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Abstract— We discuss two topics. The first is pragmatic; it
concerns modeling and solving bilevel games in the form of equi-
librium problems with equilibrium constraints, EPECS. Several
applications come from modeling the behavior of generators and
retail consumers in electricity markets. We explain how EPECs
can be considered as complementarity problems — which are
more familiar as stationary conditions in constrained nonlinear
optimization — and hence software for solving complementarity
problems can be applied.

The second topic is more fundamental and raises perhaps more
questions than it answers: Can we describe the meaning or value
of models, e.g., EPECs, in economics when there is no obvious
candidate for the “canonical” or “natural” model? This arises
because while there are canonical models for the case of perfect
competition, there seem to be a plethora of different approaches
when players act strategically.

I. INTRODUCTION

Equilibrium problems with equilibrium constraints, EPECs,
have been particularly useful in game theoretic models of elec-
tricity markets over a network of generators and consumers,
for example [1]–[3]; see [4] for a brief review of these and
related market models. EPECs arise when players face utility
maximization problems in the form mathematical programs
with equilibrium constraints, MPECs, [5], e.g., an electricity
generator seeks to maximize profit where pricing and dispatch
is represented a complementarity problem that includes the
generator’s strategy as a parameter.

Note MPECs have nonconvex constraints and therefore may
have multiple local maxima. Thus the EPEC may not have
any (pure strategy) Nash equilibria in some instances, see
[1, Footnote 8, p.143], [6], [7]. On one hand, this motivates
development computational methods for finding Nash points
or their stationary conditions. On the other, we have to ask
what is the meaning of a model without an equilibrium or
with multiple equilibria? In particular, game theoretic models
of imperfect competition seem inherently ambiguous.

We pursue the first notion in Section II, motivated by a
simple three node example with one generator or consumer at
each node. Our focus is the complementarity problem format
[8] which is already well known in game theory and for which
robust software exists [9]. We give an outline view of the
second topic in Section III.

II. COMPLEMENTARITY MODELS OF PERFECT AND
IMPERFECT COMPETITION

Here we derive two market equilibrium models, one under
perfect competition and the other based on Cournot com-
petition. Complementarity models appear to be natural for
modeling perfect competition. See for example [10], [11]. In
imperfect competition, EPECs seem natural; we explain how
stationary conditions for EPECs can be formulated as com-
plementarity problems, following [6], [7]. For completeness
we mention that a popular alternative to Cournot competition,
especially in electricity market models, is supply function
equilibria [12]. Locational pricing in either paradigm leads to
bilevel optimization and bilevel games, e.g. [1], hence MPEC
and EPEC models [3], [4], [6], [7].

A. Setting: triangular network with limited capacity on link 12

We have a triangular network with a generator at each of
nodes 1 and 2, and a consumer at node 3. Lines have identical
transmission characteristics except that flow on line 12 is
limited to f units, in either direction, while other links are
uncapacitated. Any feasible output of qi units at node i for
i = 1, 2 will deliver the quantity

q3 = q1 + q2 (1)

to the consumer. The cost of generation at node i = 1, 2 is
ci(qi) where qi denotes the output of generator i.

We will first consider the case when the generators act
in a perfectly competitive manner, i.e., maximize their profit
without consideration of the effect their strategy (quantity
generated) has on the market. Then we will examine imperfect
competition via a Cournot game. In each case, the consumer
is not a strategic player, rather it represents elastic demand
through an inverse demand function p(q3), which is the price
at which the consumer will buy exactly q3 > 0 units.

In each case we will reformulate or replace the Nash
equilibrium as a set of stationary/optimality conditions in the
form of a complementarity problem.

1) Cost of transmission in spot market: Using a lossless DC
model of electrical flow [13], energy generation of q1 units by
generator 1 results in flow of 1

3q1 from node 1 to node 3 via
node 2, and 2

3q1 direct from node 1 to node 3. Thus 1
3q1 flows

on link 12. Similarly, q2 units produced by generator 2 results



in 1
3q2 units flowing, in the opposite direction, on the link 12.

