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Abstract

This paper proposes an efficient computational technique for the optimal control of linear
discrete-time systems subject to bounded disturbances with mixed linear constraints on the
states and inputs. The problem of computing an optimal state feedback control policy, given
the current state, is non-convex. A recent breakthrough has been the application of robust
optimization techniques to reparameterize this problem as a convex program. While the
reparameterized problem is theoretically tractable, the number of variables is quadratic in
the number of stages or horizon length N and has no apparent exploitable structure, leading
to computational time of O(N6) per iteration of an interior-point method. We focus on the
case when the disturbance set is ∞-norm bounded or the linear map of a hypercube, and the
cost function involves the minimization of a quadratic cost. Here we make use of state variables
to regain a sparse problem structure that is related to the structure of the original problem,
that is, the policy optimization problem may be decomposed into a set of coupled finite
horizon control problems. This decomposition can then be formulated as a highly structured
quadratic program, solvable by primal-dual interior-point methods in which each iteration
requires O(N3) time. This cubic iteration time can be guaranteed using a Riccati-based
block factorization technique, which is standard in discrete-time optimal control. Numerical
results are presented, using a standard sparse primal-dual interior point solver, that illustrate
the efficiency of this approach.

Keywords: Constrained control, robust optimization, optimal control, robust control, reced-
ing horizon control, predictive control.
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1 Introduction

Robust and predictive control

This paper is concerned with the efficient computation of optimal control policies for constrained
discrete-time linear systems subject to bounded disturbances on the state. In particular, we
consider the problem of finding, over a finite horizon of length N , a feedback policy

π := {µ0(·), . . . , µN−1(·)} (1)

for a discrete-time linear dynamical system of the form

xi+1 = Axi +Bui + wi (2)

ui = µi(x0, . . . , xi) (3)

which guarantees satisfaction of a set of mixed constraints on the states and inputs at each time,
for all possible realizations of the disturbances wi, while minimizing a given cost function.

The states xi and inputs ui are constrained to lie in a compact and convex set Z , i.e.

(xi, ui) ∈ Z , ∀i ∈ {0, 1, . . . , N − 1} (4)

with an additional terminal constraint xN ∈ Xf . We assume nothing about the disturbances other
than that they lie in a given compact set W .

The above, rather abstract problem is motivated by the fact that for many real-life control ap-
plications, optimal operation nearly always occurs on or close to some constraints [39]. These
constraints typically arise, for example, due to actuator limitations, safe regions of operation, or
performance specifications. For safety-critical applications, it is crucial that some or all of these
constraints are met despite the presence of unknown disturbances.

Because of its importance, the above problem and derivations of it have been studied for some
time now, with a large body of literature that falls under the broad banner of “robust control”
(see [7, 53] for some seminal work on the subject). The field of linear robust control, which is
mainly motivated by frequency-domain performance criteria [57] and does not explicitly consider
time-domain constraints as in the above problem formulation, is considered to be mature and a
number of excellent references are available on the subject [19, 29, 58]. In contrast, there are few
tractable, non-conservative solutions to the above constrained problem, even if all the constraint
sets are considered to be polytopes or ellipsoids; see, for example, the literature on set invariance
theory [9] or `1 optimal control [14, 21, 47, 50].

A control design method that is particularly suitable for the synthesis of controllers for systems
with constraints, is predictive control [12, 39]. Predictive control is a family of optimal control
techniques where, at each time instant, a finite-horizon constrained optimal control problem is
solved using tools from mathematical programming. The solution to this optimization problem
is usually implemented in a receding horizon fashion, i.e. at each time instant, a measurement of
the system is obtained, the associated optimization problem is solved and only the first control
input in the optimal policy is implemented. Because of this ability to solve a sequence of compli-
cated, constrained optimal control problems in real-time, predictive control is synonymous with
“advanced control” in the chemical process industries [43].

The theory on predictive control without disturbances is relatively mature and most of the fun-
damental problems are well-understood. However, despite recent advances, there are many open
questions remaining in the area of robust predictive control [4, 40, 41]. In particular, efficient op-
timization methods have to be developed for solving the above problem before robust predictive
control methods can be applied to unstable or safety-critical applications in areas such as aerospace
and automotive applications [48].
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Robust control models

The core difficulty with the problem (1)–(4) is that optimizing the feedback policy π over arbitrary
nonlinear functions is extremely difficult, in general. Proposals which take this approach, such as
those based on robust dynamic programming [3, 15], or those based on enumeration of extreme
disturbance sequences generated from the set W , as in [45], are typically intractable for all but the
smallest problems. Conversely, optimization over open-loop control sequences, while tractable, is
considered unacceptable since problems of infeasibility or instability may easily arise [41].

An obvious sub-optimal proposal is to parameterize the control policy π in terms of affine functions
of the sequence of states, i.e. to parameterize the control sequence as

ui = gi +
i∑

j=0

Li,jxj (5)

where the matrices Li,j and vectors gi are decision variables. However, the set of constraint admis-
sible policies of this form is easily shown to be non-convex in general. As a result, most proposals
that take this approach [2, 13, 35, 36, 42] fix a stabilizing feedback gain K, then parameterize the
control sequence as ui = Kxi + gi and optimize the design parameters gi. Though tractable,
this approach is problematic since it is unclear how one should select the gain K to minimize
conservativeness.

A recent discovery [5, 27] showed that the problem of optimizing over state feedback policies of
the form (5) is equivalent to the problem of optimizing over disturbance feedback policies of the
form

ui = vi +

i−1∑

j=0

Mi,jwj . (6)

The particular advantage of the parameterization (6) is that the set of constraint admissible
policy parameters {{Mi,j}, {vi}} is guaranteed to be convex when the constraint sets Z and Xf

are convex.

The parameterization (6) has been proposed as a means for finding solutions to a general class of
robust optimization problems, called affinely adjustable robust counterpart (AARC) problems [6,
30]. The same parameterization has also appeared specifically in application to robust model
predictive control problems in [37,38,51,52], and appears to have originally been suggested within
the context of stochastic programs with recourse [23]. In the particular control context considered
here, the reparameterization of (5) to the convex form (6) may be considered a special case of the
well-known Youla parameterization in linear system theory [56] [58, Ch. 12].

Using the parameterization (6), robust optimization modelling techniques [5, 6, 30] are used to
eliminate the unknown disturbances wj and formulate the admissible set of control policies with
O(N2mn) variables, where N is the horizon length as above, and m and n are the respective di-
mensions of the controls ui and states xi at each stage. This implies that, given a suitable objective
function, an optimal affine state feedback policy (5) can be found in time that is polynomially
bounded in the size of the problem data.

Efficient computation in robust optimal control

In the present paper we demonstrate that an optimal policy of the form (6), equivalently (5),
can be efficiently calculated in practice, given suitable polytopic assumptions on the constraint
sets W , Z and Xf . This result is critical for practical applications, since one would generally
implement a controller in a receding horizon fashion by calculating, on-line and at each time
instant, an admissible control policy (5), given the current state x. Such a control strategy has
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been shown to allow for the synthesis of stabilizing, nonlinear time-invariant control laws that
guarantee satisfaction of the constraints Z for all time, for all possible disturbance sequences
generated from W [27].

While convexity of the robust optimal problem arising out of (6) is key, the resulting optimization
problem is a dense convex quadratic program with O(N 2) variables (see Section 2.3, cf. [27]),
assuming N dominates the dimension of controls m and states n at each stage. Hence each
iteration of an interior-point method will require the solution of a dense linear system and thus
require O(N6) time. This situation is common, for example, in the rapidly growing number of
aerospace and automotive applications of predictive control [39, Sec. 3.3] [43]. We show that when
the disturbance set is ∞-norm bounded or the linear map of a hypercube, the special structure of
the robust optimal control problem can be exploited to devise a sparse formulation of the problem,
thereby realizing a substantial reduction in computational effort to O(N 3) work per interior-point
iteration.

