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Part One: Equilibrium models and
techniques based on nonsmooth equations

1. Equilibrium formulations and applications

2. Reformulation as nonsmooth equations

3. Computation with normal equations for NCPs

4. Active research topics

5. Part One summary

Unreferenced material largely in two volume opus on last 25 years of

analysis & algorithms

Facchinei and Pang, Springer 2003

Finite-Dimensional Variational Inequalities and

Complementarity Problems
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1 Equilibrium formulations and

applications

1.1 Basic equilibrium formulations

1.2 Applications
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1.1 Basic equilibrium formulations

Nonlinear optimisation yields equilibrium problems:

Optimisation Equilibrium = 1st-order conditions

min
y

φ(y) 0 = ∇φ(y), “square” system of equations

min
y≥0

φ(y) 0 ≤ y ⊥ ∇φ(y) ≥ 0

where ⊥ means orthogonal

Nonlinear Complementarity Prob., NCP

min
y

φ(y) ∇φ(y) + ∇g(y)>λ + ∇h(y)>µ = 0

subj. to g(y) ≤ 0 0 ≥ g(y) ⊥ λ ≥ 0

h(y) = 0 0 = h(y)

Mixed nonlinear Complementarity Prob.,

MCP

5



Optimisation over geometric (abstract) constraints:

Optimisation Equilibrium = 1st-order conditions

min
y∈C

φ(y) y ∈ C

for all c ∈ C, 0 ≤ 〈∇φ(y), c − y〉
Variational inequality, VI
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General VI:

Equilibrium

y ∈ C

for all c ∈ C, 0 ≤ 〈F(y), c − y〉
Variational inequality, VI

In general equilibrium problems: CPs and VIs are specified using a

nonlinear vector function F(y) instead of ∇φ(y), and constraints

that are functional or geometric

If m × m Jacobian matrix ∇F (y) is symmetric for all y, then

equilibrium system is stationary condition for optimisation

problem.

But an equilibrium model need not be the stationary conditions of

an optimization problem, e.g. Nash games.
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1.2 Applications

We’ll stick to finite dimensional problems, or discretisations of

infinite dimensional problems. Note there is an accelerating interest

in understanding infinite dimensional applications.

Main areas are economics and mechanics.

Economics

• General equilibrium: models of competitive markets

• Taxation and subsidies

• Spatial price models of distributed markets

• Nash games
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Engineering

• Contact problems in mechanics, e.g. how does an elastic

membrane wrap around a rigid object? C.f. classical obstacle

problem, infinite dimensional.

• Contact problems with friction, e.g. how does a stack of blocks

collapse if toppled?

• Structural mechanics, e.g. what is the shape of a bridge when a

fleet of loaded trucks crosses?

• Traffic equilibria in networks, e.g. what will be the effect of

introducing traffic lights at an intersection?

We’ll give further motivation in an application in economics and

another in mechanics below.
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Cournot-Nash game

Consider a market for a single good with i = 1, . . . , N competitive

producers; each decides what quantity qi of this good to

manufacture. “Nash” game is competitive, not collusive; players’

strategies are their quantities, hence game termed “Cournot”.

In this market, the price p of good depends on total output

Q =
∑

qi: p = p(Q).

Writing q = (q1, . . . , qN ), player i will choose qi to maximize profit

πi(qi) := p(Q)qi − ci(qi)

where the latter term is the cost of manufacture.
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Cournot-Nash game

Player i’s stationary condition is

0 = π′
i(qi) = p′(Q)qi + p(Q) − c′i(qi).

The equilibrium system, of all players’ stationary conditions, is

F (q) = 0 ∈ IRN where Fi(q) = π′
i(qi) for each i.

Get asymmetry if pricing is nonlinear (p′′(Q) 6= 0) and players not

identical (i.e. expect qi 6= qj):

∂Fi/∂qj = p′′(Q)qi + p′(Q)

6= p′′(Q)qj + p′(Q) = ∂Fj/∂qi.

So cannot expect to find equilibrium via optimisation.
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Analysis of elasto-plastic structures

coming out of the Italian school in this research in 1960s and 70s.

Deformation (e.g. of a dam wall) is elastic - and reversible - for

small loads.

Plastic deformation occurs after “yield limit” R̂ is exceeded,

modelled by plastic multiplier λ.

Equilibrium F̂ = Ĉ>Q force vs. stress

Compatibility q = Ĉu strain vs. displacement

Constitutive law



























q = ε + p

Q = Ŝε

p = N̂λ

φ = N̂>Q − Ĥλ − R̂ ≤ 0, λ ≥ 0, φ>λ = 0

strain = elastic + plastic strain

stress v.s. elastic strain

plastic strain vs. plastic multipliers

This is a mixed linear complementarity problem, LCP
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2 Reformulation as nonsmooth

equations

2.1 Equilibrium problems as equations

2.2 Why bother to reformulate anyway?
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2.1 Equilibrium problems as equations

Let y ∈ IRm and F : IRm → IRm be smooth, say C2 or C1,1.

