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Given a suitably parameterised family of equilibrium models and a higher level
criterion by which to measure an equilibrium state, mathematical programs with
equilibrium constraints (MPECs) provide a framework for selecting good or even
optimal parameters. An example is toll design in traffic networks, which attempts
to reduce total travel time by choosing which arcs to toll and what toll levels to
impose. Here, a Wardrop equilibrium describes the traffic response to each toll de-
sign. Communication networks also have a deep literature on equilibrium flows that
suggest some MPECs. We focus on mathematical programs with complementarity
constraints (MPCCs), a subclass of MPECs for which the lower level equilibrium
system can be formulated as a complementarity problem. An MPCC can be immedi-
ately written as a nonlinear program (NLP) but, regrettably, the constraints of the
latter lack some stability properties that are considered essential in analysing and
solving NLPs. A related issue is that MPECs and MPCCs are generally nonconvex,
which is a consequence of the upper level objective clashing with users’ objectives
in the lower level equilibrium program. While global optimisation of MPECs and
MPCCs is in a state of infancy, the last decade of research has paved the way
for finding local solutions of MPCCs via standard NLP techniques if not off-the-
shelf NLP software. We give a selective review of these advances. Special attention
is paid to Lagrangian techniques which have become essential in describing what
“stationary” means for MPCCs, and how to solve MPCCs computationally.

Keywords: MPECs, MPCCs, complementarity problems, equilibrium
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1. Introduction

Mathematical programs with equilibrium constraints (MPECs) are a class of opti-
misation problems of the form

min
x,y

f(x, y)

subject to (x, y) ∈ Z = standard region, e.g., polyhedron
y solves an equilibrium problem that depends on x

(1.1)

where x ∈ Rn may variously be called the upper level or leader or design or control
vector, and y ∈ Rm the lower level or follower or response or state vector, respec-
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2 D. Ralph

tively; the upper level objective function f : Rn+m → R is smooth; and lower-level
optimization or equilibrium problem is formulated with smooth functions.

Equilibrium constraints may come in the form of a game, a variational inequality
(VI) or stationary conditions of one of these problems or of an optimisation prob-
lem. In this paper we restrict our attention to equilibrium constraints that can be
formulated via finitely many smooth equations, inequalities and complementarity
relations, namely, in the framework of an underdetermined mixed complementarity
problem (MCP). That is, the MPEC will be a mathematical program with comple-
mentarity constraints (MPCC) as follows:

min
z

f(z)

subject to g(z) ≥ 0, h(z) = 0
0 ≤ r(z) ⊥ s(z) ≥ 0

(1.2)

where r, s : Rn → Rm, g : Rn → Rmg , h : Rn → Rmh are smooth and ⊥ denotes
orthogonality. Here we do not distinguish between upper and lower level variables,
rather aggregate them into the single vector z. The MPCC format is important for
accessing many nonlinear programming techniques.

Note that stationary conditions of nonlinear programs (NLPs) are formulated
as Karush-Kuhn-Tucker, KKT, systems (Nocedal and Wright, 1999), which are
themselves mixed complementarity problems. For example we may reformulate a
bilevel optimisation problem as an MPCC by replacing the lower level problem with
its KKT conditions. This is attractive particularly when the lower level problem is
convex, and its stationary conditions characterise global optimality.

General references on MPECs include the monographs Luo et al. (1996) and
Outrata et al. (1998), and the more recent bibliography Dempe (2003) on the bilevel
programming and MPEC literature.

This paper highlights advances in the application of nonlinear programming
techniques to MPCCs against the background of equilibrium problems in traffic
and communication networks. Special attention is paid to Lagrangian or KKT con-
ditions and related algorithms, which have become increasingly useful in providing
robust and large scale solution methods for finding local solutions of MPCCs.

A cautionary note is that MPCCs are nonconvex optimisation problems, and
the computational techniques that reviewed here are aimed at finding stationary
points of MPCCs rather than global optima. Nonconvexity appears in the simplest
complementarity constraint 0 ≤ x ⊥ y ≥ 0, over scalars x and y. This gives the
nonconvex feasible set {(x, 0) : x ≥ 0} ∪ {(0, y) : y ≥ 0} which is the union of two
polyhedral convex “pieces”. There is a dearth of research on global optimisation of
MPECs though we can point to Hu et al. (2007) for exact methods and Sumalee
(2004a,b) for heuristic search methods, and references therein.

Section 2 reviews some basic equilibrium and MPEC/MPCC models in traffic
and communication networks. The next two sections consider NLP approaches to
generic MPCCs. Section 3 shows how the MPCC-Lagrangian, which is adapted
directly from classical nonlinear programming, provides stationary conditions for
MPCCs. The so-called strong stationary conditions are especially important be-
cause they are often “tight” and can be checked easily, circumventing the combi-
natorial nature of MPCCs. Section 4 presents several NLP approaches to solving
MPCCs, each of which can be analysed in terms of the MPCC-Lagrangian. The
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An introduction to MPECs in networks 3

fact that superlinear convergence to local solutions can be achieved by two of these
methods supports the claim that NLP algorithms hold great promise in tackling
MPCCs. Section 5 points to future work by discussing some related literature: the
price of anarchy and equilibrium programs with equilibrium constraints.

2. From equilibrium models to MPECs to MPCCs

Consider an equilibrium system, or stationary conditions of an optimisation prob-
lem, that we call the “forward model”. The data of such a model implicitly describe
a “forward output”, namely an equilibrium solution. There are two paradigms fun-
damental to scientific modelling that give rise to MPECs when the forward model
is an equilibrium problem.

The first paradigm is the design problem, in which parameters that effect the
equilibrium model are adjusted to explore the space of achievable equilibria, and
thereby improve the performance of an existing or planned system. The second
paradigm is the inverse process of parameter estimation, where we try to identify
an existing equilibrium system with one that appears in a parameterised family. An
inverse MPEC could be formed by minimising the least squares distance between
the given observations of the existing equilibrium state and the corresponding val-
ues of the forward equilibrium, subject to changing the model parameters within
acceptable limits. This can also be regarded as calibration.

The goal of this section is to briefly describe some important forward equilibrium
models in road traffic networks, in section (a), and communication networks, in
section (b), and discuss associated design and inverse MPECs. It will be important
for us to show the transformation of an equilibrium model into an MCP, so that
subsequent MPECs can be written as an MPCCs. Section (c) concludes with a brief
discussion of different directions taken in the research literatures on equilibria in
traffic networks and communication networks.

(a) MPCCs based on traffic equilibria

(i) Forward model of Wardrop traffic equilibria

Notation: Consider a network with N nodes, a set of directed arcs or links A,
where links are denoted either ij for flow from node i to j or more generally a, a
set O of origin-destination (OD) pairs, denoted kl or κ, and corresponding list of
OD demands or quantities qκ ≥ 0, κ ∈ O. Each OD pair kl defines a commodity
in a multi-commodity network flow problem, whose feasible set is given by those
nonnegative vectors xkl = (xkl

a )a∈A that achieve a transfer of qkl units from k
to l. Elastic demand, that decreases as congestion increases, can easily be adapted
into this approach. See the monographs of Patriksson (1994) and Sheffi (1985) for
general views of traffic modelling.

Wardrop traffic equilibria: We wish to find the equilibrium pattern of traffic flow
f =

∑
κ∈O x

κ over feasible OD flows xκ, bearing in mind that travel durations on
links depend on link flows. Additional constraints, such as as upper bounds on any
link flow fa, can also be imposed to define the set of feasible flows f . Wardrop’s
equilibrium principle (Wardrop, 1952) states that, at equilibrium, OD traffic will
only flow on shortest time paths. The shortest path idea generalises directly to a
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cost-of-travel function that may combine any number of factors such as distance,
time, fuel cost, etc.

VI formulation of traffic equilibrium: Smith (1979), followed by Dafermos (1980),
characterises Wardrop’s traffic equilibrium as a variational inequality, as follows.
Let da(f) denote the unit or marginal travel time, or duration for short, of flow on
link a given a feasible flow vector f .† An equilibrium is a feasible flow f∗ such that
for any other feasible flow f ,∑

a∈A
da(f∗)f∗a ≤

∑
a∈A

da(f∗)fa. (2.1)

We denote this problem by VI(d, F ) where F is the set of feasible flows and d is the
vector over links of travel durations, d(f) = (da(f))a∈A. Formally, VI(d, F ) is the
problem of finding f∗ ∈ F such that d(f∗)>(f − f∗) ≥ 0 for all f ∈ F . A computa-
tional attraction of the VI formulation over the definition of Wardrop equilibrium
is that the former is based on link flows, while the latter requires enumeration of
paths, which can grow least exponentially in the number of links.