By specifying generator 1 as a more cost efficient generator,
i.e., 0 ≤ c1(q) ≤ c2(q) for q ≥ 0, we can expect it to generate
greater flow than generator 2, hence congestion to only occur
on line 12 if 1

3q1 − 1
3q2 ≥ f .

To allow a different cost of transmission on link 12 for each
generator we may use a constant marginal cost of transmission
of λi for each generator i = 1, 2. In fact, rather than being a
transmission price, λ1 can be thought of as the opportunity cost
to generator 1 for not receiving more transmission rights. For
example when transmission is not priced in a real system, it
may be rationed according to historical use (“grandfathered”)
or by another mechanism.

When the line is congested, the cost of transmission to
generator 1 is 1

3λ1q1, whereas generator 2 receives income
1
3λ2q2 because its flow effectively relieves congestion. This
is modeled via complementarity between the capacity slack
on link 12 and the marginal cost of transmission for each
generator:

0 ≤ f − 1
3q1 + 1

3q2 ⊥ λi ≥ 0, i = 1, 2.

The symbol ⊥ denotes orthogonality, which means that if
line 12 is not saturated then each λi is zero, hence generators
neither pay nor receive money to use the link.

We say transmission is priced if λ1 and λ2 are required to
be equal. In this case we simplify the above, using the (single)
price λ:

0 ≤ f − 1
3q1 + 1

3q2 ⊥ λ ≥ 0. (2)

Henceforth we assume transmission on line 12 is priced.

B. An explicit transmission pricing mechanism

Here we develop an explicit pricing mechanism that ad-
dresses feasibility of players’ quantities and also incentivises
efficient generation. This will allow us to model strategic play-
ers who realise that their actions affect not only energy prices
but also transmission costs. Nevertheless, later we will see that
if there is perfect competition then equilibrium outcomes are
almost identical for both pricing mechanisms. So, in principle,
outcomes of perfect competition using implicit transmission
pricing can be compared to those of imperfect competition
using explicit pricing.

Under the explicit transmission pricing mechanism, the
system is maintained by a system operator, SO, that has all
generators’ capacity at its disposal. Given the quantities q1 and
q2 contracted by generators to the consumer, the SO computes
a quantity adjustment ξ according to

min
ξ

c1(q1 − ξ) + c2(q1 + ξ)

subject to f ≥ 1
3q1 − 1

3q2 − 2
3ξ.

(3)

The idea is to preserve the total quantity q3 = q1 + q2 =
(q1− ξ) + (q2 + ξ) promised to the consumer, while ensuring
feasibility of network flows in the most efficient way. If the
proposed flow 1

3q1 − 1
3q2 on link 12 exceeds the capacity

f , then the optimal ξ will be positive, i.e., generator 1

will produce less and generator 2 more (the latter to relieve
congestion on link 12). If not, ξ will be negative or zero.

Let λ be the shadow price of the transmission capacity
constraints, also called a Lagrange or Karush-Kuhn-Tucker or
KKT multiplier in the optimization literature. The optimality
conditions which specify ξ and λ are

0 = −c′1(q1 − ξ) + c′2(q2 + ξ)− 2
3λ (4)

and

0 ≤ f − 1
3q1 + 1

3q2 + 2
3ξ ⊥ λ ≥ 0. (5)

The price λ can only be positive when congestion is present
after this transmission rebalancing, otherwise λ = 0.

To explain how the feasibility/pricing mechanism would be
used in practice, after solving (3) to find ξ, the SO would
require generator 1 to produce q1 − ξ rather than q1 units.
The generator would then transfer an amount of c′1(q1 − ξ)ξ
to the SO, which, if ξ > 0, represents marginal cost savings
to the generator. This transfer can also be negative, e.g., the
generator receives a payment from the SO if its production
increases (ξ < 0). Likewise generator 2 must produce q2 + ξ
units and transfers to the SO the net amount of −c′2(q1 + ξ)ξ.
An important point is that this transmission pricing/feasibility
mechanism is self funding as we now show. The total amount
transferred to the SO from the generators, including the
congestion charge, is

1
3λ(q1 − q2) + c′1(q1 − ξ)ξ − c′2(q2 + ξ)ξ

= 1
3λ(q1 − q2 − 2ξ)

= λf

where the first equality uses (4) and the second uses (5). Of
course λ ≥ 0 and f ≥ 0 by assumption, so the total transfer
to the SO is nonnegative.

