than complementarity constraints, and for the “extreme-
point” decomposition method of Zhang and Liu [45]. Selection of MPEC pieces in
[42] uses multipliers similar to the above and therefore relies on an extension of the
MPEC-LICQ, whereas the latter condition is avoided in [45] by using enumeration
over extreme rays in the selection process. In each of these three methods, implicit
identification of active functions in complementarity constraints follows from the fact
that a solution of one piece of the MPEC is found at each step.

For global convergence of nonlinearly-constrained MPECs, Scholtes and Stöhr [43]
present a general trust-region framework for locally Lipschitz B-differentiable func-
tions. For implementation, a penalty trust-region decomposition method, using dual
selection criteria, is proposed and shown to be convergent, to a class of weak stationary
points called C-stationary points, under MPEC-LICQ. Additional conditions, such as
ULSC and asymptotic inactivity of the trust region constraint, are needed to obtain
B-stationary points. A more comprehensive and penetrating analysis of penalty trust-
region decomposition is given in Stöhr [44]. In particular, the TR radius may be re-set
to a minimum threshold at the start of each iteration of the decomposition method,
which is the essence of what we also do.

Beyond decomposition methods we only mention key words, and few related refer-
ences, regarding some alternative approaches to MPECs. Smoothing [13, 22, 29, 30],
regularization [31, 38, 41] and penalty methods [2, 25, 26, 38] all embed an MPEC in
a family of “more regular” NLPs, indexed by a real parameter µ > 0, and drive µ to
zero to recover the original MPEC formulation and a solution of it. More recently,
direct application of the sequential quadratic programming method, a standard NLP
method, to MPECs has been justified both computationally [19] and theoretically
[1, 20]. In addition there has been considerable work on theoretical and computa-
tional performance of interior-point methods that have been specially modified for
solving MPECs [3, 12, 37]. Finally we mention the nonsmooth implicit program-
ming formulation which seems natural when the MPEC is defined using lower-level
equilibrium constraints that have a unique solution for each choice of the upper level
variables. This formulation can be solved using bundle methods as explored in [35].

2. A trust-region method for linearly-constrained optimization. We first
present a basic trust-region method to find a stationary point of the following linearly-
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constrained optimization problem

min
x∈Rn

f(x)

subject to g(x) ≤ 0

h(x) = 0.

(2.1)

As previously mentioned, we call the algorithm a trust-search method because it
combines some defining features of TR and line-search methods. See further discussion
to follow.

Given a feasible point x ∈ F 4= {x ∈ Rn | g(x) ≤ 0, h(x) = 0}, we define a linear
trust-region subproblem LP (x, r), dependent on a trust-region radius r > 0, in the
following way:

min
d∈Rn

∇f(x)>d

subject to g(x+ d) = g(x) +G>d ≤ 0

h(x+ d) = h(x) +H>d = 0

‖d‖ ≤ r,

(2.2)

where ‖·‖ is any appropriate norm. In fact a polyhedral norm turns out to be essential
for computational efficiency because, after adding auxiliary variables to transform the
constraint ‖d‖ ≤ r into finitely many affine inequalities, problem (2.2) is just a linear
program. We make the standing assumption that holds throughout the paper:

The trust-region ball is specified with a fixed polyhedral norm.

Actually most of the results in this section hold for any norm; polyhedrality of the
norm is only critical in showing convergence of multipliers, beginning with Proposi-
tion 2.10.

We denote by d(x, r) an optimal solution of LP (x, r), and by v(x, r) the corre-
sponding objective function value, i.e.,

v(x, r)
4
= ∇f(x)>d(x, r).

For notational simplicity we usually write d(r) instead of d(x, r), though we cannot
take this liberty with v(x, r) given the explicit role of x in the following results on
the optimal value function. The importance of this kind of value function, in basic
convergence analysis, has been stressed in [11, Chapter 12]. Notice also that if x ∈ F
then, for any r > 0, LP (x, r) is feasible and v(x, r) ≤ 0, the equality being satisfied if
and only if x is a stationary point of (2.1).

The common basis of trust-region methods, not unlike other descent methods,
is the idea that the optimal value v(x, r) of (2.2) approximates the variation of f
in passing from x to x + d(r). If v(x, r) is, according to some criterion, a good
approximation of f(x + d(r)) − f(x) then we replace x by x + d(r). If this is not
the case, then the trust-region radius r will have to be appropriately reduced and the
trust-region subproblem re-solved.

As we are about to introduce a simple trust-region scheme based on the above
ideas, two main differences from typical TR methods deserve to be pointed out. The
first one is quite formal. We choose not to keep track of the “null” steps during
the algorithm execution; in other words we choose to update the current solution
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estimate only when a “serious” step d(r) 6= 0 is accepted. Thus, the core of our TR
scheme is rather a “trust-search” subroutine, reminiscent of the standard line-search
in many NLP methods [18], which includes the sequence of (null) steps where the
current estimate of the solution is unchanged while the radius shrinks. The second
difference is that, analogous to the Armijo line-search, at the start of each serious
iteration we re-set the trust-region radius to a fixed positive value. This re-setting
device is used for simplicity rather than efficiency or generality. What makes it critical
to our convergence analysis is that it forces the algorithm to step sufficiently far from
the current iterate to avoid convergence to a nonstationary point. Resetting the TR
radius is hardly common in TR methods; although it has been used in [10, 24, 27], it
does not appear to be critical to global convergence in these situations, e.g., see notes
and references in [11, p.776]. By contrast, the TR method presented in [44], for the
unconstrained minimization of a locally Lipschitz B-differentiable function, exploits
this device to obtain strong global convergence results, improving those presented
in [43].

We mention some alternatives to re-setting the TR radius to a fixed value ρ > 0
at the start of each serious iteration. The first is to take, at step k, the initial radius
as ρk = max{rk−1, ρ} where rk−1 is the TR radius accepted at the previous serious
step; this idea has some of the flavor of the usual TR approach. The second is to take
ρk = ‖∇f(xk)‖. This brings the trust-search method closer to the Armijo linesearch
for unconstrained optimization for which the first trial iterate, with stepsize 1, is at
distance ‖∇f(xk)‖ from the current iterate. In each of these cases, the initial radius
ρk remains bounded away from 0 for all feasible iterates xk in the neighborhood of
any nonstationary point, which turns out to be key for the convergence proofs of this
paper.

More generally, just as the Wolfe condition [18] is used in many line-searches to
force expansion of the stepsize when appropriate, we could investigate trust-searches
that are more subtle than the Armijo-style method proposed here. However we believe
the current scheme captures significant, if not the main, benefits in global convergence
analysis of trust-search methods, for both NLP and MPEC decomposition. Exploring
other schemes, e.g., motivated by computational efficiency, is a subject for future
work.

Now we introduce our trust-search scheme. Given a feasible point x ∈ F , two
scalars α, β ∈ (0, 1), and a scalar ρ > 0, we generate a new point by taking the step
d(r) returned by the following trust-search subroutine TS(x):
[TS(x)]

Set r := ρ/β;
Repeat

Set r := βr;
d(r), v(x, r) ← LP (x, r);

Until f(x+ d(r))− f(x) ≤ αv(x, r).

We will refer to a direction d such that ∇f(x)>d < 0 and f(x+d)−f(x) ≤ α∇f(x)>d
as to an acceptable descent direction at x.

The entire trust-search method can be described in the following way. Given
a feasible starting point x0, we generate a sequence {xk} of solution estimates for
problem (2.1) by executing TS(xk), for every k = 0, 1, 2, . . . . Upon termination of
TS(xk), we are given rk = r, dk = d(rk), vk = v(xk, rk) and, unless xk is stationary,
we set xk+1 := xk+dk. A new execution of the trust-search subroutine is then started
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with respect to xk+1.

Algorithm 2.1 (TS-NLP).

1. Choose x0 ∈ F , α, β ∈ (0, 1), ρ > 0. Set k := 0.

2. vk, dk ← TS(xk).

3. If vk = 0 then STOP: xk is stationary.
Else set xk+1 := xk + dk, k := k + 1 and return to 2.

We repeat that whenever the trust-search subroutine is entered we update the
initial trust-region radius to a fixed value ρ > 0, independently of the outcome of the
previous trust-search, although the subsequent convergence analysis remains valid
provided the initial trust-region radius is not less than a fixed positive tolerance.
Notice also that the algorithm is monotone, since f(xk+1) ≤ f(xk) for every k, and
maintains feasibility of iterates.