MCP formulation of traffic equilibrium: We express F as a polyhedral set via
commodity link flows, as

f =
∑
κ∈O

xκ

xκ ≥ 0
Axκ = bκ

}
∀κ ∈ O

(2.2)

where |A| denotes the cardinality of A, A ∈ RN×|A| is the node-arc incidence
matrix, whose entry in row k and column κ = ij is 1 if j = k, −1 if i = k and 0
otherwise; and bkl ∈ RN consists of net inflows at each node, i.e., its ith component
is −qkl if i = k, qkl if i = l and zero otherwise. We introduce a dual multiplier
µ = (µκ)κ∈O where each µκ ∈ RN corresponds to the OD flow balance equation
Axκ = bκ. The dual condition that characterises f∗ as a solution of VI(d, F ) is
the existence of a multicommodity flow vector x∗ such that (2.2) holds at (f, x) =
(f∗, x∗), and KKT multiplier µ such that‡

0 ≤ d (f∗) +A>µκ ⊥ xκ ≥ 0, ∀κ ∈ O. (2.3)

That is, (2.3)-(2.2) is an equivalent MCP formulation of a Wardrop equilibrium.
This kind of equivalence between a VI and its corresponding MCP relies on, first,

the feasible set F of the former being written in terms of finitely many equalities
and inequalities, second, closedness and convexity of F , and third, a condition on
F at a prospective equilibrium f∗ called a constraint qualification, that allows the
geometric tangent cone to F at f∗ to be described by linearising the constraints that
are “active” there. For polyhedral convex sets as discussed above, this constraint
qualification holds automatically. See Facchinei and Pang (2003) for details.

† Often each da only depends on flow on arc a, which is convenient for optimisation reformu-
lations and analysis as discussed later.
‡ More traditionally, nonnegative multipliers associated with the inequalities xκ ≥ 0 would

also appear in the complementarity formulation. These, however, can be eliminated in the com-
plementarity conditions to give the equivalent dual conditions (2.3).
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An introduction to MPECs in networks 5

Under strict monotonicity¶ or other conditions on d (Facchinei and Pang, 2003),
the solution f∗ is unique though x∗ or µ may not be. It turns out for a connected
graph that the matrix A has rank N − 1, and that elimination of any row from
each of the constraints Axκ = bκ, κ ∈ O, preserves the feasible set. It follows that
a KKT point (x∗, µ) is associated with a unique KKT multiplier µ̄ such that µ̄κ is
independent of κ and µ̄κ

N = 0.
A final comment is that the number of variables in the MCP formulation is

|O|(|A|+N), on the order of N2|A|+N3 if there is OD demand from every node
to every other node. This is considerably larger than the number of flow variables
needed for the VI formulation but still much less in general than the possible number
of routes needed for the definition of a Wardrop equilibrium.

Existence of traffic equilibria: Provided F is convex, compact and nonempty, and
d is continuous on F , it follows from Brouwer’s fixed point theorem that VI(d, F )
has a solution (Facchinei and Pang, 2003), hence that the associated KKT condition
also has a solution. It is clear that F is closed and convex. Note that F is bounded
since for each kl ∈ O, the flow on any path from k to l is nonnegative and bounded
above by qκ; thus each link flow fa lies between 0 and

∑
κ∈O q

κ. F is also nonempty
if there are no additional constraints beyond feasibility of the subordinate OD flows,
and the network is connected. These properties and hence existence of a traffic
equilibrium are preserved by many additional constraints such as sufficiently large
upper bounds ua on total flow on link a. The first existence and uniqueness proof of
Wardrop equilibria is via an entirely different route however, namely the equivalent
optimisation reformulation of Beckmann et al. (1956). This equivalence relies on a
symmetry condition on the link cost functions that holds trivially if the cost of flow
on link a depends only on flow on that link.

(ii) Toll design in traffic networks

Think of decreasing total travel time in road traffic network by choosing an ap-
propriate cordon charging scheme around a city, of which London’s cordon charging
scheme is an example. The currency and challenges of road tolling in practice are
well described in Kelly (2006).

Some motivation for tolling schemes comes from the observation that the max-
imum welfare attainable under a centralised planner (benevolent dictator), who
prescribes OD routes to all road users, can be achieved by a traffic equilibrium un-
der a tolling scheme where there is a possibly different marginal toll cost on every
link. This result assumes that all users view the tradeoff between time and toll cost
in the same way, i.e., share the same time-value of money, an assumption that will
be preserved below in order to conserve notation. Accommodating user classes each
with a distinct time-value of money is possible by introducing further commodities
into the network flow model.

Of course tolling every link would be difficult, moreso for link-dependent toll
levels. Cordons reduce the complexity of the toll scheme by setting a single toll price
throughout the cordon and a zero toll elsewhere. A cordon is essentially a connected
subgraph of the network. For simplicity we will not model this here — see Sumalee
(2004a,b) for a graph theoretic description that also converts to a computational

¶ The vector function d(f) is monotone on F if (d(f)− d(f ′))>(f − f ′) ≥ 0 for any f, f ′ ∈ F ,
and strictly monotone if the inequality holds strictly when, in addition, f 6= f ′.
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6 D. Ralph

description — but consider the related problem (Sumalee, 2004a) of choosing a
subset Â of all links and a single toll charge τ applied to each unit of traffic on
those links, which constitute the network design variables, in order to maximise a
system utility function.

Suppose travel along link a is tolled at £τ per unit flow. We model the user cost
function of using link a as γda(f) + τ , where da(f) is link duration, as above, and
γ > 0 scales time to money. Given the arc flows f , list of toll arcs Â and toll level
τ , define

ca(f, Â, τ) =
{
γda(f) + τ, if a ∈ Â,
γda(f), otherwise,

and c(f, Â, τ) = (ca(f, Â, τ))a∈A. The system utility associated with any flow f is
the total benefit, τ

∑
a∈Â fa, less total cost†,

∑
a∈A ca(f, Â, τ) = γ

∑
a∈A da(f) +

τ
∑

a∈Â fa. Since toll revenues and toll costs net to zero, maximising system utility
is equivalent to minimizing total user travel time,

min
Â,τ,f

∑
a∈A

da(f)fa

subject to Â ⊂ A
τ ≥ 0
f solves VI(c(·, Â, τ), F ).

The combinatorial constraint Â ⊂ A makes this problem even more difficult
than a standard MPEC whose variables are continuous. Nevertheless genetic algo-
rithms are an effective heuristic for finding good toll designs (Sumalee, 2004a,b).

To pose the toll design problem as an MPCC, observe that the MCP corre-
sponding to the equilibrium constraint is (2.2) and (2.3) with ∇da replaced by
∇ca(·, Â, τ) in the latter.

(iii) OD demand estimation, an inverse traffic equilibrium problem

Consider the forward traffic equilibrium model given above where the origin-
destination demand vector q = (qκ)κ∈O is unknown, but we believe it lies in a
closed convex set Q that is based on values for OD demands that are known from a
previous period. Suppose further that we have measured arc flows f∗a in the current
period, for a in a subset Ā of A, where traffic flow is assumed to be at equilibrium.
We now wish to calibrate the network model by estimating OD demands q for the
current period. This is a well studied problem, see Chen and Florian (1998) and
references therein.

A least squares version of the calibration problem is

min
d,f

∑
a∈Ā

(fa − f∗a )2

subject to q ∈ Q
f is an equilibrium traffic flow given demand q.

† This is simply an economic definition. There is no assumption that the toll revenues are
somehow injected back into the traffic system.
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An introduction to MPECs in networks 7

This MPEC can be written as an MPCC, assuming Q is specified by finitely many
smooth equalities and inequalities, by using (2.2)-(2.3) to represent the equilibrium
constraint.

(b) Congestion control in telecommunication networks

(i) Rate flow equilibria for TCP

Background: We re-work the standard model of Kelly et al. (1998) of the trans-
mission control protocol, TCP, in a communication network like the internet, based
on Kelly (2003, 2008). Again we have a network traffic of N nodes, a set of arcs
A and a set of OD pairs O. Path flows are intrinsic because, for a given OD pair
κ = kl, the set of admissible routes Rκ from k to l, or routes that serve κ, is given
by a routing protocol that is exogenous to TCP. In particular, neither the shortest
path aspect of Wardrop equilibria nor remodelling path flows by link flows in its
VI and MCP formulations can be readily applied to TCP.

Forward model of TCP equilibria: TCP is used at each node to determine the
rate at which packets should be sent along outgoing routes. It responds to the
level of unreliability of the network, due to congestion, which is manifested through
loss of data packets. Let R denote the set of all routes used in the network. For
each route r, TCP maintains a variable cwndr > 0 that is the size of the so-called
congestion window. For every positive acknowledgement of a packet sent on r, cwndr

is increased by acwndr
α and, for every lost packet, cwndr is decreased by bcwndr

β .
The parameters a, b, α and β are independent of the route, with a, b > 0 and α < β.
(In Kelly (2008), a = 1, b = 1/2, α = −1 and β = 1.) Let pr be the probability
that a packet is lost on r, hence the average change in cwndr per packet sent is
(1− pr)acwndr

α − prbcwndr
β . When network flows are in equilibrium, the average

change is zero and we derive

pr =
(

1 +
b

a
(cwndr)β−α

)−1

, ∀r ∈ R. (2.4)

To understand the intrinsic meaning of pr rather than the equilibrium identity
(2.4), we look to probability of packet loss πa on link a which, in turn, is related
to the link capacity. The capacity ua of link a is on the rate of flow, rather than
the number of packets. Suppose the round trip time of sending out a packet on
a route r and receiving a confirmation is roughly constant, denoted Tr, that is,
congestion causes packet loss rather than delay. Then the flow rate on route r is
roughly zr = cwndr/Tr, and the total flow rate on link a is the sum of zr over routes
r containing a. The latter can be written Bz where z = (zr)r∈R and B ∈ R|A|×|R|
is link-route incidence matrix: Ba,r equals 1 if link a lies in r and 0 otherwise. Thus
link capacity bounds are given by Bz ≤ u.