1) Profits of agents: Generator 1 attempts to maximize its
payoff, i.e. spot market profit, via its quantity q1,

max
q1≥0

p3q1 − c1(q1) − 1
3λq1 (6)

where the first term of the objective is revenue, in which p3 is
the price specified by the consumer at node 3, the second is
cost of generation, and the last, cost of transmission. A similar
problem is faced by generator 2.

The consumer’s payoff is

max
p3≥0

−p3q3 +
∫ q3

0

p(ξ)dξ (7)

where the first term is the cost of consumption and the second
is its benefit.

C. Perfect competition

1) Optimality of agents: Generator 1 solves (6) and gen-
erator 2 solves a similar problem. Here, in the situation of
perfect competition, neither generator believes that it can affect
the market price, i.e., generator i considers ∂p3/∂qi to be
zero. Likewise, each generator does not consider the effect



of its decision qi on transmission pricing. Thus the genera-
tors’ optimality conditions are the following complementarity
conditions that are derived using negative gradients of the
objective functions for each generator’s problem:

0 ≤ −p3 + c′1(q1) + 1
3λ ⊥ q1 ≥ 0

0 ≤ −p3 + c′2(q2)− 1
3λ ⊥ q2 ≥ 0.

(8)

Remark: We could have formulated these with a KKT mul-
tiplier [14], τi, corresponding to qi ≥ 0, e.g., the first
complementarity condition is equivalent to 0 = −p(q3) +
c′1(q1) + 1

3λ − τ1 where 0 ≤ τ1 ⊥ q1 ≥ 0. Instead, to ease
notation, we have eliminated this multiplier.

For the consumer, the optimality condition is the comple-
mentarity problem

0 ≤ p3 − p(q3) ⊥ q3 ≥ 0. (9)

That is, if q3 is positive then p(q3) = p3.
2) Equilibrium conditions: The market equilibrium is de-

scribed by the aggregate system consisting of conditions on
flow balance, (1); feasibility and pricing of transmission, (2);
and optimality for generators, (8), and the consumer, (9). This
aggregate system is a single complementarity problem which
we can hope to solve uniquely if there is a monotonicity
property of the system [8]. In particular, there are five vari-
ables (q1, q2, q3, λ, p3) which are matched by the number of
equations and complementarity conditions.

Apparently different equilibrium conditions are obtained
under the explicit pricing mechanism, for example, (2) in the
equilibrium conditions is replaced by (4)–(5) which gives a
complementarity problem with six variables, five complemen-
tarity conditions and one equation. A closer examination of
this case shows that the payoffs of the generators also change:
Generator 1’s problem (6) becomes

max
q1≥0

p3q1 − m1ξ − c1(q1 − ξ) − 1
3λq1

where we use the notation m1 = c′1(q1 − ξ) to indicate that
the competitive generator views the marginal cost of energy
transfers to the SO as exogenous. The stationary conditions,
which are only with respect to q1, are given by the first
complementarity condition of (8) with q1 − ξ replacing q1.
Likewise the second generator’s profit maximisation problem
yields stationary conditions that are the second complementar-
ity condition of (8) with q2 + ξ replacing q2. Thus, under (1),
(2), (4)–(5), (8) and (9), the quantities q1−ξ, q2+ξ, q3, energy
price p3 and transmission price λ satisfy the equilibrium
conditions established previously for implicitly priced trans-
mission. Conversely, an equilibrium (q1, q2, q3, λ, p3) under
implicit transmission pricing together with ξ = 0 satisfies all
equilibrium conditions of the explicit case except possibly (4).
This last condition follows automatically from (8) provided q1

and q2 are positive, and can be verified in some other cases
by choosing ξ 6= 0.