In the remainder of the section we will often deal with a (possibly arbitrary)
sequence {xk} ⊂ F for which we will denote by rk, dk, and vk, respectively, the trust-
region radius, the optimal solution, and the optimal value of problem LP (xk, rk),
returned on termination of TS(xk); moreover, we will denote by (λk, µk) ∈ Rmg×Rmh

the vector of KKT multipliers of LP (xk, rk), i.e., the vectors of multipliers satisfying

0 ∈ ∇f(xk) +Gλk +Hµk +NBk(dk)(2.3)

and

min{λk,−g(xk)−G>dk} = 0,(2.4)

where NBk(dk) is the normal cone [39] to the set Bk = {d ∈ Rn | ‖d‖ ≤ rk} at
the point dk. To clarify the whole development we present in advance our two main
convergence results, where a feasible starting x0 is given.

• Convergence of iterates (Corollary 2.7 and Theorem 2.8)
The linear trust-search method Algorithm 2.1 has the nonstationary repulsion
property (see Definition 2.2). Hence any accumulation point of the iteration
sequence {xk} is stationary for the linearly-constrained NLP (2.1).

• Convergence of multipliers (Theorem 2.11)
Let {xk} be an iteration sequence as above that converges on a subsequence to
the point x̄. Then, there exists an associated subsequence of KKT multipliers
for LP (xk, rk) that is bounded, every accumulation point of which is a KKT
multiplier for (2.1) at x̄.

The latter is especially interesting in that it appears not to have been recognized
before.

2.1. Convergence of iterates. We aim to show that, under very common as-
sumptions, any accumulation point of the sequence {xk} generated by Algorithm 2.1
is stationary for problem (2.1). However, we remark that convergence to a stationary
point is a well known property for methods somewhat related to Algorithm 2.1, such
as trust-region methods (see [11]) or projected-gradient methods (see [4, 15]).
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Nevertheless we point out that the following results have wider implications. In
fact the mechanism of the stationarity convergence proof, here used to show a robust
convergence property, called Nonstationary Repulsion (a related idea is Monotone
Uniform Descent, see [36]), of the algorithm, will be next used also to analyze con-
vergence of multipliers.

Definition 2.2 (See [15]). An iterative feasible point algorithm for problem (2.1)
has nonstationary repulsion (NSR), if for each nonstationary point x̄ ∈ F there ex-
ists a neighborhood Ū of x̄ and ε̄ > 0 such that if any iterate xk lies in Ū ∩ F , then
f(xk+1) < f(x̄)− ε̄.

Remark 2.3.

(i) The original version of NSR, [15, Definition 3.1], is stated without ε̄, i.e.,
take ε̄ = 0 above, hence is slightly weaker. Assuming continuity of f , the advantage of
introducing a positive ε̄ is that NSR then guarantees that any nonstationary point x̄
has a neighborhood U ′ ⊆ U such that xK ∈ U implies {xk}k>K does not intersect U ′.
Hence, for a monotonic feasible point method with NSR, each nonstationary point has
a neighborhood that can be intersected at most once by the sequence of iterates. This
neighborhood is robust in the sense that it is independent of the (feasible) starting
point of the algorithm.

(ii) NSR of gradient-based methods: On one hand, it appears that the standard
TR method for linearly constrained NLP — which takes the TR radius at the start of
a serious step as a bounded multiple of the TR radius produced by the previous step
— does not satisfy NSR. On the other, many gradient-based methods satisfy NSR, for
example the steepest descent method for unconstrained smooth minimization, with a
linesearch or stepsize parameter that is chosen either (a) to be the largest stepsize in
a geometrically decreasing sequence 1, ρ, ρ2, . . . that satisfies the Armijo rule, or (b)
to satisfy both the Armijo and Wolfe rules [18, Section 2.5], can easily be seen to have
this property. The projected-gradient method is an extension of steepest descent to
minimize a smooth function over a closed convex set. The projected-gradient method
of Calamai and Moré [8], which chooses the path parameter at each iteration analogous
to (b) above, is shown to satisfy NSR in [15, Proof of Theorem 3.6]. The analysis
of [15] suggests that NSR also holds for the projected-gradient method that uses the
stepsize analog of (a) as in [4, Chapter 2]. Moreover, we show below that the linear
trust-search method satisfies NSR.

(iii) NSR of Newton-type methods: For smooth nonconvex unconstrained min-
imization, consider the notional algorithm in which Newton’s method [18] is safe-
guarded by a steepest descent step as follows. If the Hessian at current iterate is
positive definite with condition number bounded above by a constant, let the search
direction be the Newton direction, otherwise the steepest descent direction; then
choose the stepsize by procedure (a) or (b) as above. Standard theory on the Newton
step [4] when the Hessian is positive definite means that NSR of steepest descent
implies NSR of this safeguarded Newton method. Moreover superlinear or quadratic
convergence follows if at a limit point the Hessian is positive definite with a sufficiently
small condition number. A subject for future investigation is how to emulate this, in
a computationally efficient way, in the case of linearly constrained NLP.

First we recall some useful properties of the value function v(x, r). More details
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can be found in [11], which focusses on Euclidean trust regions, where a function

χ(x, r)
4
= |v(x, r)|

has been used as a criticality measure applied to convex constrained optimization
problems. Results in [11] show that each point on the projected-gradient path is a
minimizer of the Euclidean TR subproblem with radius set to be the length of the
projected-gradient, so that the criticality measure can also be interpreted as a measure
of the length of the projected-gradient step. The term “criticality measure” is often
referred to, in similar contexts, as a “residual measure” or an “error bound” (see [14]),
all of these terms referring to measures of nonstationarity. We further note that TR
methods and projected-gradient methods are distinguished, first, by the fact their
relationship is only close when the TR method uses the Euclidean ball and, second,
by lack of uniqueness of TR solutions — sometimes even in the Euclidean case —
whereas the projected-gradient path is uniquely defined.

We start our convergence analysis by repeating an obvious fact: given x ∈ F and
any r > 0, v(x, r) = 0 if and only if x is stationary for (2.1). Thus finite termination
of the trust-search method implies that a stationary point has been found.

Now we state a result entailed in [11, Theorem 12.1.5.(ii)].

Lemma 2.4. Let x ∈ F . Then for any 0 < r1 < r2 it holds that

v(x, r1)
r1

≤ v(x, r2)
r2

.

Proof. Notice that x+ r1
r2
d(r2) ∈ F for any 0 < r1 < r2, and∥∥∥∥r1

r2
d(r2)

∥∥∥∥ =
r1

r2
‖d(r2)‖ ≤ r1.

Therefore r1
r2
d(r2) is feasible in LP (x, r1), and as a consequence we have that

v(x, r1)
r1

≤ 1
r1
∇f(x)>

(
r1

r2
d(r2)

)
=
v(x, r2)
r2

,

which proves the thesis.

Lemma 2.5. The function v(x, r) is continuous on the set F × R+.
Proof. The statement is a consequence of the continuity of the solution value of

convex optimization problems (see [11, Theorem 3.2.8] and [16]).

To deal with asymptotic convergence of the algorithm we first need to state the
following result about finite termination of the trust-search subroutine when applied
to a nonstationary point.

Proposition 2.6. For any bounded subset X of F and γ > 0, there exists a scalar
rγ ∈ (0, ρ) with the following property. If x ∈ X and r̂ ∈ (0, rγ ] satisfy v(x,r̂)

r̂ ≤ −γ,
then TS(x) terminates returning a trust-region radius rx > βr̂.

Proof. By uniform continuity of ∇f on bounded sets, there exists rγ ∈ (0, ρ) such
that

sup {‖∇f(x+ d)−∇f(x)‖ : x ∈ X, ‖d‖ ≤ rγ} ≤ (1− α)γ .
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Choose any x ∈ X and r̂ ∈ (0, rγ ] such that v(x,r̂)
r̂ ≤ −γ. Then for any r ∈ (0, r̂],

Lemma 2.4 gives v(x,r)
r ≤ −γ. For such r let d(r) be an optimal solution of LP (x, r).

Then for some s ∈ (0, 1) we have

f(x+ d(r))− f(x) = ∇f(x+ sd(r))>d(r)
≤ ∇f(x)>d(r) + ‖∇f(x+ sd(r))−∇f(x)‖ · ‖d(r)‖
≤ ∇f(x)>d(r) + (1− α)γr
≤ ∇f(x)>d(r)− (1− α)∇f(x)>d(r)
= αv(x, r)

i.e., d(r) is an acceptable feasible descent direction at x. Thus, a sufficient condition
for TS(x) to terminate is that r ≤ r̂.