Returning to the likelihood of lost packets on link a, if the associated flow rate∑
r∈RBr,azr is strictly below ua then πa is deemed to be zero, while if the flow

rate hits ua then πa may be positive. This is a complementarity relationship,

0 ≤ u−Bz ⊥ π ≥ 0. (2.5)

Moreover 1−pr is the product of probabilities 1−πa over all links a in r, which can be
written Πa∈A(1− πa)Ba,r . We approximate the last product by 1−

∑
a∈A πaBa,r,
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8 D. Ralph

assuming each πa is small, thus pr =
∑

a∈A πaBa,r. We can express this more
succinctly as

p = B>π. (2.6)

MCP formulation of TCP equilibria: The conditions (2.4), (2.5) and (2.6) de-
scribe the rate flow equilibria of TCP but for one implicit assumption: z must be
nonnegative. In fact we would expect the probability of packet loss on each route r
to be less than one, and the associated flow rate, via (2.4), to be strictly positive.
Nevertheless, for mathematical consistency we formulate an MCP that includes
the constraint z ≥ 0. To simplify (2.4) we simultaneously introduce the function
φ : R|R| → R|R|,

φr(z) =
(

1 +
b

a
(Trzr)β−α)

)−1

, (2.7)

and eliminate p using (2.6), to form an MCP in which (2.5) is repeated:

0 ≤ −φ(z) +B>π ⊥ z ≥ 0
0 ≤ u−Bz ⊥ π ≥ 0.

(2.8)

This preserves the model motivation for routes r with zr > 0.
VI formulation and existence of TCP equilibria: Let Z = {z ≥ 0 : Bz ≤

u}, a polyhedral convex set. Hence (Facchinei and Pang, 2003) the MCP (2.8) is
equivalent to VI(−φ,Z). Note that the link-loss probability vector π is now implicit
in the VI: it is the KKT multiplier or shadow cost of the link-capacity constraint
Bz ≤ u. We have assumed α < β, above, which implies φ is continuous on Z. Also,
given that B is the link-arc incidence matrix of a network, which we assume is
connected, Z is a nonempty, compact convex set. Thus there exists a solution z of
VI(−φ,Z), i.e., a flow rate equilibrium for TCP. We have also assumed a, b > 0,
hence, from (2.7), each component function φr(z) depends only on zr and is strictly
decreasing in zr. Thus, trivially, −φ is strictly monotone and uniqueness of the
equilibrium follows.

In fact existence is usually shown (Kelly et al., 1998; Kelly, 2003, 2008) via an
optimization formulation of the equilibrium model, whose KKT conditions are (2.8).
This optimisation formulation is the direct analog for TCP of the formulation of
Wardrop traffic equilibrium by Beckmann et al. (1956). We make further comments
on VI versus optimisation models in section (c).

(ii) A design question for congestion control

This and the next section speculate on the application of MPECs and MPCCs
to congestion control in communication networks.

Suppose we want to choose to improve performance of the network. One per-
formance metric is throughput

∑
r∈R zr. Another is average reliability which can

be modelled as 1 less the probability of losing a packet anywhere in the network,
the latter probability being |R|−1

∑
r∈R pr. There are several others studied in the

literature, including fairness, stability, avoidance of trip time bias and so on (Kelly
et al., 1998; Kelly, 2003, 2008). These can be accounted in many ways, for example
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An introduction to MPECs in networks 9

by maximising a weighted sum of different performance objectives or including, in
the constraints, lower bounds on performance metrics.

As a concrete example suppose we want to improve throughput without sacri-
ficing reliability of any link. This question is studied in the recent work of Gu et al.
(2007) for small buffer networks in which throughput and link speed is increasing,
where an “evolutionary” version of TCP is proposed to prevent losses going to 100%
as sending rates increase. Here however we model this as an MPCC. Let us set an
upper bound P ∈ (0, 1) on probability of packet loss and insist that

P ≥ pr, r ∈ R. (2.9)

An optimal design MPCC would be to maximise
∑

r∈R zr over upper level variables
a, b, α, β and lower level variables z, p, π subject to linear constraints on the former
and the following requirements on the latter: z and π satisfy the complementarity
constraints (2.8), p is given by (2.6) and satisfies the reliability constraints (2.9).

Looking beyond TCP, there are many layers in a communication network (Chi-
ang et al., 2007; Lin et al., 2006), e.g., route selection is topic of its own. The
design problem of optimising route selection and TCP parameters simultaneously,
both of which effect the TCP equilibrium, is an MPEC that mixes combinatorial
variables with continuous ones. This approach is unconvincing, however, because
there is no single entity controls route selection and TCP parameters for all OD
pairs. A decomposition approach that might have more realism is a game between
OD pairs, where each agent chooses is own routes and TCP settings to maximise
a measure of its performance. This falls into the category of “equilibrium program
with equilibrium constraints” that are mentioned again in section 5.

(iii) Inverse problems in transmission control

We very briefly mention two possible inverse or calibration MPECs, both of
which are attempts to identify user behaviour from a limited data sets.

The first is the direct analog of the origin-destination demand problem in traffic
equilibrium problems in which we estimate some unknown OD rate flows in the
knowledge of link flow rates and perhaps some particular route flow rates.

The second is to identify how aggressively users push packets through the net-
work where users are represented as OD pairs. An aggressive (passive, respectively)
user sets acwndr

α large (small, resp.) relative to bcwndr
β . Suppose OD route flows

are known. Then we can estimate user aggression via an MPEC in which the TCP
parameters a, b, α, β for each OD pair, or a subset, are the upper level variables.
These can be chosen differently for each OD pair subject to specified parameter
constraints for that OD pair. The lower level variables would z and π, and would
have to satisfy the MCP formulation (2.8) of TCP equilibrium. (It should be noted
that unique existence of a TCP equilibrium does not rely on the TCP parameters
being identical for all users.) The objective function would be the least squares
difference between the OD route flows that are given as data and those which solve
the lower level MCP.
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10 D. Ralph

(c) Network design via convex optimisation or MPECs?

We conclude this section on models with a brief discussion to illustrate some
differences in the philosophy that underlies research in traffic equilibria and com-
munication network equilibria.

Though VI and MCP models of equilibria are emphasized above, optimisation
models are amongst the foundation stones of research on network equilibria. The
seminal optimisation approaches of Beckmann et al. (1956) for Wardrop equilibria
and Kelly et al. (1998) for TCP equilibria, which are brought together in Kelly
and Voice (2005), underline this point. This view extends readily to the much more
general setting of multi-layered setting of communication networks as surveyed by
Chiang et al. (2007); Lin et al. (2006). In fact Chiang et al. (2007) use network
utility maximisation (NUM) as a broad descriptor for the optimisation approach,
and identify the “network as optimizer” and “protocol as a distributed solution”.
Part of the attraction of optimisation models, specifically convex optimisation so
that global optimality is achievable, is that they seem easier to work with than
equilibrium systems. Note that in the case of equilibria over networks, little mod-
elling freedom seems to be lost by using an optimisation formulation. Theory for
convex optimisation is deep and elegant, including duality which has been useful in
understanding and designing decomposition schemes that account for the hetero-
geneous nature of network users and processes. This is amplified by the statement
that “Industry adoption of ‘layering as optimisation decomposition’ has already
started” in Chiang et al. (2007), where the example of basic TCP analysis (Kelly
et al., 1998) leading to TCP improvements (Jin et al., 2004) is cited.

For the purposes of MPEC and MPCC modelling, the alternative to network
utility maximisation would be to formulate equilibria via variational inequalities or
MCPs (e.g., the KKT conditions of an optimisation problem). This highlights an
obvious disjunction between the NUM and MPEC approaches. The first is founded
on convex optimisation and the nexus it has, for network systems, with user equi-
libria. Indeed if an optimisation decomposition approach to network analysis and
design yields difficult, say nonconvex, subproblems, then the given decomposition
may have been “conducted in a wrong way” (Chiang et al., 2007). MPECs by
contrast are unavoidably nonconvex optimisation problems.

This disjunction is also related to differences in research directions taken in traf-
fic networks versus communication networks. In particular, the computational and
algorithmic sub-literature on bilevel optimisation (including MPECs) over traffic
networks (for example, Chen and Florian (1998); Marcotte (1986); Smith (2004);
Sumalee (2004a,b) and references therein) appears not to be paralleled in com-
munication networks. Historically the role of civil engineering in road design and
construction can be credited with the ongoing interest in traffic networks as static
systems, i.e., the design variables will be fixed over much longer time periods than a
driver would experience in a single journey. This is true whether considering which
new roads to build and their capacity, or what traffic cordon and fee to set for a
city like London. That is, MPECs have become important in applications for which
static equilibria capture most of the system information needed for design.

By contrast, dynamics of network flows are central to communications networks
where protocols like TCP are control mechanisms, so that issues like stability (Kelly
et al., 1998; Kelly, 2003; Kelly and Voice, 2005; Kelly, 2008) are very important.
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An introduction to MPECs in networks 11

There is a long history and growing research on dynamic traffic flow models of which
we mention only a sample: Carey et al. (2003); Friesz et al. (1993); Kuwahara and
Akamatsu (1997); Verhoef (2003). The application of MPEC modelling in dynamic
network flows is minimal to the author’s knowledge.

3. Lagrangian stationary conditions for MPCCs

We shift our focus from model-specific applications of MPCCs to analysis of general
MPCCs.