An important practical point is that there are good algo-
rithms and software available for solving complementarity
problems such as the PATH package [9].

Of course a solution of the equilibrium conditions is a sta-
tionary point for each player’s problem. In fact such a solution
is necessarily a Nash equilibrium of the game — meaning each
player has globally maximized its payoff provided the other
players do not change their strategies — because each player
faces a maximization of a concave objective subject to convex
constraints, thus a stationary point must be a global maximum.

Remark: If transmission is not priced, we have one extra
variable (each instance of λ may be replaced by λ1 or λ2) and
the equilibrium system becomes under determined or “non-
square”. Therefore there may be infinitely many solutions, and
we have to specify some other mechanism by which λ1, λ2 are
selected.

D. Cournot competition

The idea of Cournot competition is that players compete by
setting their quantity, as they did in the perfectly competitive
case, and they are aware that changes in their quantity can
affect the market. Generator 1’s problem (6) holds here with
two crucial differences: First, the generator recognizes that
price has the form p3 = p(q1 + q2), which is affected by
q1. Second, the generator recognizes that q1 affects the SO’s
(explicit) transmission pricing mechanism.

Optimizing generator 1’s profit is a more complex problem
than previously. It’s profit function is

profit1(q1, q2, λ, ξ)
= p(q1 + q2)q1 − c′1(q1 − ξ)ξ − c1(q1 − ξ) − 1

3λq1

and its profit maximisation problem is

max
q1,λ,ξ

profit1(q1, q2, λ, ξ)

subject to 0 ≤ q1

(4)–(5) hold.

(10)

This problem is an MPEC, or mathematical program with
complementarity constraints, MPCC, to be more precise. Note
that although λ and ξ are not directly controlled by the
generator, rather are determined by the SO’s transmission
pricing mechanism, the generator can influence them via q1.

Generator 2 has profit function

profit2(q1, q2, λ, ξ)
= p(q1 + q2)q2 + c′2(q2 + ξ)ξ − c2(q2 + ξ) + 1

3λq2

and its profit maximization is the MPEC,

max
q2,λ,ξ

profit2(q1, q2, λ, ξ)

subject to 0 ≤ q2

(4)–(5) hold.

(11)

The consumer is not directly affected by whether the
generators are perfectly competitive or play a Cournot game.
The consumer is, of course, implicitly affected by the choices
the generators make in terms of quantities.

The game between generators is now called an EPEC, since
each strategic player faces an MPEC. EPECs are generally
unsolvable, e.g., see [7, Example 12] which is in the setting
of supply function equilibria. This unfortunate circumstance



is hinted at by the fact that MPECs generally have nonconvex
feasible sets, so stationary points need not be globally optimal.
Nevertheless EPECs have convenient optimality conditions
under reasonable conditions, as we will next explore.

1) Optimality of agents’ MPECs: Here and in the next
subsection, we apply the approach of [6], [7] for formulating
stationary conditions for EPECs as complementarity problems.

A simple, if naive, way to approach MPECs is via nonlinear
programming: replace the complementarity condition (5) by

0 ≤ f − 1
3q1 + 1

3q2 + 2
3ξ (12)

nonnegativity of λ, and a bilinear equality

0 = (f − 1
3q1 + 1

3q2 + 2
3ξ)λ. (13)

A result of MPEC theory [15], [16] is that a locally optimal
point (q1, λ) of (10) must be stationary, i.e., has KKT multi-
pliers, provided that the gradients of the active constraints, ex-
cept the bilinear function, are linearly independent. (“Active”
means the constraint holds with equality.) This condition is
called the MPEC linear independence constraint qualification,
MPEC-LICQ.

Regarding (10), a necessary condition for the MPEC-LICQ
at a point (q1, ξ, λ), where q2 is a given parameter, is that
we do not simultaneously have q1 = 0, f = − 1

3q2 + 2
3ξ and

λ = 0. For instance, we expect the MPEC-LICQ to hold at
the optimal strategy q1 provided q1 > 0. A similar statement
holds for generator 2.