Now consider the scalar sequence

ρ, βρ, β2ρ, . . .

and suppose that j ∈ N is such that βjρ > βr̂ and βj+1ρ ≤ βr̂. From the latter
inequality we obtain βjρ ≤ r̂, and hence βjρ ∈ (βr̂, r̂]. This implies that the descent
direction d(βjρ) satisfies the termination condition of the trust-search procedure, and
therefore that TS(x) terminates returning a trust-region radius rx ≥ βjρ > βr̂.

Now consider a nonstationary point x̄ ∈ F , hence v(x̄, ρ) < 0. Proposition 2.6
gives finite termination of the trust-search subroutine at x̄. In fact we can say some-
thing stronger:

Corollary 2.7. Algorithm 2.1, TS-NLP, is a monotonic feasible-point method
with NSR.

Proof. Let x̄ ∈ F be a non-stationary point for problem (2.1). Take 0 < γ̄ <
−v(x̄, ρ)/ρ, and use continuity of the value function (Lemma 2.5) to obtain a bounded
neighborhood U of x̄ such that γ̄ ≤ −v(x, ρ)/ρ for x ∈ U . Proposition 2.6 then gives
r̂ > 0 such that, for r̄ := βr̂ and any x ∈ U ∩ F , TS(x) terminates returning a
direction dx and a trust-region radius rx > r̄. Notice, from Lemma 2.4, that

v(x, rx) ≤ rx
v(x, ρ)
ρ

< −r̄γ̄.

Hence, the terminating property of the trust-search routine implies that f(x+ dx) <
f(x)− αr̄γ̄.

Let ε̄ = (αr̄γ̄)/2 and take a subset Ū ⊆ U such that |f(x) − f(x̄)| < ε̄ for every
x ∈ Ū . Nonstationary repulsion of Algorithm 2.1 easily follows since if the k-th iterate
xk ∈ F lies in Ū then f(xk+1) < f(xk)− 2ε̄ < f(x̄)− ε̄.

Given Corollary 2.7 and part (i) of the Remark 2.3, the next result is immediate,
c.f. [15, Theorem 3.2].

Theorem 2.8. Any limit point of the sequence of iterates generated by Algorithm
2.1 is stationary for (2.1).

It seems unlikely that NSR of TR methods will hold without allowing the method
to re-set or otherwise expand the TR radius at the start of each serious iteration.
Certainly the proof of Proposition 2.6, from which the remaining results of the section
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directly follow, makes explicit use of fact that the starting TR radius cannot be less
than ρ. This Proposition is also a key ingredient in the proof of multiplier convergence;
see comments after Theorem 2.11.

2.2. Convergence of multipliers. The main novelty in section 2 occurs here,
in showing that multipliers for trust-region methods converge without additional as-
sumptions, see Theorem 2.11. To this aim we need to introduce a preliminary result,
Proposition 2.10, regarding any bounded sequence {xk} of feasible points for (2.1),
and any bounded sequence {rk} of positive scalars not necessarily produced by appli-
cation of TS(xk). We recall that dk, vk and (λk, µk), respectively, denote the optimal
solution, optimal value and corresponding KKT multipliers, see (2.3) and (2.4), of
LP (xk, rk). First we present the following characterization of NBk(dk).

Lemma 2.9. Let dk ∈ Bk, with ‖dk‖ = rk. A vector d̃ is normal to the set Bk at
the point dk if and only if there exist a non-negative scalar η and a dual unit-norm
vector d∗ ∈ ∂‖dk‖ such that d̃ = ηd∗ and 〈dk, d∗〉 = ‖dk‖.

Proof. We recall from convex analysis theory that a vector d̃ ∈ Rn is normal to
the set Bk at the point dk if and only if there exist a non-negative scalar η, and a
vector d∗ ∈ ∂‖dk‖, such that d̃ = ηd∗ (see [39, Corollary 23.7.1]). The thesis follows
by noting that, for any dk 6= 0 it is possible to express ∂‖dk‖ in the following way, see
[5, Example 2.129, Eq. (2.250)],

∂‖dk‖ = {d∗ | ‖d∗‖
D

= 1, 〈dk, d∗〉 = ‖dk‖}

where ‖d∗‖
D

is the dual norm of d∗.

Now we present a sufficient condition for any accumulation point of {(λk, µk)} to
be a KKT multiplier vector for problem (2.1). For later convenience we state the next
result over subsequences, though it equally applies if the entire sequence converges.

Proposition 2.10. Suppose that {xk} ⊂ F converges on a subsequence K to
the point x̄. If {rk} is any sequence of positive scalars such that the corresponding
optimal values vk of LP(xk, rk) satisfy

lim
k → ∞
k ∈ K

vk

rk
= 0,(2.5)

then x̄ is stationary, there exists an associated multiplier subsequence {(λk, µk)}k∈K
that is bounded, and every accumulation point of the latter is a KKT multiplier
for (2.1) at x̄.

Proof. By Lemma 2.9 there exists a scalar ηk ≥ 0 and a dual unit vector d∗k such
that the condition (2.3) can be expressed in the following way

0 = ∇f(xk) +Gλk +Hµk + ηkd
∗
k.(2.6)

For the moment we assume that ‖dk‖ = rk on a subsequence of {dk}k∈K; after
giving the proof for this case we will see that the proof for the remaining case follows
without further effort. By taking a subsequence if necessary, we assume without loss
of generality that ‖dk‖ = rk for each k ∈ K to obtain

0 = vk + (λk)>G>dk + (µk)>H>dk + ηkr
k.
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Now observe, as a consequence of (2.4), that for each i such that λki > 0 there holds
gi(xk) + G>i d

k = 0, that is G>i d
k = −gi(xk) ≥ 0, where G>i is the i-th row of G>.

Moreover, feasibility of xk implies that H>dk = 0. Hence we have

0 = vk + (λk)>G>dk + ηkr
k = vk −

∑
i|λk

i>0

λki gi(x
k) + ηkr

k ,

and dividing by the positive scalar rk

0 =
vk

rk
−
∑
i|λk

i>0 λ
k
i gi(x

k)

rk
+ ηk .

Since 0 ≤ −
∑
i|λk

i>0 λ
k
i gi(x

k), it holds that

0 ≥ vk

rk
+ ηk .

The last inequality implies that {ηk}k∈K −→ 0, as we are assuming that {v
k

rk }k∈K −→
0, and therefore that {ηkd∗k}k∈K −→ 0. But this means that

{∇f(xk) + ηkd
∗
k}k∈K −→ ∇f(x̄) .

Since the TR ball is constructed with the same polyhedral norm for all iterations,
the set of all (sub)gradients of the constraints of LP (xk, rk) has finite cardinality
and is independent of k. By considering maximal linearly independent subsets of
these gradients, it is therefore easy to show that we may choose {(λk, µk)}k∈K to be
bounded (similar to [32, Proposition 1.3.8]). Therefore there exists an accumulation
point, say (λ̄, µ̄), such that

{∇f(xk) +Gλk +Hµk + ηkd
∗
k}k∈K′⊂K −→ ∇f(x̄) +Gλ̄+Hµ̄ .

Then, as a consequence of (2.6), we have that

∇f(x̄) +Gλ̄+Hµ̄ = 0 .(2.7)

Let d̄ be an accumulation point of the bounded sequence {dk}k∈K. Since xk is a
feasible point of (2.1) for any k, we have

g(xk + dk) ≤ 0 ∀k ∈ K

that is

g(xk) +G>dk ≤ 0 ∀k ∈ K.

Taking the limit on a subsequence of K we obtain the limit expression of (2.4)

min{λ̄,−g(x̄+ d̄)} = 0.(2.8)

Since by (2.7) we have Gλ̄ = −∇f(x̄) − Hµ̄, we can express the complementarity
condition (2.8) in the following way:

0 = λ̄>g(x̄+ d̄) = λ̄>g(x̄) + λ̄>G>d̄ = λ̄>g(x̄)−∇f(x̄)>d̄− µ̄>H>d̄ ,
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where λ̄ ≥ 0. But from the assumption limk∈K
vk

rk = 0 it follows that ∇f(x̄)>d̄ = 0,
and by feasibility of x̄ it holds that H>d̄ = 0 and g(x̄) ≤ 0. Therefore we have that

min{λ̄,−g(x̄)} = 0(2.9)

which along with (2.7) proves the thesis.
It remains to show the result when ‖dk‖ < rk for sufficiently large k ∈ K. In

this case we may take ηk = 0 and therefore obtain (2.8) and the required proof as a
byproduct of the previous analysis.

We remark that whether or not the multipliers for (2.1) are bounded, if the simplex
method, or any active set method, is applied to each LP (xk, rk), then boundedness of
multipliers follows as described in the above proof. Next we come to the main result
of this section.