For even the simplest MPCC feasible set {(x, y) ∈ R2 : 0 ≤ x ⊥ y ≥ 0}, the
obvious NLP reformulation of the constraints as

0 ≤ x, 0 ≤ y, 0 = xy

is problematic. For instance an infinitesimal perturbation of 0 = xy to −ε = xy
with ε > 0 makes the constraints infeasible. This lack of constraint stability implies
(Robinson, 1976) violation of a standard and somewhat weak NLP assumption,
the Mangasarian-Fromovitz constraint qualification. This constraint qualification is
equivalent, at a local minimizer, to existence and boundedness of KKT multipliers
(Gauvin, 1977).

Thus there are doubts that MPCCs reformulated as NLPs will have KKT mul-
tipliers at local minima. This calls into question the viability of NLP algorithms
which, in the main, are validated theoretically by showing convergence to station-
ary points (e.g., Nocedal and Wright (1999)). Nevertheless we shall see that under
a condition of linear independence of active constraint gradients, which holds in
some sense generically, we can work with KKT-type conditions that characterise
stationarity.

Most of the ideas of this section are presented informally in section (a) in the
context of a simple MPCC that is a nearest point problem in R2. Section (b) gives a
more general Lagrangian treatment of stationarity of MPCCs. The brief section (c)
connects the previous results to stationarity of an equivalent NLP reformulation of
an MPCC.

A final introductory note is that although we do not study second-order opti-
mality conditions here, their development for MPCCs also parallels that for NLPs.
See Nocedal and Wright (1999) for second-order conditions in standard nonlinear
programming, and, e.g., Luo et al. (1996); Ralph and Wright (2004); Leyffer et al.
(2007) where second-order conditions are developed or used for MPCCs.

(a) Simple examples

Let α and β be positive scalars, f(x, y) = (x−α)2+(y−β)2, which is the square
of the 2-norm ‖(x, y)− (α, β)‖2, and consider the MPCC over two variables,

min
(x,y)∈R2

f(x, y) subject to 0 ≤ x ⊥ y ≥ 0. (3.1)

This is the Euclidean projection problem of finding the nearest point to (α, β) in
the feasible set F = {(x, y) : 0 ≤ x ⊥ y ≥ 0}. It has two local minimizers (α, 0) and
(0, β), one for each piece of the feasible set, {(x, 0) : x ≥ 0} and {(0, y) : y ≥ 0}.
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12 D. Ralph

The MPCC-Lagrangian uses multipliers Λx and Λy for each of the constraints
x ≥ 0 and y ≥ 0, and is defined as L(x, y,Λx,Λy) = f(x, y) − xΛx − yΛy. This is
the usual Lagrangian of the relaxed problem min(x,y)≥0 f(x, y). We continue with
the terminology of Scheel and Scholtes (2000). A feasible point (x, y) is weakly
stationary if there exist multipliers Λx ⊥ x and Λy ⊥ y such that(

0
0

)
= ∇(x,y)L(x, y,Λx,Λy) = −2

(
α

β

)
−

(
Λx

Λy

)
.

The orthogonality conditions mean that multipliers have no effect unless their re-
spective constraints are active, i.e., hold with equality. If we had additional standard
constraints such as g(x, y) ≥ 0, these would be handled in the traditional way by
introducing a multiplier Λg of the same dimension as g(x, y), subtracting the term
g(x, y)>Λg from the MPCC-Lagrangian, and requiring 0 ≤ g(x) ⊥ Λg ≥ 0.

Weak stationarity for (3.1) holds trivially at the origin by taking (Λx,Λy) =
−2(α, β). If we were minimizing over the relaxed feasible set {(x, y) : (x, y) ≥ 0},
the KKT conditions at would further require (Λx,Λy) ≥ 0, because if Λx < 0 (which
is true here) then ∇f(0, 0)>(1, 0) = Λx < 0, i.e., (1,0) is a feasible descent direction
that takes us away from the active constraint x = 0. A similar story can be told
if Λy < 0. A critical observation is that such descent directions, which are entirely
due to NLP technology, are also feasible directions for the MPCC. This leads to
our next definition.

A feasible point (x, y) of the above MPCC called strongly stationary if it is
weakly stationary and, if both inequality constraints are active, then Λ = (Λx,Λy) ≥
0. For example, (0,0) is a weakly stationary but not strongly stationary since both
multipliers are negative, while the local minimum (α, 0) strongly stationary (with
Λx = 0 and Λy = −β < 0) as is (0, β).

Strong stationarity, like the KKT conditions for a standard NLP, is simple
enough to embed in an algorithm. To emphasize the simplicity of the strong sta-
tionary conditions, consider an MPCC that is defined with x, y ∈ Rm, objective
function f(x, y), and constraints in the same form 0 ≤ x ⊥ y ≥ 0. The feasible set
is the union of 2m polyhedral convex pieces, each of which is described by

xI = 0I ≤ yI

xJ ≥ 0J = yJ
(3.2)

where I is any subset of {1, . . . ,m}, J is its complement, xI is the subvector (xi)i∈I

etc. A natural way to check stationarity of the origin, which is feasible for each
piece, is to check the KKT conditions of each linearly constrained problem: minimise
f(x, y) subject to (3.2). This corresponds to what is called primal stationarity (Luo
et al., 1996) or B-stationarity (Scheel and Scholtes, 2000). As there are 2m pieces,
the computational effort needed to check stationarity in each piece separately would
be at least O(2m). This is unattractive if not completely impractical.

What is the gap between strong and B-stationarity? Even when all constraint
functions are linear, a local solution which is B-stationary need not be strongly
stationary, as the next example shows:

min
(x,y)∈R2

x− 2y

subject to g(x, y) = x− y ≥ 0
0 ≤ x ⊥ y ≥ 0.

(3.3)
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An introduction to MPECs in networks 13

The pieces of the feasible set are the ray {(x, 0) : x ≥ 0} and the degenerate
piece {(0, 0)}, which is what is left of {(y, 0) : y ≥ 0} after applying the inequality
g(x, y) ≤ 0. Obviously the origin is B-stationary. The weakly stationary conditions
at (0,0) require solutions Λg ≥ 0,Λx,Λy of(

0
0

)
=

(
1

−2

)
− Λg

(
1

−1

)
−

(
Λx

Λy

)
.

It is not possible to solve this with nonnegative multipliers because this would
require, from first equation, Λg = 1−Λx ≤ 1 and, from the second, Λg = 2+Λy ≥ 2.

Nevertheless in the next section we shall justify the claim that most extrema of
most MPCCs are strongly stationary.

(b) MPCC stationary conditions and a linear independence constraint
qualification

We give formal definitions for an MPCC without equality constraints,

min
z

f(z)

subject to g(z) ≥ 0
0 ≤ r(z) ⊥ s(z) ≥ 0

(3.4)

where, as above, f : Rn → R, r, s : Rn → Rm, and g : Rn → Rmg are smooth.
Omitting equalities will ease notation without sacrificing generality.

For a feasible point z, the MPCC-active set is given by the active constraint
indices

Ig(z) = {i : gi(z) = 0}
Ir(z) = {i : ri(z) = 0}
Is(z) = {i : si(z) = 0}.

That is, the active constraints of the MPCC ignoring orthogonality. Denote by
gIg(z)(z) the subvector

(
gi(z)

)
i∈Ig(z)

etc.

Definition 3.1. Let z be feasible for the MPCC (3.4). We say z is B-stationary†
or primal stationary if for each partition I ∪ J of {1, . . . ,m} such that I ⊃ Ir(z)
and J ⊃ Is(z), z is stationary for

min
z

f(z)

subject to g(z) ≥ 0
rI(z) = 0 ≤ sI(z)
rJ(z) ≥ 0 = sJ(z).

(NLP(I))

An easy observation in the context of this definition is that each feasible point near
z lies in the feasible set of of one of the pieces (NLP(I)). This endows B-stationarity
with a certain power, namely, if all functions defining the MPCC are linear, hence

† This is actually the definition for primal stationarity from Luo et al. (1996), but it is equiva-
lent to B-stationarity defined by Scheel and Scholtes (2000). We use the latter term in preference
because it seems to be more prevalent in the literature.
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14 D. Ralph

each (NLP(I)) is a linear program, then a feasible point is a local minimizer if
and only if it is B-stationary. That is, B-stationarity is a “tight” local optimality
condition up to first order. Regrettably, B-stationarity has a combinatorial nature
as seen by the possibly large number of partitions I ∪ J in its definition. Another
way of saying this is that the nonconvexity of MPCCs persists in their stationary
conditions.

The MPCC-Lagrangian will be used to define KKT-like optimality conditions:

L(z,Λ) = L(z,Λg,Λr,Λs) = f(z)− g(z)>Λg − r(z)>Λr − s(z)>Λs (3.5)

where Λ = (Λg,Λr,Λs) ∈ Rmg × Rm × Rm.

Definition 3.2. Let z be feasible for the MPCC (3.4).

1. We say z is weakly stationary if there exists a multiplier tuple Λ = (Λg,Λr,Λs),
called the MPCC-multiplier, satisfying

∇zL(z,Λ) = 0
0 ≤ g(z) ⊥ Λ ≥ 0
0 ≤ ri(z) ⊥ Λr

i i = 1, . . . ,m
0 ≤ si(z) ⊥ Λs

i i = 1, . . . ,m.