We demonstrate that the cubic-time performance of interior-point algorithms at each step can be
guaranteed when using a factorization technique based on Riccati recursion and block elimination.
Numerical results are presented that demonstrate that the technique is computationally feasible
for systems of appreciable complexity using the standard sparse linear system solver MA27 [32]
within the primal-dual interior-point solver OOQP [24]. We compare this primal-dual interior-
point approach to the sparse active-set method PATH [17] on both the dense and sparse problem
formulations. Our results suggest that the interior-point method applied to the sparse formulation
is the most practical method for solving robust optimal control problems, at least in the “cold
start” situation when optimal active set information is unavailable.

A final remark is that the sparse formulation of robust optimal control results from a decomposition
technique that can be used to separate the problem into a set of coupled finite horizon control
problems. This reduction of effort is the analogue, for robust control, to the situation in classical
unconstrained optimal control in which Linear Quadratic Regulator (LQR) problems can be solved
in O(N) time, using a Riccati [1, Sec. 2.4] or Differential Dynamic Programming [33] technique in
which the state feedback equation x+ = Ax + Bu is explicit in every stage, compared to O(N 3)
time for the more compact formulation in which states are eliminated from the system. More direct
motivation for our work comes from [8, 16, 44, 49, 54], which describe efficient implementations of
optimization methods for solving optimal control problems with state and control constraints,
though without disturbances.

Contents

The paper is organized as follows: Section 2 introduces the optimal control problem considered
throughout the paper, and shows how the class of affine disturbance feedback policies described
in [27] may be used to design a receding horizon control (RHC) law which can be implemented via
the solution of a quadratic program (QP) at each time step. Section 3 gives an equivalent formula-
tion for this QP that can be decomposed into a highly structured, singly-bordered block-diagonal
quadratic program through reintroduction of appropriate state variables. Section 4 demonstrates
that, when using a primal-dual interior-point solution technique, the decomposed quadratic pro-
gram can always be solved in an amount of time which is cubic in the horizon length at each
interior-point iteration. Section 5 demonstrates through numerical examples that the proposed
decomposition can be solved much more efficiently than the equivalent original formulation. The
paper concludes in Section 6 with suggestions for further research.

Notation: The set of integers {i, . . . , j} is denoted Z[i,j]. Given vectors x and y and matri-
ces A and B, A � 0 (� 0) means that A is positive (semi)definite, A⊗B is the Kronecker product
of A and B, x′ is the transpose of x, vec(x, y) := [x′ y′]′ and ‖x‖A :=

√
x′Ax. For scalar q, bqc is

the largest integer less than or equal to q. The vector 1 is an appropriately sized column vector
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with all entries equal to 1.

2 Problem Statement

Consider the following discrete-time linear time-invariant system:

x+ = Ax+Bu+ w, (7)

where x ∈ Rn is the system state at the current time instant, x+ is the state at the next time
instant, u ∈ Rm is the control input and w ∈ Rn is the disturbance. It is assumed that (A,B) is
stabilizable and that at each sample instant a measurement of the state is available. It is further
assumed that the current and future values of the disturbance are unknown and may change
unpredictably from one time instant to the next, but are contained in a convex and compact
(closed and bounded) set W , which contains the origin.

The system is subject to mixed constraints on the state and input:

Z := {(x, u) ∈ Rn × Rm | Cx+Du ≤ b} , (8)

where the matrices C ∈ Rs×n, D ∈ Rs×m and the vector b ∈ Rs; s is the number of affine
inequality constraints that define Z . A design goal is to guarantee that the state and input of the
closed-loop system remain in Z for all time and for all allowable disturbance sequences.

In addition to Z , a target/terminal constraint set Xf is given by

Xf := {x ∈ Rn | Y x ≤ z } , (9)

where the matrix Y ∈ Rr×n and the vector z ∈ Rr; r is the number of affine inequality constraints
that define Xf . The set Xf can, for example, be used as a target set in time-optimal control or, if
defined to be robust positively invariant, to design a receding horizon controller with guaranteed
invariance and stability properties [27].

Before proceeding, we define some additional notation. In the sequel, predictions of the system’s
evolution over a finite control/planning horizon will be used to define a number of suitable control
policies. Let the length N of this planning horizon be a positive integer and define stacked versions
of the predicted input, state and disturbance vectors u ∈ RmN , x ∈ Rn(N+1) and w ∈ RnN ,
respectively, as

x := vec(x0, . . . , xN−1, xN ),

u := vec(u0, . . . , uN−1),

w := vec(w0, . . . , wN−1),

where x0 = x denotes the current measured value of the state and xi+1 := Axi + Bui + wi,
i = 0, . . . , N − 1 denotes the prediction of the state after i time instants into the future. Finally,
let the set W := WN := W × · · · ×W , so that w ∈ W .

2.1 Affine Disturbance Feedback Policies

As noted in the Introduction, the problem of constructing a constraint admissible finite horizon
feedback policy π for the system (2), where the control input at each time is specified as an
arbitrary function of prior states, is extremely difficult in general. We therefore choose to employ
a more restricted class of affine feedback policies, where the control input at each time is modelled
as an affine function of the sequence of past disturbances, so that

ui = vi +
i−1∑

j=0

Mi,jwj , ∀i ∈ Z[0,N−1], (11)
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where each Mi,j ∈ Rm×n and vi ∈ Rm are decision variables to be specified in the construction
of the control policy. We note that, since full state feedback is assumed, the past disturbance
sequence is easily calculated as the difference between the predicted and actual states at each
step, i.e.

wi = xi+1 −Axi − Bui, ∀i ∈ Z[0,N−1]. (12)

Define the variable v ∈ RmN and the block lower triangular matrix M ∈ RmN×nN such that

M :=

2
664

0 · · · · · · 0
M1,0 0 · · · 0...

. . .
. . .

...
MN−1,0 · · · MN−1,N−2 0

3
775, v :=

2
664

v0......
vN−1

3
775, (13)

so that the control input sequence can be written as u = Mw + v. Define the set of admissible
policies (M,v), for which the constraints (8) and (9) are satisfied, as:

Πdf
N (x) :=





(M,v)

∣∣∣∣∣∣∣∣∣∣

(M,v) satisfies (13), x = x0

xi+1 = Axi +Bui + wi
ui = vi +

∑i−1
j=0 Mi,jwj

Cxi +Dui ≤ b, Y xN ≤ z
∀wi ∈ W, ∀i ∈ Z[0,N−1]




, (14)

and define the set of initial states x for which an admissible control policy of the form (11) exists
as

Xdf
N := {x ∈ Rn | Πdf

N (x) 6= ∅}. (15)

Note that, as shown in [26, 27], the sets Πdf
N (x) and Xdf

N are convex since the sets Z and Xf are
convex.

2.2 A Receding Horizon Control Law

We are chiefly interested in employing the policy parameterization (11) to construct a receding
horizon control (RHC) law for the uncertain linear system (2), i.e. at each sample instant, given
a measurement of the current state x, we would like to calculate on-line a constraint admissible
policy (M(x),v(x)) ∈ Πdf

N (x) that is optimal with respect to some cost function, and apply the
first component of this policy to the system (2). We stress that, for problems of non-trivial size,
this determination of control policies must be performed on-line, since it is generally not possible
to select a single pair (M,v) such that (M,v) ∈ Πdf

N (x) for all x ∈ Xdf
N . The main contribution

of this paper is to describe an efficient computational method by which this on-line calculation
may be performed.