Theorem 2.11. Let {xk} be a sequence, generated by the linear trust-search
method Algorithm 2.1, that converges on a subsequence K to the point x̄. Then, there
exists an associated subsequence of KKT multipliers {(λk, µk)}k∈K for LP (xk, rk) that
is bounded, every accumulation point of which is a KKT multiplier for (2.1) at x̄.

Proof. First observe, since x̄ is an accumulation point of the sequence {xk} gen-
erated by the algorithm, that x̄ is also a stationary point for (2.1) from Theorem 2.8.
This implies, for any subsequence {xk}k∈K converging to x̄, that

lim
k → ∞
k ∈ K

vk = 0.

Now suppose that for every k the trust-region radius rk is bounded away from zero.
Then it follows that

lim
k → ∞
k ∈ K

vk

rk
= 0,

and the thesis is an immediate consequence of Proposition 2.10. We thus assume,
without loss of generality, that there exists a subsequence {rk}k∈K′⊂K converging to
zero. Then, it is only required to prove that

lim
k → ∞
k ∈ K′

vk

rk
= 0,

and the thesis will follow in the same way. Suppose for a contradiction that

{rk}k∈K′⊂K → 0

and there exist γ̄ and k̄ such that for every k ≥ k̄, with k ∈ K′, we have

vk

rk
≤ − γ̄

β
.

Now observe for all k, since rk

β > rk, that

v(xk,
rk

β
) ≤ vk .
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Hence, dividing by rk

β , for every k ≥ k̄, with k ∈ K′, we have that

v(xk,
rk

β
)

rk

β

≤ β v
k

rk
≤ −γ̄ .

Now apply Proposition 2.6 by taking γ = γ̄ and X = {x | ‖x−x̄‖ ≤ 1}∩F , and obtain
rγ ∈ (0, ρ) satisfying the property therein. Since {rk}k∈K′ → 0 and {xk}k∈K′ → x̄,
then for sufficiently large k ≥ k̄ with k ∈ K′ we have rk

β ≤ rγ and xk ∈ X. Thus by

letting r̂ := rk

β , from Proposition 2.6 it follows that TS(xk) terminates returning r
such that

r > βr̂ = rk

which contradicts the choice of rk.

It is worth noting that [21] gives a linear trust-region method relating to an `1
exact penalty function approach for NLPs with nonlinear constraints, and presents
convergence results for both the iteration sequence and the associated sequence of
multipliers. The extent to which we can use this analysis still needs to be explored, for
example in [21] it is not clear how to deal with asymptotically vanishing subsequences
of TR radii in the case when the TR constraint remains active in the limit. Note
that the most delicate part of the proof of Theorem 2.11 deals with precisely this case
and, in doing so, relies on Proposition 2.6 and hence on having a lower bound on the
TR radius at the start of each serious iteration, as distinct from the more traditional
initialization of the TR radius used in [21].

An associated multiplier convergence result for the projected-gradient method
can be derived from [17]. The latter examines the KKT multipliers at the optimal
solution of a quadratic program which is related to (2.2) in that a quadratic term in
the objective function replaces trust-region constraints:

min
d∈Rn

∇f(x)>d + 1
2 d
>d

subject to g(x+ d) = g(x) +G>d ≤ 0
h(x+ d) = h(x) +H>d = 0 .

Theorem 3.5 of [17] bounds the distance between the KKT multipliers of this quadratic
program and the multiplier set at a nearby stationary point x̄ in terms of distance
‖x − x̄‖. As the KKT points of this problem coincide with those of the projected-
gradient QP,

min
d∈Rn

1
2‖d+∇f(x)‖2

subject to g(x+ d) ≤ 0
h(x+ d) = 0 ,

convergence of projected-gradient multipliers follows.

3. A decomposition framework for mathematical programs with lin-
ear complementarity constraints. We now introduce a decomposition method to
locate a B-stationary point of the MPEC (1.1), see §3.2. The method makes use
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of a suitable version of our trust-search subroutine. In fact we aim at exploiting
convergence properties of our trust-search scheme when it is embedded into a lo-
cal decomposition method. In §3.3 we will provide a global convergence analysis of
the method. In particular, we will understand that the two main features of our
trust-region scheme, NSR and convergence of multipliers, turn to be fundamental to
guarantee robust convergence properties of the method. Then, in §3.4, a deeper un-
derstanding of such properties will allow us to gather a convergence proof for a more
general algorithmic scheme satisfying some critical assumptions.

3.1. First-order stationarity conditions. To ease understanding of the fol-
lowing subjects, we briefly review some definitions and results from MPEC theory
(see [40, 42]) that hold in the setting of general nonlinear constraints, while a detailed
description of the method is deferred to §3.2.

Definition 3.1. Let x̄ be a feasible point of (1.1). Linear independence constraint
qualification (MPEC-LICQ) is satisfied at x̄ if the gradients

∇pij(x̄) ∀(i, j) : pij(x̄) = 0 ,
∇gi(x̄) ∀i : gi(x̄) = 0 ,
∇hi(x̄) ∀i

are linearly independent.

Given a feasible point x̄ of (1.1), for every 1 ≤ i ≤ mp we denote by

Ai(x̄)
4
= {j : pij(x̄) = 0}

the set of active functions in the i-th complementarity constraint at x̄. Let |Ai(x̄)|
denote the cardinality of Ai(x̄), and let

M(x̄)
4
= {i : |Ai(x̄)| ≥ 2}

be the set of multi-active constraints, that is the set of complementarity constraints
with more than one active function at x̄.

Definition 3.2. If |Ai(x̄)| = 1 for every i = 1, . . . ,mp, or equivalently if
M(x̄) = ∅, then we say that lower level strict complementarity (LLSC) holds at x̄.

Definition 3.3. If x̄ is a feasible point of (1.1) and ∇f(x̄)>d ≥ 0 for every
d ∈ Rn such that

min{∇pij(x̄)>d | j ∈ Ai(x̄)} = 0 ∀i
∇gi(x̄)>d ≤ 0 ∀i : gi(x̄) = 0
∇hi(x̄)>d = 0 ∀i,

then x̄ is a B-stationary point of (1.1).

An illuminating characterization of B-stationarity can be obtained in the following
way, [40]. Let x̄ and I be, respectively, a feasible point of (1.1) and a piece index for
(1.1) at x̄, i.e., I ∈ I(x̄), see (1.2). Consider the ordinary nonlinear program NLPI
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(1.3). Then x̄ is B-stationary for (1.1) if and only if x̄ is a stationary point for NLPI ,
for every I ∈ I(x̄). This result displays the combinatorial character of an MPEC; in
fact, in order to verify B-stationarity of a feasible point one may need to verify the
consistency of a very large number of inequality systems, unless LLSC holds at x̄ (in
such a case I(x̄) is made up of a single set). More importantly such a characterization
is the key idea for developing local decomposition methods for MPECs [32].

For a better comprehension of decomposition methods we definitely need to pro-
vide some results regarding dual stationarity conditions. First notice that MPEC
and NLPI , for every I ∈ I(x̄), have the same Lagrangian function [40]

L(x, λ, µ, ξ) = f(x) + g(x)>λ+ h(x)>µ−
∑
i

∑
j

pij(x)ξij .

Definition 3.4. If x̄ is a feasible point of (1.1) and there exists a multiplier tuple
π̄ = (λ̄, µ̄, ξ̄) satisfying

∇xL(x̄, λ̄, µ̄, ξ̄) = 0
pij(x̄)ξ̄ij = 0 ∀(i, j)

λ̄ ≥ 0
g(x̄)>λ̄ = 0

(3.1)

then x̄ is called weakly stationary or critical for (1.1) with multiplier π̄.

Definition 3.5. Let x̄ be weakly stationary with multiplier π̄ = (λ̄, µ̄, ξ̄). We say
that upper level strict complementarity (ULSC) holds at x̄ if ξ̄ij 6= 0, for every (i, j)
such that i ∈M(x̄) and j ∈ Ai(x̄).

Definition 3.6. Let x̄ be weakly stationary with multiplier π̄ = (λ̄, µ̄, ξ̄).
(i) x̄ is called M-stationary if for each i ∈ M(x̄), the existence of ̂ ∈ Ai(x̄)

with ξ̄î < 0 implies ξ̄ij = 0 for the remaining indices j ∈ Ai(x̄) \ {̂};
(ii) x̄ is called strongly stationary if ξ̄ satisfies the sign conditions

ξ̄ij ≥ 0 ∀(i, j) : i ∈M(x̄) and j ∈ Ai(x̄).(3.2)

In the context of decomposition methods, it is also worth formalizing the idea of
“one-sided” stationarity [32]:

Definition 3.7. Let x̄ be feasible for (1.1). We say it is a one-piece or one-sided
stationary point if there exists an adjacent piece of the MPEC for which it is station-
ary.