(3.6)

2. z is called strongly stationary if it is weakly stationary with an MPCC-
multiplier Λ such that

Λr
i ,Λ

s
i ≥ 0, i ∈ Ir(z) ∩ Is(z). (3.7)

Ir(z)∩ Is(z) is called the biactive index set. If it is empty, weak and strong station-
arity coincide.

Looking back at the examples of the previous section, MPCC-LICQ holds at
each point of the feasible set 0 ≤ x ⊥ y ≥ 0, where x, y lie in R (or Rm), however it
fails at the origin for the MPCC (3.3) because the additional constraint x− y ≥ 0
is active there. This helps to explain the fact that, as noted previously, (0, 0) is
B-stationary but not strongly stationary for (3.3).

Suppose z is feasible for (3.4) and consider index sets I, J and a piece (NLP(I))
of the MPCC described in Definition 3.4. The Lagrangian of (NLP(I)) coincides
with the MPCC-Lagrangian, so, denoting its multiplier tuple ΛI = (ΛgI ,ΛrI ,ΛsI),
the KKT conditions of (NLP(I)) at z are

∇zL(z,ΛI) = 0
0 ≤ g(z) ⊥ ΛgI ≥ 0
0 ≤ rJ(z) ⊥ ΛrI

J ≥ 0
0 ≤ sI(z) ⊥ ΛsI

I ≥ 0.

It is easy to see that the strong stationarity conditions (3.6)-(3.7) imply nonnegativ-
ity of ΛrI

J and ΛsI
I , and hence that the above KKT conditions follow. For example,

if i ∈ J then either i is also biactive, in which case ΛrI
i ≥ 0, or ri(z) > 0 = ΛrI

i .
Our mission in this section is to understand some situations in which B-stationarity
implies strong stationarity.
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An introduction to MPECs in networks 15

We introduce a linear independence condition on the constraint gradients of
the MPCC. This is based on the the standard NLP linear independence constraint
qualification† (LICQ), often quoted to ensure unique existence of multipliers at a
local solution of an NLP.

Definition 3.3. Let z be feasible for the MPCC (3.4). The MPCC-LICQ holds at
z if the MPCC-active constraint gradients

{∇zgi(z) : i ∈ Ig(z)} ∪ {∇zri(z) : i ∈ Ir(z)} ∪ {∇zsi(z) : i ∈ Is(z)}

are linearly independent.

The next result (Luo et al., 1998; Scheel and Scholtes, 2000) says that B-
stationarity and strong stationarity are equivalent at feasible points of an MPCC
provided MPCC-LICQ holds. This result, which has a simple proof that we will
sketch, brings local optimality of MPCCs within the realm of easy computation.
It has become an essential prerequisite to the application of many NLP ideas to
MPCCs.

Theorem 3.4. Let z be a feasible point of the MPCC (3.4) at which MPCC-LICQ
holds. Then, z is B-stationary if and only if it is strongly stationary.

Proof. As already explained, strong-stationarity implies B-stationarity. For the con-
verse, suppose z is (feasible and) B-stationary. The family of partitions I ∪ J given
in Definition 3.1 corresponds to taking arbitrary subsets K of the biactive index set
Ir(z) ∩ Is(z), and assigning I = Ir(z) ∪K, J = {1 . . . ,m} \ I. We call these (I, J)
pairs admissible.

Recall that the KKT multiplier ΛI = (ΛgI ,ΛrI ,ΛsI) of (NLP(I)) at z satisfies
the Lagrangian equation ∇zL(z,ΛI) = 0. This multiplier is uniquely defined by due
to linear independence of the active constraints, which follows from MPCC-LICQ.
That is, the KKT multiplier corresponding to z for (NLP(I)) does not depend on
I. Denote this unique multiplier Λ = (Λg,Λr,Λs) and note that weak stationarity
of z follows because ∇zL(z,Λ) = 0 and the remaining conditions of (3.6) are given
by the KKT conditions of (NLP(I)).

To see strong stationarity, look at the KKT conditions of (NLP(I)) which require
Λr

J ≥ 0 and Λs
I ≥ 0. Each biactive index i lies in some I for some admissible (I, J).

Likewise i lies in J ′ for some admissible (I ′, J ′). This gives (3.7).

A corollary, in light of previous comments, is that if the MPCC-LICQ holds at
a local minimum z of an MPCC, then z is strongly stationary. Conversely if z is a
feasible point of an MPCC that is strongly stationary, then it is a local minimum
under the under the further conditions that the objective function is convex and
the constraints functions are linear.

Scholtes and Stöhr (2001) provide an important companion to Theorem 3.4:
the MPCC-LICQ holds at all points of generic MPCCs. For instance in the MPCC
(3.3), perturbing the constraint function g(x, y) = x− y to g(x, y) = x− y + ε, for
any nonzero ε, creates a feasible set which satisfies MPCC-LICQ at every feasible
point. Taking Theorem 3.4 together with this genericity result demonstrates the
earlier claim, at the end of section (a), that “most extrema of most MPCCs are
strongly stationary”.

† LICQ holds if the gradients of active constraints are linearly independent.
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16 D. Ralph

(c) An equivalent NLP and its stationary conditions

The bridge from NLPs to MPCCs provided above is indirect; it adapts NLP
motivations and mathematical techniques to MPCCs. Nevertheless it extends to
equivalent NLP reformulations of MPCCs, such as

min
z

f(z)

subject to g(z) ≥ 0
r(z), s(z) ≥ 0
r(z)>s(z) ≤ 0.

(3.8)

This is equivalent to (3.4) in that z is a local minimum of the NLP if and only if z
is local minimum of the MPCC. Recall the discussion at the start of this section, on
instability of constraints of the type used in (3.8). Fortunately under MPCC-LICQ,
in spite of this instability, KKT multipliers do exist at local solutions:

Proposition 3.5. Let z be a feasible point of the MPCC (3.4) at which MPCC-
LICQ holds. If z is a local minimum of the MPCC or its NLP reformulation (3.8)
then it is stationary for the latter, i.e., has KKT multipliers.

This is a variant of a result given by Fletcher et al. (2006). The proof is very
straightforward but for brevity we refer the reader to the source.

Other NLP formulations could equally be considered with similar results. For
example given r(z), s(z) ≥ 0, we could write r(z) ⊥ s(z) as r(z)>s(z) = 0, or
ri(z)si(z) either ≤ 0 or = 0 for i = 1, . . . ,m. See Anitescu (2005b) regarding
existence of KKT multipliers for the latter two componentwise NLP formulations.

4. Nonlinear programming approaches to solving MPCCs

We review four NLP approaches to finding local solutions, more accurately station-
ary points, of MPCCs. In section (a) we present two closely related methods that
solve a sequence of standard NLPs, the regularisation and complementarity-penalty
methods. In the sequential NLP framework, an MPCC is approximated by a family
of NLPs, that depends on a single parameter ε > 0, where each NLP has better
posed constraints than the naive formulation (3.8). The idea is to solve a sequence
of NLPs as ε → 0 in the hope of identifying a stationary point of the MPCC.
We present the ideas behind the convergence analyses of the regularisation and
complementarity-penalty method using Lagrangian analysis, from Scholtes (2001),
Hu and Ralph (2004) and Ralph and Wright (2004). Indeed these papers owe a
debt to earlier work of Fukushima and Pang (2000) on a sequential NLP method
called smoothing.

In section (b) we sketch the interior-point method of Leyffer et al. (2007). This
embeds traditional interior-point ideas, which execute only one linear system solve
per iteration, into the complementarity-penalty framework. Finally, section (c) looks
briefly at how the classical sequential quadratic programming or SQP method is
applied directly to an NLP formulation like (3.8), see Fletcher and Leyffer (2004);
Fletcher et al. (2006).

These three sections show a progression in the application of NLP ideas to
solving MPCCs. Sequential NLP methods rely on a black-box NLP solver, whereas
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the interior point approach adapts an NLP algorithm to handle MPCCs, and finally,
SQP is a standard NLP method that is applied, again as black box, but now directly,
to an equivalent NLP formulation.

We mention two algorithmic frameworks for MPCCs that will not be studied
here. The first is specific to MPCCs, namely, piecewise or decomposition methods.
The basic piecewise programming approach, which assumes that the kth iterate
zk is feasible for the MPCC, is to choose a piece NLP(Ik) of the MPCC (see
Definition 3.1) whose feasible set contains zk, and use this point to initiate one or
more steps of an NLP method applied to NLP(I) that generates another feasible
point zk+1 of NLP(Ik). If the NLP method also produces KKT multiplier estimates,
and there exists a negative multiplier corresponding to a biactive index at zk+1, the
NLP piece might be updated by adding or dropping an index from Ik. References
include Fukushima and Tseng (2002); Giallombardo and Ralph (2008); Luo et al.
(1996, 1998); Scholtes and Stöhr (2001). The second algorithm framework is suited
to an MPEC (1.1) in which the equilibrium constraints have a unique solution y =
y(x) for each relevant upper level vector x. Some general nonsmooth programming
techniques can be used to minimize the implicit objective function ψ(x) = f(x, y(x))
assuming that the upper level constraints (x, y) ∈ Ω reduce to constraints only on
x, and some sensitivity information (a “generalised Jacobian” matrix) for y(x) is
generated in addition to the lower level solution itself. The convergence theory
identifies limit points of the sequence {xk} generated by an implicit programming
method as a kind of weak stationary point called a “Clarke stationary” point. See
Outrata et al. (1998) for the underpinnings of applications and algorithms suited
to implicit programming.