Focus on NCP 0 ≤ y ⊥ F(y) ≥ 0 for notational simplicity.

Note NCP equivalent to componentwise complementarity,

yi, Fi(y) ≥ 0, yiFi(y) = 0 for each i = 1, . . . , m.

Could also consider VI(F, C) where C is any closed convex set.

• Easiest case: C is polyhedral convex (e.g. for NCP, C = IRn
+)

• More generally, local analysis well developed for nonconvex C

defined by smooth constraints

g(x) ≤ 0 ∈ IRk, h(x) = 0 ∈ IR`

satisfying a Constraint Qualification, CQ.

CQs ensure, first and foremost, that solution of VI(F, C) has

multipliers for constraints =⇒ can convert VI to mixed CP.
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Aside on Constraint Qualifications at a feasible point x:

LICQ. Requires linear independence of gradients of active

constraints, ensures uniqueness of multipliers.

MFCQ. Mangasarian-Fromowitz CQ requires LICQ on equality

constraints (∇h(x) full rank) and existence of an

interior-pointing direction d: ∇h(x)d = 0 and ∇gi(x)>d < 0 for

active indices i. MFCQ equivalent to stability of C, near x,

under perturbations of g and h, also equivalent to having

nonempty, bounded set of multipliers.

CRCQ. Requires any list of constraints that are active at x to

have Jacobian of same rank for all nearby feasible points.

Seems to characterise polyhedral-like behaviour of nonlinear

constraints [Kuntz-Scholtes 95]. Directional differentiability of

solutions of parametric VIs may use Constant Rank CQ

instead of LICQ.
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Reformulate NCP 0 ≤ y ⊥ F(y) ≥ 0 as nonsmooth equation.

0 = min{y, F (y)}, componentwise,

min equation

0 = F+(z) := F (z+) + z − z+

where z+ := max{0, z}, componentwise (y := z+ will solve NCP)

normal equation

Φ(y, F (y)) = 0, system of m equations where

Φi(y, F (y)) := φ(yi, Fi(y)) is “NCP function”

Fischer-Burmeister φ(a, b) = a + b −
√

a2 + b2

These nonsmooth systems all square, having m var. and equations.

Min and normal equations are piecewise smooth; FB is semismooth.
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Look at piecewise structure of F+

Consider any orthant in IRm, given by all z with

zI ≥ 0I and zJ ≤ 0J

where I ∪ J partition {1, . . . , m}. For such z,

F+(z) = F (zI , 0J) + (0I , zJ) . . . a smooth mapping.

So F+ is a different smooth mapping on each orthant, and also

continuous, hence piecewise smooth, PC1

C.f. solution y∗ of NCP, whose associated active sets

I = {i : y∗
i > 0} and J = complement of I give

y∗
I ≥ 0 = FI(y

∗
I , 0J)

y∗
J = 0 ≤ FJ (y∗

I , 0J)

Normal equation solved by z∗I = y∗
I and z∗J = −FJ(y∗

I , 0J).
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2.2 Why bother to reformulate anyway?

First equation reformulations aren’t new, are useful!

Consider VI(F, C) where F : IRm → IRm is continuous, C nonempty

closed convex set in IRm. This is equivalent to finding a fixed point

y = πC(y − F (y))

where πC(z) := nearest point in C to z.

When C is also bounded, Brouwer’s fixed point theorem ensures

existence of a solution.

Note NCP equivalent to VI(F, IRn
+), and πIRn

+
(z) = z+.

Here, fixed point formulation with C = IRm
+ is

y = (y − F (y))+ (= y − min{y, F (y)}) ,

−→ restatement of min equation.
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Second, smooth calculus motivates tools for equilibrium systems.

Take smooth system F (y) = 0 of m vars. & equations. Suppose

y∗ is solution and m × m Jacobian ∇F (y∗) is invertible.

I. Newton’s method: Given any y near y∗ can find y∗ quickly,

1. Let y′ solve linearised system: 0 = F (y)+∇F (y)(y′− y).

2. Update y := y′ and repeat from step 1.

If F is modelled by choice of parameter p = p∗ as F (y) = Φ(y, p∗):

II. Implicit function theorem: (a) For p near p∗ there is unique

y = y(p) near y∗, with y(p∗) = y∗, that solves Φ(y, p) = 0;

(b) y(p) is smooth and ∇y(p∗) can be found by solving

0 = ∇F (y∗)∇y(p∗) + ∇pΦ(y∗, p∗).