Without any difficulty, the various stationarity conditions can be related as

strongly stationary⇒
{

M-stationary
B-stationary

}
⇒ one-piece stationary⇒ weakly stationary

Checking strong stationarity of a weakly stationary point is trivial, simply look
at the sign of multipliers corresponding to multi-active complementarity constraints.
The following theorem, the idea of which appears in [33], but whose form we quote
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from [40], makes clear the importance of this remark.

Theorem 3.8 (See [40, Theorem 4]). Let x̄ be a feasible point of (1.1), where
MPEC-LICQ holds. Then, x̄ is B-stationary if and only if it is strongly stationary.

Finally we recall from [40] that if x̄ is a weakly but not strongly stationary
point with multiplier π̄ = (λ̄, µ̄, ξ̄), and MPEC-LICQ holds at x̄, then any negative
multiplier corresponding to a multi-active constraint function provides a piece index
I ∈ I(x̄) with the critical property that x̄ is not stationary for NLPI . To explain, sup-
pose ξ̄ij < 0 for some i ∈ M(x̄) and j ∈ Ai(x̄); then, as there exists j′ ∈ Ai(x̄) \ {j},
there also exists I ∈ I(x̄) such that (i, j) 6∈ I. Since NLPI includes the inequal-
ity constraint pij(x) ≥ 0, the corresponding KKT multiplier at any stationary point
would have to be nonnegative. Now the usual LICQ holds for NLPI at x̄, hence the
Lagrangian conditions for NLPI at x̄ are uniquely satisfied by the multiplier vector π̄;
given negativity of ξ̄ij , the point x̄ therefore cannot be stationary for NLPI . Formally:

Proposition 3.9. Let x̄ be a weakly stationary point of the MPEC, with mul-
tiplier π̄ = (λ̄, µ̄, ξ̄), at which the MPEC-LICQ holds. If x̄ is not B-stationary, then
there is I ∈ I(x) and (i, j) 6∈ I such that ξ̄ij < 0; in particular, x̄ is not stationary
for NLPI .

This result drives the decomposition approach described below.

3.2. A trust-search decomposition method for mathematical programs
with linear complementarity constraints. Now the key ideas to devise a decom-
position method for MPECs can be easily understood. Bearing in mind that we can
look for strongly stationary points if the common MPEC-LICQ assumption holds, we
generate a sequence of solution estimates of (1.1) by exploiting the local formulation
of an MPEC, as an NLP branch, coupled with strong stationarity conditions. Indeed,
we recall that given a feasible point x̄ of (1.1) and a piece index I ∈ I(x̄), the feasible
region of NLPI near x̄ is a subset of the feasible region of (1.1). Therefore we can
exploit a local model of NLPI to locate a new solution estimate x̄+d. Then, checking
strong stationarity at x̄ + d, that is checking the sign of multipliers, gives us useful
information to define a new model at x̄ + d, more specifically to select a new set
I ∈ I(x̄ + d), which is expected to have promising descent properties at x̄ + d. This
is essentially the viewpoint of [43, 44].

Our decomposition method for problem (1.1) is in fact based on the above ob-
servations, where, given a feasible point x of (1.1), and a piece index I ∈ I(x), we
generate a new point x+ d by applying our trust-search scheme as if we were to solve
NLPI .

Let us extend the notation regarding the trust-search approach to decomposition
methods for MPECs. Let x be a feasible point of (1.1), and let I ∈ I(x). We define
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a linear trust-region subproblem LP (x, I, r), where r > 0, in the following way:

min
d∈Rn

∇f(x)>d

subject to pij(x) + P>ij d = 0 ∀(i, j) ∈ I

pij(x) + P>ij d ≥ 0 ∀(i, j) 6∈ I

g(x) +G>d ≤ 0

h(x) +H>d = 0

‖d‖ ≤ r.

(3.3)

We denote by d(r) the optimal solution of LP (x, I, r), and by v(x, I, r) its corre-
sponding (optimal) value. Moreover we denote by λ(r) ∈ Rmg , µ(r) ∈ Rmh , and
ξ(r) ∈ Rmp × R` the vectors of KKT multipliers at the solution of LP (x, I, r), i.e.,
the vectors of multipliers satisfying

0 ∈ ∇f(x) +Gλ(r) +Hµ(r)−
∑
i

∑
j

Pijξij(r) +NB(r)(d(r))(3.4)

and

min{λ(r),−g(x+ d(r))} = 0,(3.5)

and

min{ξij(r), pij(x+ d(r))} = 0 ∀(i, j) 6∈ I,(3.6)

where NB(r)(d(r)) is the normal cone to the set B(r) = {d ∈ Rn | ‖d‖ ≤ r} at the
point d(r).

Finally we can introduce our trust-search decomposition scheme. Given a feasi-
ble point x, a piece index I ∈ I(x), two scalars α, β ∈ (0, 1), and a scalar ρ > 0, we
generate a new point by taking the step d(r) returned from the following trust-search
subroutine TS(x, I):

[TS(x, I)]
Set r := ρ/β;

Repeat
Set r := βr;
d(r), v(x, I, r) ← LP (x, I, r);

Until f(x+ d(r))− f(x) ≤ αv(x, I, r).

Hence, given a feasible starting point x0, and a starting piece index I0 ∈ I(x0)
we generate a sequence {xk} of solution estimates for problem (1.1) by executing
TS(xk, Ik) for every k = 0, 1, 2, . . . . Upon termination of TS(xk, Ik) we are given
rk, dk := d(rk) and πk = (λk, µk, ξk) := (λ(rk), µ(rk), ξ(rk)); and, unless xk is sta-
tionary, we set xk+1 := xk + dk. Furthermore we use ξk in selecting a new piece
index Ik+1 ∈ I(xk+1), and a new execution of the trust-search subroutine is started
with respect to xk+1 and Ik+1. The entire decomposition trust-search method can be
described in the following way:

Algorithm 3.10 (TS-MPEC).
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1. Choose x0 ∈ F , I0 ∈ I(x0), α, β ∈ (0, 1), ρ > 0. Set k := 0.

2. dk, πk = (λk, µk, ξk) ← TS(xk, Ik)

3. If πk gives strong stationarity of xk then STOP, xk is B-stationary.
Else set xk+1 := xk + dk, Ik+1 ← Select[I(xk+1), ξk], k := k+ 1 and return
to 2.

It only remains to give a formal description of a selection rule for the piece index
Ik+1 ∈ I(xk+1), in which we use families of indices Ai(x) and M(x) described in §3.1:

Select [I(xk+1), ξk]

If M(xk+1) 6= ∅ and min{ξkij | (i, j) ∈ Ik, i ∈M(xk+1)} < 0 then

Let (i′, j′) ∈ arg min{ξkij | (i, j) ∈ Ik, i ∈M(xk+1)};

Select ̃ ∈ Ai′(xk+1) \ {j′} and set

Ik+1 := {(i′, ̃)} ∪ Ik \ {(i′, j′)} .
Else

Set Ik+1 := Ik.

Motivation for this kind of selection rule goes back to standard active set meth-
ods [18] for nonlinear programs, and, for MPECs, to [43, 44]. We remove from the
piece index Ik the pair (i′, j′) corresponding to the constraint function which seems
provide the most promising reduction chances for the objective function, in view of
the negative value of ξki′j′ . Notice that the rule is based on the modification of at
most one constraint at a time, and that, since no particular assumption has been
made regarding the structure of I0, the insertion of (i′, ̃) might well be not necessary
if Ik \ {(i′, j′)} belongs to I(xk+1). We remark that such a rule is only one possible
way of generating a new piece index; see Condition 3.15 in the next section for a more
general selection framework.

3.3. Global convergence analysis. We aim to analyze convergence proper-
ties of the sequence {xk} generated by the trust-search decomposition method Algo-
rithm 3.10 (TS-MPEC). We mention that the role of our later assumptions, namely
ULSC (see Definition 3.5) and convergence of dk to zero, can be inferred from the
statement and proof of part (ii) of Theorem 3.11 which describes 2-step nonstationary
repulsion of TS-MPEC. Furthermore, implicit identification of multi-active comple-
mentarity constraints is shown in the proof. A tacit assumption throughout is that
the initial point x0 is feasible for the MPEC and the initial piece index I0 lies in I(x0).

Theorem 3.11. Let {xk} be generated by Algorithm 3.10 applied to the MPEC
(1.1) and x̄ ∈ Rn.