Note that for practical purposes, Dirkse and Ferris (1999) provide a modelling
framework, for the General Algebraic Modelling System (GAMS) and MATLAB en-
vironments, in for easy application of the regularisation, complementarity-penalty,
smoothing and direct NLP methods to the same MPCC problem.

(a) Regularisation and complementarity-penalty methods

Regularisation, Scholtes (2001), also called relaxation, is based on the following
NLP in which ε > 0 is a parameter:

min
x∈Rn

f(x)

subject to g(x) ≥ 0
r(x), s(x) ≥ 0
r(x) ∗ s(x) ≤ ε1

Reg(ε)

where all functions are twice continuously differentiable; ∗ is the Hadamard or
componentwise product, so r(x) ∗ s(x) is the vector with ith component ri(x)si(x);
and 1 = (1, . . . , 1) ∈ Rm. When ε = 0, Reg(0) coincides with the NLP (3.8), hence
is equivalent to the MPCC (3.4).

The idea is to find a local minimum xk of Reg(εk) where 0 < εk → 0. Now
suppose x∗ is a limit point of {xk}. Then x∗ is feasible for Reg(0) hence for the
MPCC. We would like to know what further conditions are needed for x∗ to be
strongly stationary.

An easy preliminary result (Scholtes, 2001) is that if MPCC-LICQ holds at the
x∗, then for small ε > 0, the standard LICQ holds at feasible points of Reg(ε) near

Article submitted to Royal Society



18 D. Ralph

x∗. Thus the regularised problem (with ε > 0) has stability properties lacking in
Reg(0). In particular a local minimum xk of Reg(εk) will be stationary (Nocedal
and Wright, 1999) if xk is near x∗ and εk is near 0.

The Lagrangian of Reg(εk) uses a multiplier tuple λ = (λg, λr, λs, λrs) ∈ Rmg+3m:

LReg
k (x, λ) = f(x)− g(x)>λg − r(x)>λr − s(x)>λs + [r(x) ∗ s(x)− εk1]>λrs

We link the stationary conditions of Reg(εk) to those of the MPCC through the
gradient

∇zL
Reg
k (z, λ)

= ∇f(z)−∇g(z)>λg −∇r(z)>[λr − s(z) ∗ λrs]−∇s(z)>[λs − r(z) ∗ λrs]
= ∇zL(z,Λ(λ))

where L is the MPCC-Lagrangian, (3.5), and

Λ(λ) = (λg, λr − s(z) ∗ λrs, λs − r(z) ∗ λrs).

Thus if λk is the KKT multiplier tuple for Reg(εk) at xk and Λk = Λ(λk), then

0 = ∇xL
Reg
k (xk, λk) = ∇xL(xk,Λk).

Let {xk}k∈κ be a subsequence converging to x∗. Under MPCC-LICQ at x∗, the
subsequence of approximate MPCC-multiplier tuples {Λk}k∈κ is itself convergent
to a tuple Λ∗ = (Λg∗,Λr∗,Λs∗) by a basic stability property of a full rank matrix
(corresponding, here, to the Jacobian at x∗ of MPCC-active gradients); see Scholtes
(2001) for details. Immediately we have ∇xL(x∗,Λ∗) = 0 and indeed the remaining
conditions of weak stationarity, see (3.6), follow by taking k ∈ κ, k → ∞ in the
KKT conditions of Reg(εk) at xk.

In summary we give a result of Scholtes (2001):

Proposition 4.1. Let xk be stationary for Reg(εk), where 0 < εk → 0. If x∗ is a
limit point of {xk} at which MPCC-LICQ holds then it is weakly stationary for the
MPCC (3.4).

This result can be strengthened by adapting some ideas from Fukushima and
Pang (2000), which addressed an alternative to regularisation called smoothing,
that also solves a one-parameter family of NLP reformulation of MPCC. Assume in
addition to zk being stationary for Reg(εk) that it satisfies the weak second-order
necessary condition: Hk = ∇2

zzL
Reg
k (zk, λk) is positive semidefinite on the nullspace

of constraint gradients with nonzero multipliers. That is d>Hkd ≥ 0 for d satisfying

∇gi(zk)>d = 0, for i such that λgk
i > 0

∇ri(zk)>d = 0, for i such that λrk
i > 0

∇si(zk)>d = 0, for i such that λsk
i > 0

∇[ri(zk)si(zk)]>d = 0, for i such that λrs k
i > 0

where λk = (λgk, λrk, λsk, λrs k). For example, if xk is a local minimum of Reg(εk)
at which LICQ holds, then not only is it stationary, as discussed above, but the
this second-order condition holds.

A final requirement is that the MPCC-multiplier Λ∗ = (Λg∗,Λr∗,Λs∗) satisfies
upper level strict complementarity: both Λr∗

i and Λs∗
i are nonzero for i ∈ Ig(z∗) ∩

Is(z∗). We quote from Scholtes (2001):
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Theorem 4.2. Let {zk}, {εk} and z∗ be as in Proposition 4.1, where the MPCC-
LICQ holds at z∗, and z∗ is weakly stationary with MPCC-multiplier Λ∗. If, in
addition, each zk satisfies the weak second-order necessary condition for Reg(εk)
and Λ∗ satisfies upper level strict complementarity, then z∗ is strongly stationary
for the MPCC.

The onus of the proof (Scholtes, 2001), which we omit, is to show that under the
second-order condition on iterates zk, the multipliers Λr∗ and Λs∗ are such that
for biactive indices i, either Λr∗

i λ
s∗
i = 0 or Λr∗

i , Λs∗
i > 0. Hence upper level strict

complementarity forces positivity of the biactive multipliers, i.e., strong stationarity
holds.

Computational results in Scholtes (2001) indicate that regularisation can be
more effective than direct application of a solver to the naive NLP formulation (3.8),
while further analysis of regularisation can be found in Ralph and Wright (2004).

We make a quick comparison of regularisation with the complementarity-penalty
approach, in which the troublesome constraint r(z)>s(z) ≤ 0 in the NLP formu-
lation (3.8) is omitted at the cost of adding a penalty term ε−1r(z)>s(z) to the
objective:

min
z∈Rn

f(z) + ε−1r(z)>s(z)

subject to g(z) ≥ 0
r(z), s(z) ≥ 0

Pen(ε)

Below we mention some results from Hu and Ralph (2004); Ralph and Wright
(2004). Further literature on penalty-complementarity methods for MPCC can be
found in Anitescu (2005b,a); Anitescu et al. (2005); Huang et al. (2006).

As in regularisation, the idea is to find a local minimum or stationary point zk

of the penalty problem with ε = εk > 0, where εk → 0. Also, the usual LICQ holds
for any feasible point z of the penalty problem that is near to a feasible point z∗

of the MPCC at which MPCC-LICQ holds, thus we can expect local minima of
Pen(ε) to be stationary.

Next, suppose z∗ is a limit point of the sequence {zk}. Then z∗ satisfies the
constraints of the MPCC with the possible exception of orthogonality between
r(z∗) and s(z∗). Thus feasibility of z∗ must be assumed in order to discuss its
stationarity properties.

Assuming feasibility of z∗, the convergence results of the complementarity-
penalty method (Hu and Ralph, 2004) mirror those of the regularisation method
given above. For example, Theorem 4.2 holds if the regularisation subproblem
Reg(εk) is replaced by Pen(εk) for each k, and z∗ is feasible for the MPCC. The
proof technique (Hu and Ralph, 2004) is again Lagrangian.

A surprise, however, is that the complementarity-penalty method also exhibits
a kind of “exactness”, meaning that a solution of the penalty problem can be a
solution of the original problem. What makes this surprising is that for NLPs that
are reformulated via smooth penalty terms, as is done here, a stationary point of
the penalty problem is typically not feasible (or stationary) for the original problem
except as the penalty parameter goes to its limit, which is a theoretical rather than
computational possibility. The next result due to Ralph and Wright (2004):

Proposition 4.3. Assume z∗ is a feasible point of the MPCC at which MPCC-
LICQ holds, and that z∗ is strongly stationary with MPCC-multiplier Λ∗ that sat-
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isfies strict upper level complementarity. Then for a neighbourhood U of z∗ and
sufficiently small ε > 0, each stationary point of Pen(ε) in U is strongly stationary
for the MPCC.

This allows us to state an exact version of Theorem 4.2 for the complementarity-
penalty method that allows for finite termination of the method at a strongly sta-
tionary point of the MPCC.

Theorem 4.4. Let zk be a stationary point of Pen(εk) where 0 < εk → 0. Let z∗

be the limit of a subsequence {zk}k∈κ that is feasible for the MPCC, satisfies the
MPCC-LICQ, and is weakly stationary with MPCC-multiplier Λ∗. If, in addition,
each zk satisfies the the weak second-order condition for Pen(εk) and Λ∗ satisfies
upper level strict complementarity then, for large enough k ∈ κ, each zk is strongly
stationary for the MPCC.

Proposition 4.3 actually holds under a partial version of upper level strict com-
plementarity (Ralph and Wright, 2004): for each biactive index i, at least one of
Λr∗

i and Λs∗
i must be positive. The onus of the proof is to show that for sufficiently

small ε > 0, and a stationary point zε of Pen(ε) that is sufficiently close to z∗, that
r(zε)>s(zε) = 0, that is, zε is feasible for MPCC.