Let us assume that maxima of the generators’ MPECs are
stationary and denote the KKT multipliers corresponding to
(4) by τλ

i , (12) by τf
i ≥ 0, and (13) by µi. We will avoid the

need for further multipliers, for nonnegativity of variables qi

and λ, by using complementarity conditions. We introduce the
Lagrangian of generator i’s profit maximization problem:

Li(q1, q2, λ, ξ; τλ
i , τf

i , µi)
= −profiti(q1, q2, λ, ξ)

− τλ
i [−c′1(q1 − ξ) + c′2(q2 + ξ)− 2

3λ]

− τf
i (f − 1

3q1 + 1
3q2 + 2

3ξ)
− µi(f − 1

3q1 + 1
3q2 + 2

3ξ)λ.

The stationary conditions for the generators are

for i = 1, 2:

0 ≤ ∂Li

∂qi
⊥ qi ≥ 0

0 ≤ ∂Li

∂λ
⊥ λ ≥ 0

0 =
∂Li

∂ξ
0 ≤ f − 1

3q1 + 1
3q2 + 2

3ξ ⊥ τf
i ≥ 0

(14)

coupled with the equation constraints (4) and (13).

2) Equilibrium conditions for the Cournot EPEC: The
aggregate system consists of flow balance, (1), and several sets
of optimality conditions: (4) for transmission pricing, (13)–
(14) for the generators, and (9) for the consumer. Note that
this system is again a single complementarity problem for
which the number of variables — there are twelve comprising
four for each generator, (qi, τ

f
i , τλ

i , µi), two for the consumer,
(q3, p3), and two for the SO, (ξ, λ) — is matched by the
number of equations and complementarity conditions. This is
achieved by sharing, in the generators’ optimality conditions,
the transmission variables (ξ, λ) and the equality constraints
(4) and (13).

A difficulty beyond the potential lack of equilibria for
the EPEC is redundancy in the associated complementarity
problem, notably in the functions appearing in the optimality
conditions (14). Practically this need not be an obstacle
to numerical solution by PATH as seen in [4], [7], or by
other methods such as diagonalization (see [7] and references
therein), an iterative scheme in which players take turns in
optimizing their profits, and then repeat the process until,
hopefully, convergence occurs.

An important computational limitation to date is that meth-
ods that hold any promise of taking reasonable computational
time on problems (networks) of realistic size, such as those
mentioned, are essentially heuristic. We lack practical methods
that are guaranteed to identify a Nash equilibrium when there
is one, or give a certificate of insolubility when there is not.

III. EPECS AND THE ECONOMICS OF ELECTRICITY
MARKETS

MPEC and EPEC problems raise a lot of interesting ques-
tions that can all be traced to the incomplete or imperfect
nature of the competition. They also raise practical questions.

A. Market architecture: bounds on inefficiency of incomplete
electricity markets

A considerable attention has been devoted in the restruc-
turing of electricity markets to what is commonly referred
to as the market architecture. Following [17] we refer to the
architecture as the blueprint that lists the different energy
markets and ancillary submarkets to create and the interac-
tions to establish between them for guaranteeing the good
functioning of the electricity market. Wilson [18] gives an in
depth discussion of this subject. We summarize his discussion
there for our purpose by noting that Wilson refers to energy
and transmission that he considers should exist as real time
and forward markets. There is now a common view on this
question in the US, at least in the zones which adopted
restructuring, but other markets such as capacity markets are
still under discussion [19]. The question of the architecture
therefore remains relevant. In contrast, this common view
of the organisation of the energy and transmission markets
does not exist in Europe. The question of understanding the
set of markets that should be created (energy, transmission,
reserve, capacity in real time and forward) therefore is still
at least partially unsolved today. The relevant aspect of it is



what happens in terms of degradation of efficiency when these
markets are not created. This question can be stated in terms
of market completeness.