In particular, we define an optimal policy pair (M∗(x),v∗(x)) ∈ Πdf
N (x) to be one that minimizes

the value of a cost function that is quadratic in the disturbance-free state and input sequence. We
thus define:

VN (x,v) :=
1

2
‖x̂N‖2P +

N−1∑

i=0

(
1

2
‖x̂i‖2Q+

1

2
‖vi‖2R

)
(16)

where x̂0 = x, x̂i+1 = Ax̂i +Bvi for i = 0, . . . , N − 1; the matrices Q and P are assumed positive
semidefinite, and R is assumed positive definite. The cost function (16) can alternatively be
written in vectorized form as

VN (x,v) =
1

2
‖Ax+ Bv‖2Q +

1

2
‖v‖2R, (17)

where A ∈ Rn(N+1)×n and B ∈ Rn(N+1)×mN are defined in Appendix A and where Q := [ I⊗Q
P

]
and R := I ⊗R. We define an optimal policy pair as

(M∗(x),v∗(x)) := argmin
(M,v)∈ΠdfN (x)

VN (x,v). (18)
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For the receding-horizon control case, a time-invariant control law µN : Xdf
N → Rm can be

implemented by using the first part of this optimal control policy at each time instant, i.e.

µN (x) := v∗0(x). (19)

where v∗(x) =: vec(v∗0(x), . . . , v∗N−1(x)). We emphasize that, due to the dependence of the opti-
mization problem (18) on the current state x, the control law µN (·) will, in general, be a nonlinear
function with respect to the current state, even though it may have been defined in terms of the
class of affine feedback policies (11).

The control law µN (·) has many attractive geometric and system-theoretic properties. In partic-

ular, implementation of the control law µN (·) renders the set Xdf
N robust positively invariant, i.e.

if x ∈ Xdf
N , then it can be shown that Ax +BµN (x) + w ∈ Xdf

N for all w ∈ W , subject to certain
technical conditions on the terminal set Xf . Furthermore, the control law µN (·) is uniquely de-
fined for each x, and the closed-loop system is guaranteed to be input-to-state (ISS) stable under
suitable assumptions on Q, P , R and Xf . Finally, calculation of an optimal policy in (18) requires
the minimization of a convex function over a convex set, so that µN (·) in (19) is thus practically
realizable for a variety of disturbance classes. The reader is referred to [26,27] for a proof of these
results and a review of other system-theoretic properties of this parameterization.

2.3 Solution via Quadratic Programming

As shown in [27], it is possible to eliminate the universal quantifier in (14) and construct matrices
F ∈ R(sN+r)×mN , G ∈ R(sN+r)×nN and T ∈ R(sN+r)×n, and vector c ∈ RsN+r (defined in
Appendix A) such that the set of feasible pairs (M,v) can be written as:

Πdf
N (x) =

{
(M,v)

∣∣∣∣∣
(M,v) satisfies (13)

Fv + max
w∈W

(FM +G)w ≤ c+ Tx

}
, (20)

where maxw∈W(FM + G)w denotes row-wise maximization – note that this is equivalent to
evaluating the support function of the set W for each column of the matrix (FM +G)′, and that
these maxima always exist since the set W is assumed to be compact. In the remainder of this
paper, we consider the particular case where W is generated as the linear map of a hypercube.
Define

W = {w ∈ Rn | w = Ed, ‖d‖∞ ≤ 1}, (21)

where E ∈ Rn×l is assumed to have full column rank, so that the stacked generating disturbance
sequence d ∈ RlN is

d := vec(d0, . . . , dN−1), (22)

and define the matrix J := IN ⊗E ∈ RNn×Nl, so that w = Jd. From the properties of the dual
norm [31], when the generating disturbance d is an ∞-norm bounded signal given as in (21), then

max
w∈W

a′w = ‖E′a‖1 (23)

for any vector a ∈ Rn. Straightforward application of (23) to the row-wise maximization in (20)
yields

Πdf
N (x) =

{
(M,v)

(M,v) satisfies (13)
Fv + abs(FMJ +GJ)1 ≤ c+ Tx

}
, (24)

where abs(FMJ +GJ)1 is a vector formed from the 1-norms of the rows of (FMJ +GJ). This
can be written as a set of purely affine constraints by introducing slack variables and rewriting as

Πdf
N (x) =



(M,v)

(M,v) satisfies (13), ∃Λ s.t.
Fv + Λ1 ≤ c+ Tx

−Λ ≤ (FMJ +GJ) ≤ Λ



 . (25)
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The control policy optimization problem (18) can thus be solved in this case by forming a quadratic
program in the variables M, Λ, and v, i.e.

min
M,Λ,v

1

2
‖Ax+ Bv‖2Q +

1

2
‖v‖2R (26a)

subject to:

Mi,j = 0, ∀i ≤ j (26b)

Fv + Λ1 ≤ c+ Tx (26c)

−Λ ≤ (FMJ +GJ) ≤ Λ. (26d)

Remark 1. The total number of decision variables in (26) is mN in v, mnN(N−1)/2 in M, and
(slN2 + rlN) in Λ, with the number of constraints equal to (sN + r) + 2(slN 2 + rlN)), or O(N2)
overall. For a naive interior-point computational approach using a dense factorization method,
the resulting quadratic program would thus require computation time of O(N 6) at each iteration.

2.3.1 Writing Πdf
N (x) in Separable Form

We next define the variable transformation U := MJ , such that the matrix U ∈ RmN×lN has
block lower triangular structure similar to that defined in (13) for M. Note that use of this
variable transformation is tantamount to parameterizing the control policy directly in terms of
the generating disturbances di, so that ui = vi +

∑i−1
j=0 Ui,jdj , or u = Ud + v.

When the matrix E is full column rank, the QP (26) may be solved using this variable transfor-
mation by solving an equivalent QP in the variables U, Λ and v:

min
U,Λ,v

1

2
‖Ax+ Bv‖2Q +

1

2
‖v‖2R (27a)

subject to:

Ui,j = 0, ∀i ≤ j (27b)

Fv + Λ1 ≤ c+ Tx (27c)

−Λ ≤ (FU +GJ) ≤ Λ. (27d)

The equivalence between the QPs (26) and (27) when E (and thus J) has full column rank is
easily demonstrated by employing a left inverse J † such that J†J = I , since any feasible solution
(M,Λ,v) satisfying the constraint in (27d) also satisfies the constraint (26d) with M = UJ †.
Remark 2. The critical feature of the quadratic program (27) is that the columns of the vari-
ables U and Λ are decoupled in the constraint (27d). This allows column-wise separation of the
constraint into a number of subproblems, subject to the coupling constraint (27c). The reader is
referred to [27] for details on the solution of the optimization problem (18) when W is an arbitrary
polytope or 2–norm bounded.

2.4 Soft Constraints and Guaranteed Feasibility

An important practical consideration for control applications is the handling of potential infeasi-
bility of the optimization problem (18). If the RHC law µN (·) is to be implemented on-line for
a real system, it is important to guarantee reasonable controller behavior if the plant enters a
state x such that Πdf

N (x) is empty (equivalently, x /∈ Xdf
N ). A common approach in the literature

in receding horizon control is to treat some or all of the constraints in Z or Xf as so-called soft
constraints, i.e. constraints that may be violated if necessary to guarantee that the optimization
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problem (27), and particularly the constraint (27c), is feasible for all x. Techniques for soft con-
straint handling are well established in the literature on linear predictive control for undisturbed
systems [39, 44, 46], and we show briefly how these ideas may be extended to cover the robust
control problem considered here. Without loss of generality, we consider the simplest case where
every constraint is a soft constraint, and replace the hard state and input constraints in (14) with
soft constraints of the form

Cxi +Dui ≤ b+ ξi, ξi ≥ 0, ∀i ∈ Z[0,N−1] (28a)

Y xN ≤ z + ξN , ξN ≥ 0, (28b)

and augment the objective function with convex linear-quadratic terms (γ ′iξi + ξ′iΓiξi) penalizing
the soft constraint violations ξi, where Γi � 0. The optimization problem (27) becomes

min
U,Λ,v,ξ

1

2
‖Ax+ Bv‖2Q +

1

2
‖v‖2R +

N∑

i=0

(γ′iξi + ξ′iΓiξi) (29a)

subject to:

Ui,j = 0, ∀i ≤ j (29b)

Fv + Λ1 ≤ c+ Tx+ ξ, ξ ≥ 0, (29c)

−Λ ≤ (FU +GJ) ≤ Λ, (29d)

where ξ := vec(ξ0, . . . , ξN ). Note that the quadratic program (29) is feasible for all x, so that
a receding horizon controller synthesized via repeated solution of this QP is defined everywhere
on Rn. A well-known feature of such penalty function formulations is that if, in the spirit of [22,
Sec. 12.3] [39, Sec. 3.4], if one defines an exact penalty function (by choosing γi large enough),

then solutions to (29) correspond exactly to solution of (27) for all x ∈ Xdf
N .