(i) If x̄ is not one-piece stationary then it has a neighborhood U that can inter-
sect the sequence of iterates at most once.

(ii) Suppose that x̄ is a weakly stationary but non-M-stationary point at which
MPEC-LICQ holds. Then it has a neighborhood U such that if consecutive iterates
xK and xK+1 lie in U then U ∩ {xk}k>K+1 = ∅.
The neighborhood U in each case is independent of the (feasible) starting point x0.
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Proof. (i) The result is clear for non-feasible points, Algorithm 3.10 being of
the feasible-point type. For any feasible point x̄ that is not one-piece stationary,
see part (i) of Remark 2.3 and take U to be the intersection of the neighborhoods
corresponding to U ′ for each adjacent piece of the MPEC.

(ii) Let x̄ be weakly stationary but not M-stationary for the MPEC. Since there
are only finitely many pieces adjacent to x̄, we can use NSR of the trust-search method
applied to each NLPI for which x̄ is feasible but nonstationary, as follows. Let J̄
be the family of such piece indices I. Given NSR of the trust-search subroutine and
monotonicity of the decomposition method, there is a neighborhood U of x̄ such that
for xK ∈ U and IK ∈ J̄ (where the algorithm ensures xK is feasible for NLPIK ) we
have {xk}k>K ∩ U = ∅. So, without loss of generality, let U be a ball of arbitrarily
small radius r > 0 about x̄, and xK be a feasible point of some piece NLPIK for
which IK 6∈ J̄ , i.e., x̄ is stationary for NLPIK , and xK , xK+1 ∈ U . We only need
to show that the Select procedure chooses IK+1 ∈ J̄ . For such IK+1, the previous
argument using NSR and monotonicity gives the result: U ∩ {xk}k>K+1 = ∅.

Let πK = (λK , µK , ξK) be the multiplier generated by TS(xK , IK) in calculating
the step dK that yields xK+1 = xK + dK , and π̄ = (λ̄, µ̄, ξ̄) be the KKT multiplier
associated with weak stationarity of x̄. Since x̄ is stationary for NLPIK and MPEC-
LICQ at x̄ implies LICQ for NLPIK at x̄, then π̄ is also the (unique) KKT multiplier
for NLPIK at x̄. Furthermore, since x̄ is not M-stationary, there exist ı̄ ∈ M(x̄)
and distinct indices ̄, ̂ ∈ Aı̄(x̄) such that ξ̄ı̄̄ < 0 and ξ̄ı̄̂ 6= 0. Notice that it is
only possible to have a negative KKT multiplier when the corresponding constraint
of NLPIK is an equality, that is (̄ı, ̄) ∈ IK , c.f. Proposition 3.9.

Now observe that, depending on the size of the radius r of U , convergence of TR
multipliers (Theorem 2.11) implies that πK is arbitrarily close to π̄. So let

ε1 = min{|ξ̄ij | : (i, j) is such that ξ̄ij 6= 0},

ε2 = min{|pij(x̄)| : (i, j) is such that pij(x̄) 6= 0},

where the latter takes the value +∞ if every pij(x̄) = 0, and define ε = min{ε1, ε2}.
Then choose r > 0 such that, for all (i, j), since xK ∈ U then |ξKij − ξ̄ij | < ε

2 and
if x ∈ U then |pij(x) − pij(x̄)| < ε

2 . In particular, since ξKı̄̄ ≤ −ε and |ξKı̄̂ | ≥ ε, we
have ξKı̄̄ < − ε

2 and |ξKı̄̂ | > ε
2 . Therefore ı̄ ∈M(xK+1), i.e., M(xK+1) 6= ∅, and, since

(̄ı, ̄) ∈ IK ,

min{ξKij | (i, j) ∈ IK , i ∈M(xK+1)} ≤ ξKı̄̄ < − ε
2
.

Thus, given xK+1, the Select procedure will first choose (i′, j′) ∈ IK , such that
i′ ∈M(xK+1) and ξKi′j′ ≤ ξKı̄̄ < − ε

2 , and then ̃ ∈ Ai′(xK+1) \ {j′} to define

IK+1 := {(i′, ̃)} ∪ IK \ {(i′, j′)}.

Notice, since pi′ ̃(xK+1) = 0 and xK+1 ∈ U , that

ε

2
> |pi′ ̃(xK+1)− pi′ ̃(x̄)| = |pi′ ̃(x̄)|,

which implies pi′ ̃(x̄) = 0 and we see that x̄, which is feasible for NLPIK , must be
feasible for NLPIK+1 too. Moreover, since ξKi′j′ < − ε

2 , we have ξ̄i′j′ < 0 and, as
(i′, j′) 6∈ IK+1, of course it follows that x̄ is not stationary for NLPIK+1 (similar to
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Proposition 3.9). Thus IK+1 ∈ J̄ as promised earlier.

Corollary 3.12. Let {xk} be a sequence generated by Algorithm 3.10 applied
to the MPEC (1.1).

(i) Any accumulation point x∗ of {xk} is one-piece, hence weakly stationary
for (1.1).

(ii) If (x∗, 0) is an accumulation point of {(xk, dk)} such that MPEC-LICQ holds
at x∗, then x∗ is M-stationary.

(iii) If (x∗, 0) is an accumulation point of {(xk, dk)} such that both MPEC-LICQ
and ULSC hold at x∗, then x∗ is B-stationary.

Proof. (i) The statement follows from Part (i) of Theorem 3.11, because any point
that is not one-piece stationary cannot be an accumulation point of {xk}.

(ii) Assume that (x∗, 0) = limk∈K(xk, dk) where x∗ is weakly stationary but not
M-stationary. Part (ii) of Theorem 3.11 provides a neighborhood of x∗ that contains
at most finitely many iterates in the subsequence {xk}k∈K , contradicting convergence
of this subsequence to x∗.

(iii) The statement follows from Part (ii) since an M-stationary point that satisfies
ULSC is B-stationary.

The proofs of parts (ii) and (iii) make use of a new condition, convergence of {dk}
to zero on an appropriate subsequence, that is required in addition to MPEC-LICQ
and ULSC to guarantee convergence to a B-stationary point. In fact, such a condition
is not needed at all for convergence of some NLP methods including the trust-region
scheme proposed in the first part of the paper.

3.4. Properties of a general NLP solver for global convergence of de-
composition methods. We observe that the last two convergence results are based
on nonstationary repulsion and convergence of multipliers of our trust-search scheme,
and on an appropriate dual-based scheme for selecting the new piece index. The point
of this subsection is to identify properties of NLP methods that are critical to our
previous convergence analysis of decomposition methods. This will have immediate
application to a modified TR method in section 4 and also invites research beyond
TR methods.

By Decomp we denote a general decomposition algorithm for the MPEC (1.1).
Given a feasible point xk of (1.1), and a piece index Ik ∈ I(xk), the k-th iteration
of Decomp is aimed at determining a new feasible point xk+1, and a new piece
index Ik+1 ∈ I(xk+1). In particular, one step of an algorithm for linearly constrained
NLP is applied to NLPIk at xk: the subroutine Γ(xk, Ik) returns a step dk, so that
xk+1 := xk + dk is feasible for NLPIk , and an estimate πk = (λk, µk, ξk) of the
KKT multipliers of NLPIk . Upon termination of Γ(xk, Ik), a selection procedure
∆(xk+1, ξk) is executed to generate Ik+1 ∈ I(xk+1) before starting next iteration. A
scheme of such a general algorithm is described below:

Algorithm 3.13 (Decomp).

1. Initialization. Set k := 0.

2. dk, πk = (λk, µk, ξk) ← Γ(xk, Ik).

3. If πk gives strong stationarity of xk then STOP, xk is B-stationary.
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Else set xk+1 := xk + dk, Ik+1 ←∆(xk+1, ξk), k := k + 1 and go to 2.

For simplicity of notation we have only shown the inputs of Γ as xk and Ik though
other inputs could include additional information such as the previous multiplier πk−1.

Now we state a list of conditions to be satisfied by Decomp in order to guaran-
tee significant convergence properties of the sequence {xk}. This list clarifies what is
essential to our analysis rather than being a recommendation of properties that “all
good methods” for linearly constrained NLP should satisfy, after all the standard TR
approach does not necessarily satisfy NSR.

Condition 3.14. For each piece index I such that NLPI is feasible:
(i) Γ(·, I) is a subroutine that, given a point x, returns a step d and multi-

plier estimate π. It defines a monotonic, feasible point algorithm with nonstationary
repulsion for solving NLPI .