We refer to a complete market as one where energy and all
constrained services are priced in real time and forward. The
relevant question is thus to assess what happens when this is
not the case, in other words when the market is incomplete.
Wilson was the first one to argue that restructured electricity
markets are massively incomplete, that is, that we are bound to
find inefficiencies as a result of the difficulty of implementing
a complete set of prices. Needless to say, some missing prices
are more important than others.

Referring to the three-node example presented in section 2,
we shall say that the real time market is incomplete when for
instance transmission is not priced (this case is now settled
in the US, it is still controversial in European where existing
proposals only allow for a very partial pricing of transmission).
This is an incomplete market [20]. Other incompleteness arises
when pricing occurs with different granularity in the real time
and forward markets. This is for instance the case when energy
and transmission are both priced in real time but there is no
forward transmission price. This is also true if there exist
electricity market futures on energy with 3 year maturity but
the maturity of transmission contracts is limited to one year.
Because prices do not exist on all services and goods one is
now unable to price all transactions (e.g. a delivery from node
1 to node 3) whether in real time (when transmission is not
priced in real time) or forward (when transmission is priced in
real time but not forward), [21]. Finance theory tells us that,
even though it is impossible to value the transmission one can
still find bounds on the value of that transaction. The question
is how.

We conjecture (and are currently working on this conjecture)
that the problem of finding bounds in incomplete electricity
markets (and therefore to assess the inefficiency of an incom-
plete electricity market) can be formulated as an MPEC or
in more complicate cases as a minimization problem subject
to EPEC constraints. Here is our reasoning. Consider the
three node problems of the preceding section and assume
that transmission is not priced. We did represent this case by
letting λ1 and λ2 take different values. Both λ1, λ2 are zero
when the transmission constraint is slack (there is no need to
price transmission in that case). But they may be non-zero
and different when the line is saturated. According the remark
at the end of §II-C, the complementarity model is no longer
square and we have an infinite set of possible solutions. The
question is then to find, for instance, the minimum welfare or
the maximal welfare among these solutions.

This is an MPEC problem, possibly a quite difficult one.
We argued in section 2 that the equilibrium constraints that
represent the electricity market define a non-convex set and
hence make the MPEC problem non-convex. We expect it to
be even more difficult to minimize a concave welfare function
over equilibrium constraints, which is necessary to assess the
loss of efficiency that arises from market incompleteness. The
problem would be similarly non convex if we were interested

in the minimal profit that a generator can make as a result of
the incompleteness of the market.

Except for Europe, nobody discusses the lack of a trans-
mission market in real time anymore. But the problem of
an incomplete pricing of transmission in the forward market
remains, for reasons of liquidity. The construction of the un-
derlying market model that represents the incomplete forward
market is more complex but the principle is the same. One
can thus again construct a problem that tries to assess the loss
of welfare that can result from this incompleteness.

B. What do we really know about market power in electricity
markets?

The question of market power is much more often addressed
than the issue of market incompleteness. Still its treatment
remains largely ambiguous and this ambiguity appears at
different levels.

Consider first the Cournot version of the three-node problem
presented in section 2 and assume that there is no transmission
constraint. The problem reduces to a pure single stage energy
model. Market power in the energy market is the standard
question addressed in the numerous papers that were written in
the aftermath of the Californian crisis. This model is well spec-
ified but its economic foundations are ambiguous. There are
indeed several paradigms of imperfect competition, Cournot
being only one of them (this contrast with perfect competition
that represents an unambiguous reference case). There is in
fact a whole range of degrees of market power that goes
from collusion to a perfect competition, passing through the
Cournot assumption in the middle. Economic theory provides
no structural reason to select one or another with the result that
any assumption of imperfect competition is generally loosely
founded. This ambiguity does not prevent writing the model
and treating it mathematically provided one accepts this degree
of arbitrariness: the trick is to use conjectural variations that
indeed allow one to model the range of possible assumptions
of competition. The approach is discredited as a theoretical
explanation of the degree of market power but it allows
representing it. Even though lacking a fundamental basis (the
true solution, namely via dynamic games, is not really an
operational solution) conjectural variations can still be used
in practice at some condition: in the same way as models are
often used without precisely knowing the value of all relevant
parameters of a problem (e.g. fuel prices), one may want to
represent the uncertainty about what imperfect competition
really means by parameters of conjectural variations (or almost
equivalently conjectured supply functions). Suppose we do
this. Did we solve all our difficulties?