3 Recovering Structure in the Robust Control Problem

The quadratic program (QP) defined in (27) can be rewritten in a more computationally attractive
form by re-introducing the eliminated state variables to achieve greater structure. The re-modelling
process separates the original problem into subproblems; a nominal problem, consisting of that
part of the state resulting from the nominal control vector v, and a set of perturbation problems,
each representing the components of the state resulting from each of the columns of (27d) in turn.

Nominal States and Inputs

We first define a constraint contraction vector δc ∈ RsN+r such that

δc := vec(δc0, . . . , δcN) = Λ1, (30)

so that the constraint (27c) becomes

Fv + δc ≤ c+ Tx. (31)

Recalling that the nominal states x̂i are defined in (16) as the expected states given no distur-
bances, it is easy to show that the constraint (31) can be written explicitly in terms of the nominal
controls vi and states x̂i as

x̂i+1 −Ax̂i −Bvi = 0, ∀i ∈ Z[0,N−1] (32a)

Cx̂i +Dvi + δci ≤ b, ∀i ∈ Z[0,N−1] (32b)

Y x̂N + δcN ≤ z, (32c)
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where x̂0 = x, which is in a form that is exactly the same as that in conventional receding
horizon control problem with no disturbances, but with the right-hand-sides of the state and input
constraints at each stage i modified by the constraint contraction terms δci; compare (32a)–(32c)
and (7)–(9) respectively.

Perturbed States and Inputs

We next consider the effects of each of the columns of (FU +GJ) in turn, and seek to construct
a set of problems similar to that in (32). We treat each column as the output of a system subject
to a unit impulse in a single element of d, and construct a subproblem that calculates the effect of
that disturbance on the nominal problem constraints (32b)–(32c) by determining its contribution
to the total constraint contraction vector δc.

From the original QP constraint (27d), the constraint contraction vector δc can be written as

abs(FU +GJ)1 ≤ Λ1 = δc. (33)

The left-hand side of (33) is just a summation over the columns of the matrix abs(FU +GJ), so
that

abs(FU +GJ)1 =

lN∑

p=1

abs((FU +GJ)ep). (34)

where ep ∈ RlN is a vector whose pth element is equal to 1, with all other elements equal to zero.
Define yp ∈ RsN+r and δcp ∈ RsN+r as

yp := (FU +GJ)ep (35)

δcp := abs(yp). (36)

Note that the unit vector ep models a unit disturbance in some element j of the generating
disturbance dk at some time step k, with no disturbances at any other step1. If we denote the jth

column of E as E(j), then it is easy to recognize yp as the stacked output vector of the system

(upi , x
p
i , y

p
i ) = 0, ∀i ∈ Z[0,k] (37a)

xpk+1 = E(j), (37b)

xpi+1−Axpi−Bupi = 0, ∀i ∈ Z[k+1,N−1] (37c)

ypi −Cxpi −Dupi = 0, ∀i ∈ Z[k+1,N−1] (37d)

ypN − Y xpN = 0, (37e)

where yp = vec(yp0 , . . . , y
p
N ). The inputs upi of this system come directly from the pth column

of the matrix U, i.e. they are the columns of the sub-matrices Ui,k. If the constraint terms δcp

for each subproblem are similarly defined as δcp := vec(δcp0, . . . , δc
p
N ), then each component must

satisfy δcpi = abs(ypi ), or in linear inequality constraint form

−δcpi ≤ ypi ≤ δcpi . (38)

Note also that for the pth subproblem, representing a disturbance at stage k = b p−1
l c, the con-

straint contraction terms are zero prior to stage (k + 1).

By further defining

C̄ :=

[
+C
−C

]
D̄ :=

[
+D
−D

]
Ȳ :=

[
+Y
−Y

]
H :=

[
−Is
−Is

]
Hf :=

[
−Ir
−Ir

]
, (39)

equations (37d) and (37e) can be combined with (38) to give

C̄xpi + D̄upi +Hδcpi ≤ 0, ∀i ∈ Z[k+1,N−1] (40a)

Ȳ xpN +Hfδc
p
N ≤ 0. (40b)

1Note that this implies p = lk + j, k = b p−1
l
c and j = 1 + ((p− 1) mod l).
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3.1 Complete Robust Control Problem

We can now restate the complete robust optimization problem (27) as:

min
x̂1,...,x̂N ,v0,...vN−1,δc0,...,δcN ,

x1
0,...,x

1
N ,u

1
0,...u

1
N−1,δc

1
0,...,δc

1
N ,

...,

xlN0 ,...,xlNN ,ulN0 ,...ulNN−1,δc
lN
0 ,...,δclNN

1

2
‖x̂N‖2P +

N−1∑

i=0

(
1

2
‖x̂i‖2Q +

1

2
‖vi‖2R

)
(41)

subject to (32), (37a)–(37c) and (40), which we restate here for convenience:

x̂i+1 −Ax̂i −Bvi = 0, ∀i ∈ Z[0,N−1] (42a)

Cx̂i +Dvi + δci ≤ b, ∀i ∈ Z[0,N−1] (42b)

Y x̂N + δcN ≤ z, (42c)

where x̂0 = x, and

δci =

lN∑

p=1

δcpi , ∀i ∈ Z[0,N ], (43)

and, for each p ∈ Z[1,lN ]:

(upi , x
p
i , δc

p
i ) = 0, ∀i ∈ Z[0,k] (44a)

xpk+1 = E(j), (44b)

xpi+1 −Axpi −Bupi = 0, ∀i ∈ Z[k+1,N−1] (44c)

C̄xpi + D̄upi +Hδcpi ≤ 0, ∀i ∈ Z[k+1,N−1] (44d)

Ȳ xpN +Hfδc
p
N ≤ 0. (44e)

where k = b p−1
l c and j = 1 + ((p− 1) mod l). The decision variables in this problem are the

nominal states and controls x̂i and vi at each stage (the initial state x̂0 is known, hence not a
decision variable), plus the perturbed states, controls, and constraint contraction terms xpi , u

p
i ,

and δcpi for each subproblem at each stage.
Remark 3. Recalling the discussion of Section 2.4, soft constraints are easily incorporated into
the optimization problem (41)–(44) via modification of the cost function (41) and of the con-
straints (42b)–(42c). The important point regarding this soft constraint inclusion is that it does not
result in a modification of any of the perturbation constraints (44), so that the qualitative results to
be presented in Section 4 relating to efficient solution of the QP (41)–(44) are not fundamentally
altered by the incorporation of soft constraints.

We can now state the following key result, proof of which follows directly from the discussion of
Section 2.3.1 and of this section.
Theorem 1. The convex, tractable QP (41)–(44) is equivalent to the robust optimal control prob-
lems (26) and (27). The receding horizon control law u = µN (x) in (19) can be implemented using
the solution to (41)–(44) as u = v∗0(x).

The importance of the re-introduction of states in (42) and (44) is that significant structure and
sparsity can be revealed in the problem through an interleaving of decision variables by time index.
For the nominal problem, define the stacked vector of variables:

x0 := vec(v0, x̂1, v1, . . . , x̂N−1, vN−1, x̂N ). (45)

For the pth perturbation problem in (44), which models a unit disturbance at stage k = b p−1
l c,

define:

xp := vec(upk+1, δc
p
k+1, x

p
k+2, u

p
k+2, δc

p
k+2, . . . ,

xpN−1, u
p
N−1, δc

p
N−1, x

p
N , δc

p
N ).

(46)
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Using this reordering, the constraints (42)–(44) can be written as a single set of linear constraints
in singly-bordered block-diagonal form with considerable structure and sparsity:




A0

A1

. . .