(ii) If {xk}k∈K is a feasible sequence converging to a stationary point x̄ of NLPI ,
then the sequence {πk}k∈K obtained by executing Γ(xk, I) is bounded, and each of its
accumulation points π is a KKT multiplier for NLPI at x̄.

(iii) Given K as above, the sequence of steps {dk}k∈K returned by Γ(xk, I) con-
verges to zero.

We remark that the projected-gradient method [8] satisfies Condition 3.14: As
pointed out in Remark 2.3(i), NSR is given by [15]. Part (ii) follows from [17, Theo-
rem 3.5] as discussed after Theorem 2.11 above. Part (iii) is implicit in the method
itself which measures stationarity by the length of the projected-gradient.

Returning to Decomp, here is the condition for piece selection.

Condition 3.15. The selection procedure ∆(x, ξ) to find a piece index Ix ∈ I(x),
see (1.2), is based on the search for at least one “sufficiently negative” multiplier, say
ξi′j′ , corresponding to a multi-active constraint function at x. In particular, if there
exist i′ ∈M(x) and j′ with

ξi′j′ ≤ δmin{ξij | i ∈M(x)} < 0(3.7)

for some fixed δ ∈ (0, 1), then ∆(x, ξ) returns Ix ∈ I(x) such that for some such
(i′, j′) we have (i′, j′) ∈ I \ Ix.

Notice that the selection rule adopted in Algorithm 3.10 satisfies Condition 3.15.
Indeed, Ik+1 is derived from Ik by inserting (i′, ̃) in place of the pair (i′, j′) satisfying
(3.7). More generally a selection rule to derive Ik+1 should be based on the elimination
from Ik of an element satisfying (3.7), if any, and on the possible “restoration” of the
piece index so obtained, in case Ik \ {(i′, j′)} 6∈ I(xk+1).

Here is the counterpart of Theorem 3.11 with a general NLP routine replacing
the trust-search method TS-NLP.

Theorem 3.16. Let {xk} be generated by Algorithm 3.13 (Decomp) applied to
the MPEC (1.1), and x̄ ∈ Rn. Assume that Decomp satisfies conditions 3.14(i)-(ii)
and 3.15.

(i) If x̄ is not one-piece stationary then it has a neighborhood U that can inter-
sect the sequence of iterates at most once.
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(ii) Suppose that x̄ is a weakly stationary but non-M-stationary point at which
MPEC-LICQ holds. Then it has a neighborhood U such that if consecutive iterates
xK and xK+1 lie in U then U ∩ {xk}k>K+1 = ∅.
The neighborhood U in each case is independent of the (feasible) starting point x0.

Proof. The proof of Theorem 3.11 applies to the general case with one small
amendment to account for the constant δ used in the general selection rule ∆: define
ε = δmin{ε1, ε2}.

The next result is proved exactly as Corollary 3.12 but with Theorem 3.16 replac-
ing Theorem 3.11.

Corollary 3.17. Let x∗ be any accumulation point of the sequence {xk} gen-
erated by Algorithm 3.13 (Decomp) applied to the MPEC (1.1), and assume that
Decomp satisfies conditions 3.14 and 3.15.

(i) x∗ is one-piece, hence weakly stationary for (1.1).
(ii) If MPEC-LICQ holds at x∗, then x∗ is M-stationary for (1.1).
(iii) If both MPEC-LICQ and ULSC hold at x∗, then x∗ is B-stationary for (1.1).

It would be tempting to conjecture that Corollary 3.17 holds under Condition 3.14
with NSR of each Γ(·, I) weakened to only require that limit points of the method
are stationary for NLPI . However, this may be insufficient for the Corollary because
the algorithm Γ(·, I) should be robust in the sense that its iteration sequence can
be interrupted, by switching to another piece and then returning to NLPI several
iterations later, without risking stationarity of limit points. On the other hand, a
method satisfying NSR is robust to switching, as is obvious from the trivial proof of
Theorem 3.11(i), or being used in a hybrid with another method. A formal statement
on hybrid schemes that include a method with NSR appears in [15, Theorem 3.2].

We conclude by recalling that local superlinear convergence of the PSQP de-
composition method [32, Chapter 6], which solves a quadratic program based on a
Lagrangian function at each iteration, occurs near any B-stationary point at which
MPEC-LICQ and a second-order sufficient condition hold. Furthermore superlinear
convergence of PSQP entails convergence of dk to zero and convergence of multipliers.
It would therefore be worth investigating a hybrid decomposition method that relies
on LP-based trust-region subproblems for global convergence, but attempts to switch
to QP-based subproblems to asymptotically achieve superlinear convergence.

4. Improving convergence of the trust-search decomposition method.
It is clear from the analysis presented in section 3 that the convergence properties of a
decomposition algorithm for MPECs depend on the features of the NLP method that
is employed. In particular, convergence properties of the trust-search decomposition
method Algorithm 3.10 would be more attractive should the NLP solver, TS-NLP
(Algorithm 2.1), satisfy part (iii) of Condition 3.14. In order to address this short-
coming, in §4.1 we modify the trust-search subroutine TS(x) of TS-NLP to ensure
dk → 0, while preserving nonstationary repulsion and convergence of multipliers, by
refining the developments of section 2. The modified trust-search subroutine is called
TS+(x). Next, in §4.2, we will merely apply the general framework of Theorem 3.16
and Corollary 3.17, and observe that the decomposition method for MPEC that uses
TS+(x), called TS+-MPEC, has good global convergence properties.

4.1. A modified trust-search method for linearly-constrained NLP. No-
tice that Proposition 2.10 gives a sufficient condition for convergence of multipli-
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ers, independently of the particular method used to generate the sequence {xk}:
{vk/rk} → 0 on an appropriate subsequence K. Since we also want {dk}k∈K → 0,
it seems reasonable to add a new condition defining an acceptable descent direction
d(r) by using |v(x, r)|/r as a forcing function on ‖d(r)‖:

f(x+ d(r))− f(x) ≤ αv(x, r) and ‖d(r)‖ ≤ |v(x, r)|
r

.(4.1)

The modified trust-search scheme becomes:

[TS+(x)]
Set r := ρ/β;

Repeat
Set r := βr;
d(r), v(x, r) ← LP (x, r);

Until (4.1) holds.

The remaining part of the section will be devoted to reconsidering convergence
results of section 2, in view of the new trust-search scheme.

Recall that F denotes the feasible region of the linearly-constrained NLP (2.1).
Recall also our standing assumption that a fixed polyhedral norm is used in forming
TR subproblems. The following two results correspond to Proposition 2.6 and Corol-
lary 2.7, respectively. To improve readability the proofs are given in details only for
those parts where the modified trust-search scheme may affect the results.

Proposition 4.1. For any bounded set X of F and γ > 0, there exists a scalar
rγ ∈ (0, ρ) with the following property. If x ∈ X and r̂ ∈ (0,min{rγ , γ}] satisfy
v(x,r̂)
r̂ ≤ −γ, then TS+(x) terminates, returning a trust-region radius rx > βr̂.

Proof. We use the proof of Proposition 2.6 as a guide. In particular, let rγ be
given by that proof and choose r̂ ∈ (0,min{rγ , γ}]. Let r ∈ (0, r̂] and, as usual, let
d(r) denote an optimal solution of LP (x, r). We have, as in the proof of Proposition
2.6, that

f(x+ d(r))− f(x) ≤ αv(x, r).

Also

‖d(r)‖ ≤ r ≤ r̂ ≤ γ ≤ |v(x, r̂)|
r̂

≤ |v(x, r)|
r

,

where the last inequality follows from Lemma 2.4. That is, d(r) is an acceptable
feasible descent direction at x. Thus, a sufficient condition for TS+(x) to terminate
is that r ≤ r̂, and the proof can be completed by the same argument as the one used
in proving Proposition 2.6.

Corollary 4.2. The modified trust-search algorithm, Algorithm 2.1 with TS+

replacing TS, has nonstationary repulsion.
Proof. The statement is a straightforward consequence of Corollary 2.7, whose

validity for TS+(x) easily follows from Proposition 4.1.
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The modified trust-search subroutine gives the essence of Condition 3.14:

Theorem 4.3. Let {xk} be a feasible sequence for (2.1) on which the objective
function f is non-increasing, and {xk}k∈K be a convergent subsequence with limit x̄.
If

K ⊂ {k | xk+1 is generated by TS+(xk)}

then x̄ is stationary for (2.1) such that
(i) both {|vk|/rk}k∈K and {dk}k∈K converge to zero, and

(ii) there exists a bounded subsequence of multipliers {(λk, µk)}k∈K correspond-
ing to {xk}k∈K, each accumulation point of which is a KKT multiplier for (2.1) at
x̄.