We sketch the easy proof of complementarity at zε, where we suppose 0 < ε→ 0
and zε → z∗. By mimicking the proof of Proposition 4.1, it is easy to see that

λrε
i − ε−1si(zε) → Λr∗

i

where λrε is the KKT multiplier for Pen(ε) corresponding to r(zε) ≥ 0. We write
this informally, as an approximate equality

λrε
i ≈ ε−1si(zε) + Λr∗

i . (4.1)

Suppose i is a biactive index for z∗ and, for example, Λr∗
i > 0. Since si(zε) ≥ 0,

ε−1si(zε) + Λr∗
i ≥ Λr∗

i > 0,

hence λrε
i > 0 for small ε > 0 by (4.1). The KKT conditions of Pen(ε), which

include complementarity of λrε
i and ri(zε), therefore force ri(zε) = 0. The case

Λs∗
i > 0 similarly implies si(zε) = 0.

For an index i that is not biactive, it is possible for Λr∗
i or Λs∗

i to be negative
and the above argument needs to be strengthened. If Λr∗

i < 0, for example, then
we must have ri(z∗) = 0 < si(z∗). That is, si(zε) > si(z∗)/2 > 0 for small ε > 0
and it follows from (4.1) that λrε

i is positive for small ε > 0. As above, this forces
ri(zε) = 0. Likewise, the case Λs∗

i < 0 yields si(zε) = 0.

(b) Penalty-interior approach

The penalty-interior approach of Leyffer et al. (2007) is an interior-point method
based on the complementarity-penalty version of sequential NLP. However it only
solves one linear system per iteration, as do standard interior-point methods, rather
than solving an NLP to optimality. The primal-dual interior-point framework is used
here; see Wright (1997) for how this framework is used in standard optimisation.
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Further literature on interior-point methods for MPCCs includes Benson et al.
(2002); de Miguel et al. (2005); Luo et al. (1996); Raghunathan and Biegler (2005).

We simplify the setting of Leyffer et al. (2007) by assuming each constraint
function g, r and s is linear (or affine). This will allow us to keep our notation
simple by avoiding the introduction of nonnegative slack variables.†

The method uses two kinds penalty parameters, ε > 0 to penalize deviation of
r(z) and s(z) from orthogonality, and µ > 0 to enforce nonnegativity of all inequal-
ity constraints via a log barrier penalty function. The penalty-interior formulation
is

min
z∈Rn

f(z) + ε−1r(z)T s(z)− µ

mg∑
i=1

ln(gi(z))− µ
m∑

i=1

[ln(ri(z)) + ln(si(z))]

Bar(ε, µ)
This is an unconstrained problem because we have omitted equality constraints
from the MPCC (3.4). However the domain of the objective function requires strict
positivity of the vectors r(x) and s(x).

Sequential NLP provides some motivation, i.e., consider {zk} where each zk

solves Bar(εk, µk) for positive εk, µk, and εk, µk → 0. The penalty-interior point
method reduces the computational demand of sequential NLP by only approxi-
mately solving Bar(εk, µk), while increasing the solution accuracy as k increases.
We might call this an approximate sequential NLP method.

At iteration k, given εk, µk > 0, the penalty-interior method uses two tolerances
δrs
k , δk > 0 to bound solution inexactness:

‖min{r(zk), s(zk)}‖ ≤ δrs
k (4.2)

‖∇zL
Bar(zk; εk, µk)‖ ≤ δk (4.3)

where LBar(z; ε, µ) is the objective function of Bar(ε, µ), and the min operator in
(4.2) is componentwise, with ith component equal to min{ri(z), si(z)}. This min
operator is useful because for scalars α, β, the complementarity condition 0 ≤ α ⊥
β ≥ 0 holds if and only if min{α, β} = 0. The imposition of (4.2) is not unlike
the regularisation method in that if δrs

k → 0, which will be assumed later, then
limit points of the iteration sequence {zk} must be feasible for the MPCC. Note
further that (4.3) corresponds to the inexact solution of the stationary conditions of
Bar(εk, µk), and can easily be extended to handle equality constraints via first-order
Lagrangian conditions.

There are many possibilities for updating the parameters εk, µk, δrs
k and δk. The

most basic requirement is that all parameters approach zero as k →∞. Assuming
this and that iterates satisfy (4.2)-(4.3) for each k, global convergence, i.e., prop-
erties of limit points of {zk}, can be established with results and proofs that are
similar to those of the regularisation method. See Leyffer et al. (2007) for details.

The “dynamic” version of the interior complementary-penalty method intro-
duces two inner loops, one to decrease the complementarity-penalty parameter until
(4.2) holds, the other to carry out more Newton steps on the barrier subproblem
until (4.3) holds. We state a simple version of this.

† Strict nonnegativity, in interior-point methods, is much more conveniently handled if all
inequalities are linear.
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1. Major step. Given k, zk−1 at which g, r, s are positive, and positive param-
eters εk, µk, δrs

k , δk, initialise the inner loop: z = zk−1, ε = εk.

2. Inner loop.

(a) Find z+ by applying one step of Newton’s method to ∇zL
Bar(z; ε, µk) =

0 at z.

(b) If ‖min{r(z+), s(z+)}‖ > δrs
k , update ε = ε/10, GO TO 2(a).

(c) Else, if ‖∇zL
Bar(z+; ε, µk)‖ > δk, update z = z+, GO TO 2(a).

3. Update. Let zk = z+ and εk+1 = ε; update µk+1, δk+1 and δrs
k+1; update

k = k + 1; GO TO 1.

The main work of the method is the Newton step in the inner loop, which
requires a linear system solve:

z+ = z −∇zzL
Bar(z; ε, µk)−1∇zL

Bar(z; ε, µk).

This requires invertibility of the Hessian matrix ∇zzL
Bar(z; ε, µk), which can be

assumed for small enough ε and µk under on a second-order sufficient condition at
a minimum of the MPCC (Leyffer et al., 2007). A robust numerical method would
include many other considerations such as a procedure for modifying the matrix in
the Newton step if it is not sufficiently well conditioned, and a line search to ensure
g, r and s remain strictly positive at z+. What is more relevant for us here is that
this simple method is locally well defined, and well behaved, as outlined next.

We summarise, without giving details, a local convergence result of Leyffer et al.
(2007). This summary relies, as does the above discussion, on linearity of the con-
straint functions although this is not required in the paper. Theorem 4.4 of Leyffer
et al. (2007) assumes z∗ is a strongly stationary point of the MPCC at which the
LICQ and an appropriate second-order sufficient condition holds. It further assumes
that the MPCC-multiplier Λ∗ at z∗ has nonzero components for every (MPCC)-
active constraint. The theorem says, roughly, that if

• an iterate zk is near enough to z∗ with g(zk), r(zk), s(zk) > 0, and εk > 0 is
sufficiently small,

• (4.2) and (4.3) hold,

• µk > 0 is near zero and µk+1 > 0 converges to zero faster than ‖∇zF (zk; εk, µk)‖,
and

• the positive tolerances δk and δrs
k converge to zero neither too quickly nor too

slowly relative to µk+1 (which can be arranged in practice),

then, first, the inner loop in Step 2 of the interior-penalty method requires only one
Newton step in order proceed to the next iteration via Step 3 (so εk+1 = εk); and,
second, {zk} → z∗ superlinearly: ‖zk+1 − z∗‖/‖zk − z∗‖ → 0.

The main difference in assumptions needed for this result and for the previous
convergence results for the regularisation and penalty-complementarity methods is
that here we need a strict complementarity assumption on all MPCC-multipliers.
This allows the proof to make use of some standard results from the literature on
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interior-point methods. The proof of the result also uses an exactness property of
the complementarity-penalty method, Lemma 4.3 of the same paper (which is a
corollary of Proposition 4.3 above). Exactness appears in the above convergence
result through the update εk+1 = εk, i.e., εk remains a fixed positive constant.

The algorithm’s commendable numerical behaviour, of one linear solve per ma-
jor iteration resulting in superlinear convergence of iterates, is often seen in practice
according to the computational experience of Leyffer et al. (2007). While conditions
for superlinear convergence of interior-point methods in solving convex programs
are well understood, the fact that this is obtained for MPCCs can be credited to
the exactness property of the penalty-complementarity formulation.

(c) Sequential quadratic programming

Recall the NLP formulation (3.8), which has some kind of constraint degener-
acy. As expected (Jiang and Ralph (1999); Scholtes (2001) and others), and demon-
strated using the MINOS and CONSTR nonlinear programming codes, applying NLP
methods directly to (3.8) can lead to numerical difficulties. It was thus quite a
surprise when Fletcher and Leyffer (2004) applied their sequential quadratic pro-
gramming (SQP) code SQP-Filter to a suite of test MPCCs and found that the
method usually converged superlinearly to a local solution. This was the first time
superlinear convergence was observed for a standard NLP method applied directly
to an equivalent NLP reformulation of an MPCC.

Fletcher et al. (2006) explain the local superlinear convergence of SQP applied
to (3.8); see below for a motivating but incomplete summary. See also the related
work of Anitescu (2005b). In practice, the application of NLP codes to MPCCs has
progressed from small or medium size problems to more demanding applications
such as large-scale nonlinear MPCC models of an electricity market network with
20,000 variables and 10,000 constraints (Chen et al., 2006).