AlN







x0

x1

...
xlN


 =




b0

b1

...
blN


 ,




C0 J1 · · · JlN
C1

. . .

ClN







x0

x1

...
xlN


 ≤




d0

d1

...
dlN


 . (47)

The coefficient matrices A0 and C0 in (47) originate from the nominal problem constraints (42),
and are defined as

A0 :=




B −I
A B −I

. . .

A B −I


, C0 :=




D
C D

. . .

C D
Y


, (48)

with corresponding right hand sides

b0 := vec(−Ax, 0, 0, . . . , 0), d0 := vec(b− Cx, b, . . . , b, z). (49)

The coefficient matrices Ap and Cp in (47) originate from the constraints for the pth perturbation
subproblem in (44), and are defined as

Ap :=




B 0 −I
A B 0 −I

. . .

A B 0 −I 0


, Cp :=




D̄ H
C̄ D̄ H

. . .

C̄ D̄ H
Ȳ Hf


, (50)

with corresponding right hand sides

bp := vec(−AE(j), 0, . . . , 0), dp := vec(0, 0, . . . , 0, 0). (51)

The coupling matrices Jp in (47) are then easily constructed from the coupling equation (43).
Remark 4. It is possible to define a problem structure similar to that in (41)–(44) for the more
general polytopic disturbance sets discussed in [27] via introduction of states in a similar manner.
However, in this case the perturbation subproblems (44) require an additional coupling constraint
for the subproblems associated with each stage.

4 Interior-Point Method for Robust Control

In this section we demonstrate that, using a primal-dual interior-point solution technique, the
quadratic program defined in (41)–(44) can be solved with a per-iteration computational effort
that grows cubicly with the horizon length N , when n + m is dominated by N ; this situation is
common, for example, in the rapidly growing number of aerospace and automotive applications
of predictive control [39, Sec. 3.3] [43]. This is a major improvement on the O(N 6) work per
iteration associated with the compact (dense) formulation (26), or the equivalent problem (27);
cf. Remark 1. The improvement in computational efficiency comes about due to the improved
structure and sparsity of the problem. Indeed, akin to the situation in [44], we will show that
each subproblem in the QP (41)–(44) has the same structure as that of an unconstrained optimal
control problem without disturbances.

We first outline some of the general properties of interior-point solution methods.
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4.1 General Interior-Point Methods

With a slight abuse of notation, we consider the general constrained quadratic optimization prob-
lem

min
θ

1

2
θ′Qθ subject to Aθ = b, Cθ ≤ d, (52)

where the matrix Q is positive semidefinite. A solution θ to this system exists if and only if
the Karush-Kuhn-Tucker conditions are satisfied, i.e. there exist additional vectors π, λ and z
satisfying the following conditions:

Qθ + A′π + C′λ = 0 (53a)

Aθ − b = 0 (53b)

−Cθ + d− z = 0 (53c)

(λ, z) ≥ 0 (53d)

λ′z = 0 (53e)

In primal-dual interior point methods [55], the central path is defined as the set of parameters
(θ, π, λ, z) satisfying (53a)–(53d), with the complementarity condition (53e) relaxed, for each ele-
ment i, to λizi = µ, where µ > 0 parameterizes the path. This guarantees that λ and z are strictly
positive vectors. The central path converges to a solution of (53) as µ ↓ 0 if such a solution exists.

The constraints λizi = µ can be rewritten in a slightly more convenient form by defining diagonal
matrices Λ and Z such that

Λ =



λ1

. . .

λn


 , Z =



z1

. . .

zn


 , (54)

so that the relaxed complementarity condition becomes ΛZ1 = µ1. Primal-dual interior-point
algorithms search for a solution to the KKT conditions (53) by producing a sequence of iterates
(θκ, πκ, λκ, zκ), which approximate the central path solution at some µκ > 0. These iterates are
updated via repeated solution of a set of Newton-like equations of the form




Q A′ C′

A
C I

Z Λ







∆θ
∆π
∆λ
∆z


 = −




rQ
rA
rC
rZ


 , (55)

where the residuals (rQ, rA, rC) take the values of the left-hand sides of (53a)–(53c) respectively,
evaluated at the current values (θκ, πκ, λκ, zκ), and the matrices (Z,Λ) are formed from the
current iterates (zκ, λκ) as in (54). The vector rZ is typically defined as rZ = (ΛZ1− 1µ̄), where
µ̄ is chosen such that µ̄ ∈ (0, µκ). Once the linear system (55) has been solved, the solution
is updated as (θκ+1, πκ+1, λκ+1, zκ+1) ← (θκ, πκ, λκ, zκ) + α(∆θ,∆π,∆λ,∆z), where α > 0 is
chosen to maintain strict positivity of λk+1 and zk+1, and the path parameter µκ is updated
to some µκ+1 ∈ (0, µκ). The particular method for selecting the parameters µ̄ and α at each
iteration depends on the specific interior-point algorithm employed; the reader is referred to [55]
for a thorough review. Since all such methods maintain the strict inequalities (λ, z) > 0 at each
iteration as µ ↓ 0, the matrices Λ and Z are guaranteed to remain full rank, and the system of
equations in (55) can be simplified through elimination of the variables ∆z to form the reduced
system 


Q A′ C′

A
C −Λ−1Z






∆θ
∆π
∆λ


 = −




rQ
rA(

rC − Λ−1rZ
)


 . (56)

Since the number of interior-point iterations required in practice is only weakly related to the
number of variables [55], the principal consideration is the time required to factor the Jacobian
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matrix (i.e., the matrix on the left-hand-side), and solve the linear system in (56). In the remainder
of the paper we focus on the development of an efficient solution procedure for this linear system
when the problem data for the QP (52) is defined by the robust control problem (41)–(44).

4.2 Robust Control Formulation

For the robust optimal control problem described in (41)–(44), the system of equations in (56) can
be arranged to yield a highly structured set of linear equations through appropriate ordering of
the primal and dual variables and their Lagrange multipliers at each stage. As will be shown, this
ordering enables the development of an efficient solution procedure for the linear system in (56).

We use λi and λN to denote the Lagrange multipliers for the constraints (42b) and (42c) in
the nominal system, and zi and zN for the corresponding slack variables. We similarly use λpi
and λpN to denote the multipliers in (44d) and (44e) for the pth perturbation subproblem, with
slack variables zpi and zpN . We use πi and πpi to denote the dual variables for (42) and (44).

The linear system (56), defined for the particular robust control problem (41)–(44), can then be
reordered to form a symmetric, block-bordered, banded diagonal set of equations by interleaving
the primal and dual variables within the nominal and perturbed problems, while keeping the
variables from each subproblem separate. If the pth perturbation subproblem corresponds to a
unit disturbance at some stage k = b p−1

l c, then the components of the system of equations (56)
corresponding to the nominal variables and the variables for the pth perturbation subproblem are
coupled at all stages after k.

Considering for the moment only that part of (44) corresponding to the first perturbation problem
(with p = 1), this reordering yields the coupled linear system




R D′ B′

D −Σ0 0

B 0 0 −I
−I Q 0 C′ A′

0 R D′ B′

C D −Σ1 0 I

A B 0 0 −I
−I Q 0 C′ A′

0 R D′ B′

C D −Σ2 0 I

A B 0

.
.
.

.
.
.

.
.
. P Y ′

Y −ΣN I

0 0 D̄′ B′

I 0 0 H′ 0

D̄ H −Σ1
1 0

B 0 0 0 −I
−I 0 0 0 C̄′ A′

0 0 0 D̄′ B′

I 0 0 0 H′ 0

C̄ D̄ H −Σ1
2 0

A B 0 0

.
.
.

.
.
.

.
.
. 0 0 Ȳ ′

I 0 0 H′f
Ȳ Hf −Σ1

N







∆v0

∆λ0

∆π0

∆x1

∆v1

∆λ1

∆π1

∆x2

∆v2

∆λ2.
.
.