Proof. (i) This proof follows the proof of Theorem 2.11 in almost every detail,
with the modified trust-search subroutine replacing the original. We therefore only
give details where the effect of the modification to the trust-search subroutine can be
seen, which is for the case when there exists a subsequence {rk}k∈K′⊂K converging to
zero and, for a contradiction, we assume that there exist γ̄ and k̄ such that for every
k ≥ k̄ with k ∈ K′ it holds that

vk

rk
≤ − γ̄

β
.

As in the proof of Theorem 2.11, we obtain

v(xk, r
k

β )
rk

β

≤ −γ̄ .

Now apply Proposition 4.1 (previously Proposition 2.6) by taking γ = γ̄, X =
{x | ‖x − x̄‖ ≤ 1} ∩ F , and obtain rγ̄ ∈ (0, ρ) satisfying the property therein. Since
{rk}k∈K′ → 0 and {xk}k∈K′ → x̄, then for sufficiently large k ≥ k̄ with k ∈ K′ we
have

rk

β
≤ min {rγ̄ , γ̄}

and xk ∈ X. As a consequence, by letting r̂ := rk

β , we have that TS+(x) returns r
such that

r > βr̂ = rk

which contradicts the choice of rk.
Therefore {|vk|/rk}k∈K converges to zero. Moreover, since |v

k|
rk is a forcing func-

tion on ‖dk‖ by construction of the algorithm, see (4.1), then {dk}k∈K converges to
zero as well.

(ii) The statement follows from part (i) in view of Proposition 2.10.

4.2. A modified trust-search decomposition method. Here we embed the
new trust-search scheme into our original decomposition approach for linearly-con-
strained MPECs. We consider the algorithm

Algorithm 4.4 (TS+-MPEC).
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1. Choose x0 ∈ F , I0 ∈ I(x0), α, β ∈ (0, 1), ρ > 0. Set k := 0.

2. dk, πk = (λk, µk, ξk) ← TS+(x, I).

3. If πk gives strong stationarity of xk then STOP, xk is B-stationary.
Else set xk+1 := xk + dk, Ik+1 ← Select[I(xk+1), ξk], k := k+ 1 and return
to 2.

where TS+(x, I) denotes TS+(x) applied to NLPI , and we use the same selection
rule as in section 3. The following result is a straightforward consequence of the prop-
erties of the modified trust-search subroutine given in the previous subsection. As
usual we assume x0 is a feasible point for the linearly-constrained MPEC (1.1) and
take I0 ∈ I(x0).

Theorem 4.5. Let {xk} be a sequence generated by TS+-MPEC, Algorithm 4.4,
applied to the MPEC (1.1), and x∗ be an accumulation point of this sequence.

(i) The accumulation point x∗ is one-piece hence weakly stationary for (1.1).
(ii) If MPEC-LICQ holds at x∗ then it is M-stationary for (1.1).
(iii) If both MPEC-LICQ and ULSC hold at x∗, then it is B-stationary for (1.1).

Proof. In view of Corollary 4.2 and Theorem 4.3, we have that Condition 3.14 is
satisfied by TS+(x, I). Furthermore, recall that the selection rule proposed in §3.2
satisfies Condition 3.15. Therefore, part (i) follows from part (i) of Theorem 3.16,
because any point that is not one-piece stationary cannot be an accumulation point
of {xk}, while part (ii) follows from Part (ii) of Theorem 3.16.

We notice that comparable convergence results in the field typically require some
stronger assumptions than ours. In particular in [43] convergence to a strong sta-
tionary point where MPEC-LICQ holds is guaranteed provided that the trust-region
radii remain bounded away from zero, the trust region is asymptotically inactive, and
the active complementarity component are correctly identified on the limit (see [43,
Proposition 5.1]). Similar but stronger results are presented in [44] where bounded-
ness of the trust-region radii away from zero is no longer needed. Nevertheless, both
asymptotic inactivity of the trust region (see [44, Proposition 3.4]) and correct identi-
fication of active complementarity components (see [44, Proposition 3.1-3.6, Corollary
3.1]) are still required. Moreover convergence of multipliers is only obtained, under
ULSC, by using an auxiliary least squares problem to get multiplier estimates (see
[44, Proposition 3.4-3.6, Corollary 3.1]). However, these comparisons may not be
entirely fair in that [43, 44] deal with a broader class of problems than we do, namely
MPECs with nonlinear constraint functions.

It is also worth mentioning (again) that the ε-active set method of [23] yields B-
stationary limit points under similar conditions to those above but without the ULSC.
This is achieved at the expense of considerably complicating the algorithm however.

5. Conclusion. At this point the relevant contributions of the paper are ap-
parent from both the NLP and MPEC points of view. First, in section 2, regard-
ing linearly-constrained NLP, we present a linear trust-search method TS-NLP that
strengthens, via nonstationary repulsion, the global convergence properties that might
be expected of trust-region methods; and give a new global convergence result on con-
vergence of multipliers. The latter is convenient and general in that it does not require
a supplementary least squares problem to be solved at each iteration, or any additional
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conditions to be satisfied by the problem or iteration sequence.
Second, in section 3, we exploit these results to both improve and simplify global

convergence to B-stationary points of decomposition methods for linearly-constrained
MPECs. Part of this work is to identify the convergence properties that would be
required of a general NLP solver to ensure good global convergence properties of an
MPEC decomposition scheme. This leads to the modified trust-search subroutine
TS+ for NLP, which is embedded in decomposition scheme TS+-MPEC that is
analyzed in section 4. Viewed from above, the meld of NSR and multiplier convergence
provided by the trust-search method is rather striking in the context of decomposition
schemes for MPECs.

We readily acknowledge the natural questions of how to obtain superlinear con-
vergence, possibly via a hybrid of modified trust-search subroutine with a quadratic
programming step, at each iteration of TS+-MPEC; and how to deal with nonlinear
constraints. These questions are issues for future work.
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[8] P. H. Calamai and J. J. Moré, Projected gradient methods for linearly constrained problems,
Mathematical Programming, 39 (1987), pp. 93–116.

[9] C. M. Chin and R. Fletcher, Numerical performance of an SLP-filter algorithm that takes
EQP steps, Tech. Report NA/202, Department of Mathematics, University of Dundee,
Dundee, UK, 2001.

[10] , On the global convergence of an SLP-filter algorithm that takes EQP steps, Mathemat-
ical Programming, 96 (2003), pp. 161–177.

[11] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-region methods, MPS-SIAM, 2000.
[12] A. V. de Miguel, M. Friedlander, F. Nogales, and S. Scholtes, An interior-point method

for MPECS based on strictly feasible relaxations, SIAM Journal on Optimization, 16
(2005), pp. 587–609.

[13] F. Facchinei, H. Jiang, and L. Qi, A smoothing method for mathematical programs with
equilibrium constraints, Mathematical Programming, 85 (1999), pp. 81–106.

[14] F. Facchinei and J. S. Pang, Finite-dimensional variational inequalities and complementarity
problems, Volume I, Springer series in operations research, Springer, New York, 2003.

[15] M. C. Ferris and D. Ralph, Projected gradient methods for nonlinear complementarity prob-



MULTIPLIER CONVERGENCE IN TR DECOMPOSITION METHODS FOR MPECs 29

lems via normal maps, in Recent advances in nonsmooth optimization, D. Z. Du, L. Qi,
and R. S. Womersley, eds., World Scientific Publishing, 1995.

[16] A. V. Fiacco, Introduction to sensitivity and stability analysis in nonlinear programming,
Mathematics in Science and Engineering 165, Academic Press, London, 1983.

[17] A. Fischer, Modified Wilson method for nonlinear programs with nonunique multipliers, Math-
ematics of Operations Research, 24 (1999), pp. 699–727.

[18] R. Fletcher, Practical methods of optimization, John Wiley and Sons, 1987.
[19] R. Fletcher and S. Leyffer, Solving mathematical programs with complementarity con-

straints as nonlinear programs, Optimization Methods and Software, 19 (2004), pp. 15–40.
[20] R. Fletcher, S. Leyffer, D. Ralph, and S. Scholtes, Local convergence of SQP methods

for mathematical programs with equilibrium constraints, SIAM Journal on Optimization,
(2006).

[21] R. Fletcher and E. Sainz de la Maza, Nonlinear programming and nonsmooth optimization
by successive linear programming, Mathematical Programming, 43 (1989), pp. 235–256.

[22] M. Fukushima and J. S. Pang, Convergence of a smoothing continuation method for mathe-
matical programs with complementarity constraints, in Ill-posed Variational Problems and
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