SQP is the version of Newton’s method as it applies to constrained NLPs (No-
cedal and Wright, 1999). At each iteration, it forms a quadratic approximation of
the Lagrangian that it minimises over the linearised constraints. The Lagrangian
of (3.8) is

LNLP(z, λ) = f(z)− g(z)>λg − r(z)>λr − g(z)>λg + r(z)>s(z)λrs

where λ is broken into subvectors (λg, λr, λs, λrs) ∈ Rmg ×Rm×Rm×R. Given the
kth primal-dual iterate (zk, λk), SQP finds a stationary point ∆z and associated
KKT multiplier λk+1 of the quadratic program (QP)

min
∆z

∇zL
NLP(zk, λk)∆z + 1

2∆z>∇2
zzL

NLP(zk, λk)∆z

subject to g(zk) + ∆g ≥ 0

r(zk) + ∆r, s(zk) + ∆s ≥ 0

r(zk)>s(zk) + ∆r>s(zk) + r(zk)>∆r ≥ 0

where ∆g = ∇g(zk)∆z, ∆r = ∇r(zk)∆z and ∆s = ∇s(zk)∆z. SQP defines zk+1 =
zk + ∆z and repeats the process from the new primal-dual point.

In addition to the standing assumption that all functions f , g, r and s are twice
continuously differentiable, we assume:
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A1 z∗ is a strongly stationary point.

A2 MPCC-LICQ holds at z∗.

A3 The MPCC-multiplier Λ = (Λg,Λr,Λs) has Λr
i ,Λ

s
i > 0 for i ∈ Ir(z∗)∩ Is(z∗).

A4 A strong second-order sufficient condition holds: ∇zzL(z∗,Λ) is positive def-
inite with respect to the cone of directions d that satisfy ∇gi(z∗)i>d ≥ 0 for
i ∈ Ig(z∗) with equality if Λg

i > 0, and similar inequalities and equalities for
the active constraint gradients of r and s at z∗.

A5 The QP solver used at each iteration produces KKT multipliers whose nonzero
components correspond to a set of linearly independent constraints.

Theorem 4.5. Let A1-A5 hold. Suppose a primal-dual iterate (zk, λk) is such that
zk is feasible for the NLP (3.8), zk is near z∗ and ∇xL

NLP(zk, λk) is near 0. Then
SQP applied to the NLP will generate zk+1 that is also feasible, such that {zk} → z∗

superlinearly.

To give a brief motivation for the proof of this result, recall that the MPCC fea-
sible set is patchwork of standard NLP feasible sets {z : rI(z) = 0 ≤ sI(z), rJ(z) ≥
0 = sJ(z)}, where I ∪ J partition {1, . . . ,m}. If zk is feasible for the MPCC, then
it is feasible for an NLP piece, say NLP(Ik). The key to proving superlinear con-
vergence is to show that if (zk, ∇xL

NLP(zk, λk)) is near (z∗, 0) then not only is z∗

a local solution of NLP(Ik), but SQP applied to (3.8) at zk gives the same next
iterate zk+1 as it would when applied to NLP(Ik) at zk. Superlinear convergence
of {zk} thus follows by checking that the conditions for superlinear convergence of
SQP (Nocedal and Wright, 1999) applied to NLP(Ik) are valid.

5. Beyond MPECs

We conclude the paper with brief discussions of two new and active research areas
relating to network equilibria and MPECs that we have not been able to explore
in this article.

(a) Price of anarchy

The “price of anarchy” in a multi-user system refers to gap between the max-
imum system utility that a central planner could hypothetically achieve, and the
system utility associated with a user equilibrium. Or, as stated in the survey paper
Roughgarden (2007) the “extent to which competition approximates cooperation”.
See also the monograph Roughgarden (2005). A less pejorative description of this
gap would be the “cost of choice”. The maximum system utility, achievable if ei-
ther a central planner could force individuals to act according to instructions or all
users cooperated to maximise total welfare, cannot be less than the utility at an
equilibrium. Therefore the gap must be at least nonnegative.

Consider a family E of equilibrium problems over finitely many users, e.g.,
Wardrop traffic equilibria where users are link flows flows. For convenience suppose
every equilibrium problem E in E has a unique solution. Given E and associated
user actions that are feasible, the system utility is the sum of user utilities. For ex-
ample, returning to traffic networks as presented in part (a) of section 2, a feasible
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flow vector f and travel duration of da(f) on each link a ∈ A yield system utility∑
a∈A da(f)fa. We also assume all user’s utilities are nonnegative on the feasible

set of the equilibrium problem. By user utility of the problem E, denoted U(E) we
mean the system utility at equilibrium. By maximum utility of E, M(E), we mean
the supremum of E’s system utility over all feasible user actions. The price of anar-
chy (Roughgarden, 2007) of E is defined mathematically as U(E)/M(E), which is
the relative gap between maximum and user utility, and the price of anarchy of E
is infE∈E U(E)/M(E). It may seem surprising that nontrivial bounds, some tight,
on the price of anarchy for Wardrop equilibria over networks have been established
for quite a general classes of networks (Roughgarden, 2007).

An MPEC might also be used to improve system utility but, unlike the utility
maximisation problem, the upper level variables of an MPEC are generally quite
limited, and only indirectly affect user behaviour. Let’s discuss this in the context of
toll design MPEC in traffic networks. A given traffic equilibrium problem depends
parametrically on design variables which are the set of tolled arcs Â ⊂ A and the
toll level τ ≥ 0. Denote this problem by E(A, τ) and the class of these problems over
a given set of admissible designs by E . The design parameters affect user utility but
have no net effect on system utility. Thus the maximum system utility M(E(A, τ))
is independent of the design (A, τ), hence we write it M(E). Let E0 be a reference
equilibrium program corresponding to a particular design, say A = ∅ or τ = 0 —
the untolled traffic network. Assume we can find a local maximum of the MPEC, by
choosing A and τ , such that the system utility at the resulting Wardrop equilibrium
exceeds U(E0). Write this local maximum value of the MPEC as MMPEC(E) so that
U(E0) ≤ MMPEC(E) ≤ M(E). Thus, trivially,

U(E)
M(E)

≤ U(E0)
M(E)

≤ U(E0)
MMPEC(E)

≤ 1.

If the price of anarchy U(E)/M(E) << 1 then we would hope even local improve-
ments via solving an MPEC would improve actual network performance. A theo-
retical issue is how to improve these bounds on U(E0)/MMPEC(E). Another is the
efficiency of the MPEC formulation, for example, can we bound the ratio between
the global MPEC utility value and the maximum achievable utility M(E) by a
number less than 1?

(b) Equilibrium programs with equilibrium constraints

Equilibrium programs with equilibrium constraints (EPECs) describe games in
which some or all players face MPECs. Such an example in communication networks
was identified in part (b)(ii) of section 2. There each OD pair could optimise both
its selection of routes and TCP settings, to maximise its performance, subject to
the constraint that network flow rates would be at a TCP equilibrium. In traffic
networks, the issue of setting toll cordons around cities in regional clusters can be
thought of as an EPEC. Each city wants to optimise its cordon and cordon fee,
but its design will affect traffic flow in other cities via inter city and through traffic
flows. A preliminary study by Hult (2006) suggests that using a different cordon
design around each city can significantly reduce congestion even if the same toll
level is applied within each design. This study, however, did not attempt to identify
designs that solved a corresponding EPEC.
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EPECs have become somewhat popular in the study of electricity markets, for
example Berry et al. (1999); Hu and Ralph (2007); Yao et al. (2008). (See also Chen
et al. (2006) who describe a large-scale MPEC, solved via NLP techniques, that
models electricity and nitrous oxide emissions in the PJM network in the north east
of the United States.) In such markets, pricing and dispatch are typically carried
out by solving an optimisation problem over constraints that describe the electricity
grid, including capacity constraints on links, that minimises system cost in order
to match supply to demand. The system operator assembles the system cost as the
sum of cost functions provided by each generator in the market. If each generator
bids its true (marginal) cost of production function, then the pricing and dispatch
problem would meet demand at minimum cost, therefore would maximise consumer
welfare. However generators are not constrained to bid their true cost functions.
Each generator therefore faces a bilevel program: what cost function should it bid
to the system operator to maximise its profit? This can be modelled and solved
numerically using MPCC technology (Hu and Ralph, 2007).

Although EPECs are attractive for modelling user behaviour in bilevel systems,
they can be intractable. The difficulty is that the dependence of the lower level
equilibrium solution on the upper level parameters, which is often nondifferentiable
(piecewise smooth), can induce nonconvexity in each player’s objective function. See
Hu and Ralph (2007) for an electricity market EPEC over two players for which
there no (pure strategy Nash) equilibrium. This pathology occurs although many
features of the problem seem mathematically well behaved: each player has only
one strategic (upper level) variable that lies in a closed and bounded interval (i.e.,
a nonempty, convex, compact set), a convex quadratic objective function over all
variables, and lower level equilibrium system in the form of a linear complementarity
problem that is uniquely solvable for each set up upper level variables. Nevertheless
such pathological cases need not dominate a class of EPECs. Hu and Ralph (2007)
give conditions under which equilibria are guaranteed to exist for some special cases
in electricity markets. Even in the absence of existence theory, it is often possible
to find equilibria numerically (Hu and Ralph, 2007; Yao et al., 2008) by taking
advantage of nonlinear programming techniques.
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