∆xN

∆λN

∆u1
1

∆δc11

∆λ1
1

∆π1
1

∆x1
2

∆u1
2

∆δc12

∆λ1
2.

.

.

∆x1
N

∆δc1N

∆λ1
N




=




rv0

rλ0

rπ0

rx1

rv1

rλ1

rπ1

rx2

rv2

rλ2.
.
.

rxN

rλN

r
u1

1

r
δc11

r
λ1

1

r
π1

1

r
x1
2

r
u1

2

r
δc12

r
λ1

2.
.
.

r
x1
N

r
δc1N

r
λ1
N




.

(57)

The diagonal matrices Σi and Σpi in (57) correspond to the matrix products Λ−1Z in (56), and
are defined as

Σi := (Λi)
−1Zi, ∀i ∈ Z[0,N ] (58)

Σpi := (Λpi )
−1Zpi , ∀i ∈ Z[k+1,N ] (59)
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where the matrices Λi, Λpi , Zi, and Zpi are diagonal matrices formed from the Lagrange multipliers
and slack variables λi, λ

p
i , zi and zpi from the nominal and perturbation subproblems.

If all of the perturbation problems (44) are incorporated into a linear system of the form (57),
the result is a system of equations whose coefficient matrix can be partitioned into block-bordered
form as 



A J1 J2 · · · JlN
J ′1 B1

J ′2 B2

...
. . .

J ′lN BlN







xA
x1

x2

...
xlN




=




bA
b1

b2

...
blN



, (60)

where the banded matrix A is derived from the coefficients in the nominal problem (42), the
banded matrices Bp are derived from the lN perturbation subproblems (44), and the matrices Jp
represent the coupling between the systems. The vectors bA, bp, xA, and xp (which should not be
confused with the sequence of state vectors x) are constructed from the primal and dual variables
and residuals using the ordering in (57). The matrices Jp are constructed from identity matrices
coupling the rows of A that contain the Σi terms with the columns of Bp that contain the H
terms. It should of course be noted that for the matrix Bp, corresponding to a unit disturbance
at stage k = b p−1

l c, terms from stages prior to stage k + 1 are not required.

4.3 Solving for an Interior-Point Step

We can now estimate the solution time for the robust optimization problem (41)–(44) by demon-
strating that the linear system in (60) can be solved in O((m + n)3N3) operations. We recall
that, in practice, the number of interior-point iterations is only weakly dependent on the size of
the problem [55]. Throughout this section, we make the simplifying assumption that the number
of constraints s and r in (8) and (9) are O(m+n) and O(n), respectively.

We first require the following standing assumption and preliminary results:
Assumption 1. The constraint matrix D in (8) has full column rank.

Note that this assumption can always be satisfied by introducing additional input constraints with
suitably large bounds. This allows us to derive the following two results, proofs for which can be
found in Appendices B.1 and B.2 respectively.
Lemma 1. For the robust control problem (41)–(44), the Jacobian matrix in (57) has full rank.
Lemma 2. The sub-matrices Bp arising from the perturbation subproblems in (60) have full rank.
Additionally, recalling that k = b p−1

l c,
(i) A solution to the linear system Bpxp = bp can be found in O

(
(m+n)3(N − k + 1)

)
operations.

(ii) If a solution to (i) above has been found, then a solution for each additional right hand side
requires O

(
(m+n)2(N − k + 1)

)
operations.

Note that each of the blocks Bp on the diagonal of (60) is banded and symmetric indefinite.
Several methods exist for the stable construction of Cholesky-like decompositions of symmetric
indefinite matrices into factors of the form LDL′ [11], and efficient algorithms for performing this
factorization for sparse matrices are freely available [18, 32]. However, it is generally not possible
to guarantee that the banded structure of an indefinite matrix, such as Bp, will be exploited using
these methods if symmetry and stability of the factorization are to be preserved. Instead, the
special structure of the matrices Bp allows us to employ a specialized technique for solution of the
linear system Bpxp = bp based on a Riccati recursion [44,49] in the proof of Lemma 2 in Appendix
B.2.

We can now demonstrate that it is always possible to solve the linear system (60) in O((m+n)3N3)
operations.
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Theorem 2. For the robust optimal control problem (41)–(44), each primal-dual interior-point
iteration requires no more than O((m+n)3N3) operations.

Proof. The linear system (60) can be factored and solved using a Schur complement technique, so
that



xA

x1

x2

...

xlN




=




I

−B−1
1 J ′1 I

−B−1
2 J ′2 I
...

. . .

−B−1
lN J ′lN I







∆−1

B−1
1

B−1
2

. . .

B−1
lN







I −J1B−1
1 −J1B−1

2 . . . −JlNB−1
lN

I

I

. . .

I







bA

b1

b2

...

blN



,

with

∆ := A−
lN∑

p=1

JpB−1
p J ′p.

where, by virtue of Lemma 1, the matrix ∆ is always full rank [31, Thm. 0.8.5]. The O((m+n)3N3)
complexity bound can then be attained by solving (60) using the following procedure:

Operation Complexity

solve: x̃p = B−1
p bp ∀p ∈ Z[1,lN ] lN · O((m+n)3N) (61a)

Sp = Jp
(
B−1
p J ′p

)
∀p ∈ Z[1,lN ] lN · O((m+n)3N2) (61b)

factor: ∆ = A−
lN∑

p=1

Sp lN · O((m+n)N) (61c)

= L∆D∆L
′
∆ O((m+n)3N3) (61d)

solve: zA = bA −
lN∑

p=1

(Jpx̃p), lN · O((m+n)N) (61e)

xA = (L′∆)−1(D−1
∆ (L−1

∆ zA)), O((m+n)2N2) (61f)

zp = J ′pxA, ∀p ∈ Z[1,lN ] lN · O((m+n)N) (61g)

xp = x̃p − B−1
p zp. ∀p ∈ Z[1,lN ] lN · O((m+n)2N). (61h)

The complexity of the solution to the linear system (61a) follows from Lemma 2(i). The complexity
of the solution to (61b) and (61h) follows from Lemma 2(ii), where each of the matrices J ′p in (61b)
have O((m + n)N) non-zero columns.

Remark 5. For the solution procedure in (61), it is important to note that since the coupling
matrices Ji have no more than a single 1 on every row and column, matrix products involving left
or right multiplication by Ji or J ′i do not require any floating point operations to calculate. The
reader is referred to [10, App. C] for a more complete treatment of complexity analysis for matrix
operations.
Remark 6. If the solution procedure (61) is employed, then the robust optimization problem
is an obvious candidate for parallel implementation. However, it is generally not necessary to
hand implement the suggested variable interleaving and block factorization procedure to realize the
suggested block-bordered structure in (60) and O((m + n)3N3) solution time, as any reasonably
efficient sparse factorization code can be expected to perform similar steps automatically; see [18].
Note that the “arrowhead” structure in (60) should be reversed (i.e. pointing down and to the right)
in order for direct LDL′ factorization to produce sparse factors.
Remark 7. Recalling the discussion of soft constraint handling in Section 2.4 and Remark 3, it
is easy to show that the inclusion of soft constraints does not qualitatively alter the complexity
results of Theorem 2, since the inclusion of such constraints amounts only to a modification of the
matrix A (and thus of the dense matrix ∆) in (61c), and does not effect the complexity of any of
the operations involving the banded matrices Bi.

16



5 Results

Two sparse QP solvers were used to evaluate the proposed formulation. The first, OOQP [24],
uses a primal-dual interior-point approach configured with the sparse factorization code MA27
from the HSL library [32] and the OOQP version of the multiple-corrector interior-point method
of Gondzio [25].

The second sparse solver used was the QP interface to the PATH [17] solver. This code solves
mixed complementarity problems using an active-set method, and hence can be applied to the
stationary conditions of any quadratic program. Note that since we are dealing with convex QPs,
each optimization problem and its associated complementarity system have equivalent solution
sets.