III. Parameter estimation: Suppose ŷ measured empirically and

Φ(ŷ, p∗) 6= 0. Then update p via nonlinear least squares:

min
y,p

‖y − ŷ‖2
2

subject to Φ(y, p) = 0
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Just to mention semismooth Newton methods . . .

Although we focus, in §3, on piecewise linear-based solution

techniques, Newton methods for semismooth systems, particularly

FB reformulation of NCP, need to be mentioned.

Generalised Jacobian for FB mapping Φ(y). Although Φ is

nonsmooth, you can easily give a (Clarke-like) Jacobian substitute

∂Φ(y) :=
{

M ∈ IRm×m with ith row in ∂Bφ(yi, Fi)
>∇(yi, Fi)

}

where Fi means Fi(y) and

∂Bφ(a, b) =







(1, 1) − (a, b)/‖(a, b)‖2 if (a, b) 6= (0, 0),

(1, 1) − Euclidean unit circle otherwise.

Newton’s method for FB system Φ(y) = 0. Given y, and

(invertible) My ∈ ∂Φ(y), next iterate y′ solves “linearised” system

0 = Φ(y) + My(y′ − y).
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FB mapping has two remarkable properties, where F is C1,1.

1. (Strong) Semismoothness. Suppose y∗ is given. There is

C = Cy∗

> 0 s.t. for any y near y∗, any My ∈ ∂Φ(y),

‖[Φ(y) + My(y∗ − y)] − Φ(y∗)‖ ≤ C‖y − y∗‖2

Linearised system is good approximation, within O(‖y − y∗‖2) !

Leads to quadratic convergence of semismooth Newton

method to y∗ if Φ(y∗) = 0, ∂Φ(y∗) contains only invertible

matrices, and first iterate is near y∗.

2. Residual squared is smooth. θ(y) := ‖Φ(y)‖2
2

is C1,1.

This leads to globally convergent methods, e.g. given y, apply

linesearch in either semismooth Newton direction y′ − y, or steepest

descent direction −∇θ(y) if M y is singular or nearly so.
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3 Computation with normal equations

for NCPs

3.1 Preamble: Invertibility of M+

3.2 Newton’s method for F+(z) = 0

3.3 An implicit function theorem

3.4 Parameter estimation for NCPs
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3.1 Preamble: Invertibility of M+

Suppose F (y) = My + q for given M ∈ IRm×m, b ∈ IRm.

Q: When is min{y, My + q} invertible?

What about F+(z) := Mz+ + q + z − z+?

A: Well known result that M must be a P -matrix: all principle

minors have positive determinants. (E.g. positive definite M gives

invertibility.)

Easy to show that P -matrix ⇒ existence of sol.

Hard to show uniqueness.

More subtle Q: What characterises invertibility near given y∗ ?

A: Well known result based on fixing (My + q)i = 0 if

i ∈ I := {j : y∗
j > 0}, and yi = 0 if i ∈ J := {j : (My∗ + q)j > 0}.

Let K be complement of I ∪ J ; require submatrix MII invertible

s.t. MKK − MKIM
−1
II MIK is P -matrix.
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Solving piecewise linear systems

Lemke’s method for solving LCPs is easily adapted to the normal

equation 0 = M+(z) + q, and indeed to general piecewise linear

systems [Eaves 76]

Use a kind of active-set approach, trying to identify {i : z∗
i > 0} at

solution z∗:

• perform a sequence of pivots, from one linear piece of the system

to the next

• carry out a rank-1 update of a linear system solve each time

• (for invertible mapping) terminate after finitely many steps with

solution

Interior-point methods provide polynomial-time solution for

LCPs with positive definite (implies P -)matrices and more general

classes of matrices.
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3.2 Newton’s method for F+(z) = 0

We’ll develop normal equation viewpoint in rest of §3. The min,

FB or other semismooth reformulations provide alternatives.

Restrict discussion to normal mapping F+ for NCP, for simplicity.

Newton’s Method.

1. “Linearise” system 0 = F+(z) := F (z+) + z − z+ about current

point z and solve to find z′.

I.e. linearize F about z+ but don’t mess with (·)+: Let

Mz := ∇F (z+), qz := F (z+) −∇F (z+)z+, then solve for z′,

0 = Mz
+(z′) + qz .

(can equivalently solve LCP or min{y′, Mzy′ + qz} = 0, then

convert y′ to z′)

2. Update z := z′ and repeat 1.
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When does Newton’s method work?

Look at smooth (C1,1) system F (y) = 0 [Ortega-Rheinboldt 70].

Banach perturbation lemma.