Consider the two level models described in section 2 where
generators exercise market power both on the energy and trans-
mission markets. This may be a quite reasonable assumption
of market power but it is not the sole one. It indeed all depends
on what is commonly referred to as the relevant market for
that service, that is the extent of the market where an agent
is constrained by competitive forces. And, even though the
questions remains largely unexplored, relevant market can



be different for energy and transmission. Transmission being
a relatively complex issue, consider the energy and CO2
allowance markets that probably constitute the clearest case
of what is at stake: while one might conceive that the market
power of a generator is high in energy because for instance
lack of interconnection capacities, its market power on CO2
allowances is likely to very weak if not null as this is a global
(in our case European) market where may more agents than
electricity generators intervene. The introduction of market
power therefore requires making differentiated assumptions of
market power on different markets; can one really do this with
a sufficient degree of confidence? Suppose again than this has
been done, did we eliminate our difficulties?

Ancillary services that are those services that are determined
by the architecture of the market make it possible to select
different assumptions of leader follower in the construction
of the EPEC model. The model of section 2 assumes that the
generators are the leader and the transmission system operator
acts passively. This is by far not an obvious assumption when
transmission system operators are ruled by incentive contracts.
Transmission system operators are indeed true monopolies that
are regulated in one way or another. Some regulations do not
incentivise for efficiency, which allows one to suppose that
TSO act passively as in our model of section 2. Other or-
ganisations allow for some profit maximizing behavior, which
implies that TSO can exert some market power. Depending
on the assumptions made, the upper level of the EPEC can
consists of generators or TSOs. More generally market power
allows one to construct EPEC of quite different hierarchical
structures depending on the assumptions made on the leaders
and the followers. But suppose this is done, can one assume
that all problems are solved.

Consider the simple Cournot problem of section 2 and
assume that generators are price takers with respect to trans-
missions. Yao et al [3] show that even this simple assumption
leads to different representation of market power on the
generation side.

To sum up, market power is a complex issue that requires a
lot of assumptions to be modeled. The effect of this multiplic-
ity of assumptions on the final result clearly requires careful
elaboration.

C. And some important technical problems

Notwithstanding our very imperfect knowledge of market
power in restructured electricity markets, the analysis of
market power cannot be avoided. While one cannot ascertain
the extent to which market power is exercised, the different
possibilities mentioned above can give us some insight on
how it could be exercised and what possible ”proportional” (in
European law parlance) remedies one can devise. The question
is particularly crucial when it comes to investment: agents
can indeed exercise market power by restrictive investment
and this type of abusive practice is impossible to detect.
Suppose that one is willing to accept some mixes of perfect
and imperfect competition as realistic paradigms to describe

existing situations, that we construct an EPEC model of this
situation and then solve it. Are all our difficulties over?

We already alluded to the fact that EPEC are difficult
to solve. The problem is more serious; we are today not
in position, when an algorithm does to solve an EPEC, to
detect whether it is because the algorithm failed or because
there is truly not pure strategy equilibrium of the EPEC
problem. We mentioned before both the absence of pure
strategy equilibrium and the existence of multiple equilibrium
as real issues for which economic theory should provide
more help than what it actually does. Alternatively one could
request that the mathematical programming community makes
it possible to detect for sure these cases from the failure of the
algorithm. Economic theory provides some limited help in case
of absence of pure strategy equilibrium. This can sometimes be
overcome with a reasonable interpretation by mixed strategy
equilibrium. Today, computation of mixed strategy equilibria is
often attempted for problems where agents have finitely many
strategies, or by discretizing continuous strategy sets. Is this
suitable for EPEC models of markets?
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