All results reported in this section were generated on a single processor machine with a 3 GHz
Pentium 4 processor and 2GB of RAM. We restrict our attention to sparse solvers as the amount of
memory required in the size of the problems considered is prohibitively large for dense factorization
methods.

A set of test cases was generated to compare the performance of the two sparse solvers using the
(M,v) formulation in (26) with the decomposition-based method of Section 3. Each test case is
defined by its number of states n and horizon length N . The remaining problem parameters were
chosen using the following rules:

• There are twice as many states as inputs.

• The constraint sets W , Z and Xf represent randomly selected symmetric bounds on the
states and inputs subjected to a random similarity transformation.

• The state space matrices A and B are randomly generated, with (A,B) controllable, and
with A potentially unstable.

• The dimension l of the generating disturbance is chosen as half the number of states, with
randomly generated E of full column rank.

• All test cases have feasible solutions. The initial state is selected such that at least some of
the inequality constraints in (42b) are active at the optimal solution.

The average computational times required by each of the two solvers for the two problem formu-
lations for a range of problem sizes are shown in Table 1. Each entry represents the average of ten
test cases, unless otherwise noted.

It is clear from these results that, as expected, the decomposition-based formulation can be solved
much more efficiently than the original (M,v) formulation for robust optimal control problems
of nontrivial size, and that the difference in solution times increases dramatically with increased
problem dimension. Additionally, the decomposition formulation seems particularly well suited
to the interior-point solver (OOQP), rather than the active set method (PATH). Nevertheless we
expect the performance of active set methods to improve relative to interior-point methods when
solving a sequence of similar QPs that would occur in predictive control, where a good estimate
of the optimal active set is typically available at the start of computation. That is, interior-
point methods are particularly effective in “cold start” situations, while the efficiency of active set
methods is likely to improve given a “warm start”.

Figure 1 shows that the interior-point solution time increases cubicly with horizon length for
randomly generated problems with 2, 4, 8 and 12 states. The performance closely matches the
predicted behavior described in Section 3. For the particular problems shown, the number of
iterations required for the OOQP algorithm to converge varied from 12 to 20 over the range of
horizon lengths and state dimensions considered.
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Table 1: Average Solution Times (sec)
(M,v) Decomposition

Problem Size OOQP PATH OOQP PATH
2 states, 4 stages 0.004 0.003 0.004 0.004
2 states, 8 stages 0.020 0.010 0.016 0.019
2 states, 12 stages 0.061 0.027 0.037 0.052
2 states, 16 stages 0.172 0.091 0.072 0.198
2 states, 20 stages 0.432 0.123 0.132 1.431
4 states, 4 stages 0.024 0.026 0.018 0.024
4 states, 8 stages 0.220 0.316 0.099 0.357
4 states, 12 stages 0.969 1.162 0.264 2.019
4 states, 16 stages 3.755 17.50 0.576 16.63
4 states, 20 stages 11.67 41.45 1.047 22.26
8 states, 4 stages 0.667 1.282 0.136 0.261
8 states, 8 stages 7.882 81.50 0.858 14.89
8 states, 12 stages 46.97 257.9† 2.81 183.8†

8 states, 16 stages 189.75 2660† 6.781 288.9†

8 states, 20 stages 620.3 x 13.30 x
12 states, 4 stages 6.292 75.608 0.512 5.044
12 states, 8 stages 132.1 1160† 4.671 388.9†

12 states, 12 stages 907.4 x 14.08 x
12 states, 16 stages x x 37.99 x
12 states, 20 stages x x 82.06 x
x – Solver failed all test cases
† – Based on limited data set due to failures
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Figure 1: Computation time vs. horizon length for systems of increasing state dimension, using the
decomposition method and OOQP solver. Also shown is the constant lineN 3/1000 for comparison.
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6 Conclusions and Future Work

We have derived a highly efficient computational method for calculation of affine state feedback
policies for robust control of constrained systems with bounded disturbances. This is done by
exploiting the structure of the underlying optimization problem and deriving an equivalent problem
with considerable structure and sparsity, resulting in a problem formulation that is particularly
suited to an interior-point solution method. As a result, robustly stabilizing receding horizon
control laws based on optimal state-feedback policies have become practically realizable, even for
systems of significant size or with long horizon lengths.

In Section 4 we proved that, when applying an interior-point solution technique to our robust
optimal control problem, each iteration of the method can be solved using a number of operations
proportional to the cube of the control horizon length. We appeal to the Riccati based factorization
technique in [44,49] to support this claim. However, we stress that the results in Section 5, which
demonstrate this cubic-time behavior numerically, are based on freely available optimization and
linear algebra packages and do not rely on any special factorization methods.

A number of open research issues remain. It may be possible to further exploit the structure of
our control problem by developing specialized factorization algorithms for the factorization of each
interior-point step, e.g. through the parallel block factorization procedure alluded to in Remark 6.
It may also be possible to achieve considerably better performance by placing further constraints
on the structure of the disturbance feedback matrix M, though this appears difficult to do if the
attractive invariance and stability properties of the present formulation are to be preserved.

Many of the system-theoretic results developed in [27] hold for a fairly broad class of disturbances
and cost functions [26]. For example, when the disturbance is Gaussian the problem may be mod-
ified to require that the state and input constraints hold with a certain pre-specified probability,
and the probabilistic constraints converted to second-order cone constraints [10, pp. 157–8]. Al-
ternatively, the cost function for the finite horizon control problem may require the minimization
of the finite-horizon `2 gain of a system [28, 34]. In all of these cases, there is a strong possibil-
ity that the underlying problem structure may be exploited to realize a substantial increase in
computational efficiency.
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University, April 2003.

[39] J. M. Maciejowski. Predictive Control with Constraints. Prentice Hall, UK, 2002.

[40] D. Q. Mayne. Control of constrained dynamic systems. European Journal of Control, 7:87–99,
2001. Survey paper.

[41] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained model predictive
control: Stability and optimality. Automatica, 36(6):789–814, June 2000. Survey paper.

[42] D. Q. Mayne, M. M. Seron, and S. V. Raković. Robust model predictive control of constrained
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A Matrix Definitions

Let the matrices A ∈ Rn(N+1)×n and E ∈ Rn(N+1)×nN be defined as

A :=




In
A
A2

...
AN


 , E :=




0 0 · · · 0
In 0 · · · 0
A In · · · 0
.
..

.

..
. . .

.

..
AN−1 AN−2 · · · In


. (62)

We also define the matrices B ∈ Rn(N+1)×mN , C ∈ R(sN+r)×n(N+1) and D ∈ R(sN+r)×mN as

B := E(IN ⊗B), C :=

[
IN ⊗ C 0

0 Y

]
, D :=

[
IN ⊗D

0

]
. (63)

and define F := CB + D, G := CE, T := −CA, c := [ 1N⊗b
z ].

B Rank of the Jacobian and Reduction to Riccati Form

B.1 Rank of the Robust Control Problem Jacobian (Proof of Lemma 1)

We demonstrate that the Jacobian matrix defined in (57) is always full rank. Recalling the
discussion in Section 4.1, for any quadratic program the Jacobian matrix is full rank if the only
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solution to the system 


Q A′ C′

A 0 0
C 0 −Σ






∆θ
∆π
∆λ


 =




0
0
0


 (64)

satisfies ∆θ = 0, ∆π = 0, and ∆λ = 0, where Σ := Λ−1Z � 0, Q � 0 and the coefficient matrices A
and C come from the equality and inequality constraints of the QP respectively (cf. (52)). From
the first two rows of this system,

∆θ′Q∆θ + (∆θ′A′)∆π + ∆θ′C′∆λ = ∆θ′Q∆θ + ∆θ′C′∆λ = 0. (65)

Incorporating the final block row, C∆θ = Σ∆λ, we have

∆θ′Q∆θ + ∆λ′Σ∆λ = 0. (66)

Since Q � 0 for a convex QP and Σ � 0 for a strictly interior point, we conclude that ∆λ = 0.
We next make use of the following matrix condition, which is easily verified:
Fact 1. The matrix [X Y

0 Z ] is full column rank for any Y if both X and Z are full column rank.

Since ∆λ = 0 always holds, sufficient conditions to guarantee ∆θ = 0 and ∆π = 0 in (64) are that:

(i) A is full row rank

(ii)
[

A
C

]
is full column rank

For the quadratic program defined by the robust control problem (42)-(44), the equality and
inequality constraints are defined as in (47). For this convex QP, it is straightforward to show
that the above rank conditions on A and C are equivalent to requiring that:

(i) Each of the matrices A0,A1, . . . ,AlN is full row rank

(ii) Each of the matrices
[

A0

C0

]
,
[

A1

C1

]
, . . . ,

[
AlN
ClN

]
is full column rank.

The condition (ii) is derived by noting that, for the particular problem (42)-(44), the general rank
condition on

[
A
C

]
is equivalent to requiring that the matrix




C0 J1 J2 . . . JlN
A0

C1

A1

C2

A2

. . .

ClN
AlN




is full column rank, which reduces to (ii) upon repeated application of Fact 1 above to eliminate
the coupling terms Jp. If Assumption 1 holds both of these rank conditions are easily verified
by examination of the definitions in (48) and (50). The Jacobian matrix for the QP defined
in (42)-(44) is thus full rank, and it remains full rank if its rows and columns are reordered as
in (57).
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B.2 Solution of Bpxp = bp via Riccati recursion (Proof of Lemma 2)

We demonstrate that the system of equations Bpxp = bp has a unique solution for every bp, where
Bp, xp and bp are defined as

Bp :=




0 0 D̄′ B′

0 0 H′ 0

D̄ H −Σ
p
k+1

0

B 0 0 0 −I
−I 0 0 0 C̄′ A′

0 0 0 D̄′ B′

0 0 0 H′ 0

C̄ D̄ H −Σ
p
k+2

0

A B 0 0

.
.
.

.
.
.

.
.
. 0 0 Ȳ ′

0 0 H′
f

Ȳ Hf −Σ
p
N




, (67a)

xp :=vec(∆upk+1,∆δc
p
k+1,∆λ

p
k+1,∆π

p
k+1,∆x

p
k+2,∆u

p
k+2,∆δc

p
k+2,∆λ

p
k+2, . . . ,∆x

p
N ,∆δc

p
N ,∆λ

p
N ),

bp :=vec( ru
p
k+1 , rδc

p
k+1 , rλ

p
k+1 , rπ

p
k+1 , rx

p
k+2 , ru

p
k+2 , rδc

p
k+2 , rλ

p
k+2 , . . . , rx

p
N , rδc

p
N , rλ

p
N )

and k = b p−1
l c, and that this solution is obtainable in O((m + n)3N) time. We first perform

a single step of block elimination on the variables ∆λpi and ∆δcpk+1, so that the resulting linear
system is solvable via specialized methods based on Riccati recursion techniques [44, 49] (see also
related results in [20] for the unconstrained case).

It is straightforward to eliminate the terms ∆λpi and ∆δcpi from each of the subproblems, yielding

a linear system B̃px̃p = b̃p. The coefficient matrix B̃p is:

B̃p :=




R
p
k+1

B′

B 0 −I
−I Q

p
k+2

M
p
k+2

A′

(M
p
k+2

)′ Rp
k+2

B′

A B 0 −I
−I Q

p
k+3

M
p
k+3

A′

(M
p
k+3

)′ Rp
k+3

B′

A B

.
.
.

.
.
.

.
.
. Q

p
N




(68)

where, for stages i ∈ Z[k+1,N−1]:

Φpi := H ′(Σpi )
−1H (69a)

Θp
i := (Σpi )

−1 − (Σpi )
−1H(Φpi )

−1H ′(Σpi )
−1 (69b)

Qpi := C̄ ′Θp
i C̄ (69c)

Rpi := D̄′Θp
i D̄ (69d)

Mp
i := C̄ ′Θp

i D̄, (69e)

and for stage N :

ΦpN := H ′f (ΣpN )−1Hf (69f)

Θp
N := (ΣpN )−1 − (ΣpN )−1Hf (ΦpN )−1H ′f (ΣpN )−1 (69g)

QpN := Ȳ ′Θp
N Ȳ . (69h)

The vectors x̃p and b̃p are defined as:

x̃p := vec(∆upk+1,∆π
p
k+1,∆x

p
k+2,∆u

p
k+2,∆π

p
k+2, . . . ,∆x

p
N ) (70)

b̃p := vec( r̃u
p
k+1 , rπ

p
k+1 , r̃x

p
k+2 , r̃u

p
k+2 , rπ

p
k+2 , . . . , r̃x

p
N ) , (71)
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where, for stages i ∈ Z[k+1,N−1]:

r̃x
p
i := rx

p
i + C̄

(
Θp
i r
λpi − (Σpi )

−1H(Φpi )
−1rδc

p
i

)
(72a)

r̃u
p
i := ru

p
i + D̄

(
Θp
i r
λpi − (Σpi )

−1H(Φpi )
−1rδc

p
i

)
, (72b)

and, for stage N :

r̃x
p
N := rx

p
N + Ȳ

(
Θp
Nr

λpN − (ΣpN )−1Hf (ΦpN )−1rδc
p
N

)
. (72c)

Remark 8. The matrix B̃p is equivalent to the KKT matrix for the unconstrained control problem:

min
uk+1,...,uN−1,
xk+1,...,xN


1

2
x′NQ

p
NxN +

N−1∑

i=(k+1)

1

2
(x′iQ

p
i xi + u′iR

p
i ui + 2xiM

p
i ui)


 (73)

subject to:
xk = E(j), (74a)

xi+1 = Axi +Bui, ∀i ∈ Z[k+1,N−1], (74b)

Lemma 3. Each of the matrices Rpi , Qpi and QpN are positive semi-definite. If Assumption 1
holds, then Rpi is positive definite.

Proof. Recall that the matrix Θp
i is defined as

Θp
i = (Σpi )

−1 − (Σpi )
−1H

(
H ′(Σpi )

−1H
)−1

H ′(Σpi )
−1 (75)

Partition the diagonal and positive definite matrix Σp
i into Σpi =

[
Σi 0
0 Σi

]
. Recalling thatH := − [ II ],

Θp
i can be written as

Θp
i =

[
Σ−1

1 − Σ−1
1 (Σ−1

1 + Σ−1
2 )−1Σ−1

1 −Σ−1
1 (Σ−1

1 + Σ−1
2 )−1Σ−1

2

−Σ−1
2 (Σ−1

1 + Σ−1
2 )−1Σ−1

1 Σ−1
1 − Σ−1

2 (Σ−1
1 + Σ−1

2 )−1Σ−1
2

]
(76)

=

[
I
−I

]
(Σ1 + Σ2)−1

[
I −I

]
(77)

which is easily verified using standard matrix identities and the fact that the matrices Σ1 and Σ2

are diagonal.

Recalling that D̄ :=
[

D
−D
]
, it follows that Rpi is positive semidefinite since it can be written as

Rpi = D̄′
[
I
−I

]
(Σ1 + Σ2)−1

[
I −I

]
D̄ (78)

= 4D′(Σ1 + Σ2)−1D � 0. (79)

If Assumption 1 holds, so that D is full column rank, then Rpi is positive definite. A similar
argument establishes the result for Qpi and QpN .

We are now in a position to prove Lemma 2. Since Rpi is positive definite and Qpi and QpN are pos-

itive semidefinite, the linear system B̃px̃p = b̃p (and consequently the original system Bpxp = bp)
has a unique solution that can found in O((m + n)3(N−k+1)) operations using the Riccati re-
cursion procedure described in [44, 49]. Once such a solution has been obtained, a solution for
each additional right hand side requires O

(
(m+n)2(N−k+1)

)
operations [44, Sec. 3.4]. We note

that in [44] the Riccati factorization procedure is shown to be numerically stable, and that similar
arguments can be used to show that factorization of (68) is also stable. We omit details of this
for brevity.
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