If M ∈ IRm×m is invertible and ε ∈ (0, 1) then

• so is any M̂ within distance ε/‖M−1‖ of M ,

• ‖M̂−1‖ ≤ ‖M−1‖/(1 − ε)

Apply to case when F (y∗) = 0 and M := ∇F (y∗) invertible. Get

for y near y∗ that ∇F (y) invertible with ‖∇F (y)−1‖ bounded.
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For y near y∗, Newton step y′ = y −∇F (y)−1F (y) exists, and

satisfies

y′ − y∗ = (y′ − y) + (y − y∗)

= −∇F (y)−1
[

F (y) + ∇F (y)(y∗ − y)
]

= −∇F (y)−1
[

F (y∗) + O(‖y − y∗‖2)
]

= −∇F (y)−1
[

O(‖y − y∗‖2)
]

= O(‖y − y∗‖2)

Quadratic convergence!

because

‖∇F (y)−1‖ is bounded, and

linearization gives good approximation:

F (y) + ∇F (y)(y∗ − y) = F (y∗) + O(‖y − y∗‖2).
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When does Newton’s method work?

Analysis for nonsmooth normal equations with C1,1 mapping

F ,

0 = F+(z) := F(z+) + z − z+.

Simplifying (from local to global invertibility) here:

Banach-perturbation-type lemma.

If M+ invertible, where M ∈ IRm×m, then inverse M−1
+ has

Lipschitz constant denoted ‖M−1
+ ‖.

And, for ε ∈ (0, 1),

• any M̂ within distance ε/‖M−1
+ ‖ of M gives invertible M̂+;

• M̂−1
+ has Lipschitz constant ‖M̂−1

+ ‖ ≤ ‖M−1
+ ‖/(1 − ε)

Apply to case when F+(z∗) = 0, M := ∇F (z∗+) and M+ is

invertible.
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Given z near z∗, Mz := ∇F (z+) and qz := [F (z+) −∇F (z+)z+],

Newton step is solution z′ := Mz
+
−1(−qz).

Analog of analysis for smooth case gives

z′ − z∗ = Mz
+
−1[−qz] − Mz

+
−1[Mz

+(z∗)],

‖z′ − z∗‖ ≤ ‖Mz
+
−1‖‖ − qz − Mz

+(z∗)‖

= ‖Mz
+
−1‖

∥

∥F+(z∗) + O(‖z − z∗‖2)
∥

∥

= O(‖z − z∗‖2)

Quadratic convergence!

because, similar to smooth case,

‖Mz
+
−1‖ is bounded, and

linearization gives good approximation:

Mz
+(z∗) + qz = F+(z∗) + O(‖z − z∗‖2).
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Extension i. A stronger convergence result, of

Newton-Kantorovich type: If

• linearization Pz at initial iterate z is invertible,

• ‖P−1
z ‖ is “not too large” relative to initial residual ‖F+(z)‖

and Lipschitz constant of ∇F near z

then

• there exists a solution z∗, near z, of normal equation

• starting from z, Newton’s method generates sequence that

quadratically converges to z∗.
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Extension ii. Newton’s method can be globalised for robustness.

Idea of line search for smooth equations F (y) = 0:

Given y, take Newton iterate y′, observe for t ∈ (0, 1] that

F (y + t(y′ − y)) = (1 − t)F (y) + O(t2).

Choose “large” t ≤ 1 s.t. ‖F (y + t(y′ − y))‖ < ‖F (y)‖ and

next iterate := y + t(y′ − y)

For normal equations, use “path search”, c.f. PATH code.

Given z, calculate Newton path z(t) by solving parametric

linearised system:

Mz
+(z(t)) + qz = (1 − t)F+(z) for t ∈ [0, 1].

Analogous to smooth case, get

F+(z(t)) = (1 − t)F+(z) + O(t2).

Choose “large” t ≤ 1 s.t. ‖F+(z(t))‖ < ‖F+(z)‖ and z′ := z(t).
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3.3 An implicit function theorem

It follows from above that

• if F (y) = Φ(y, p∗) for parameter p∗

• if normal map F+(z) := F (z+)+ z− z+ is invertible near a zero z∗

then for p near p∗ there is a solution z = z(p), unique near z∗ and

with z(p∗) = z∗, of parametric normal equation

0 = Φ(z+, p) + z − z+

And y(p) := z(p)+ is locally unique solution of parametric NCP.

Sensitivity: z(p) is directionally differentiable, and, for small

perturbations dp, can calculate z′(p∗; dp) = z − z∗ by solving for z

in parametric linearised system (or, equivalently, LCP)

0 = M+(z) + q + ∇pΦ(z∗+, p∗)dp

where M := ∇F (z∗+) and q := F (z∗+) − Mz∗+
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3.4 Parameter estimation for NCPs

Suppose

• F (y) = Φ(y, p∗) for some parameter vector p∗

• we have measured, empically, NCP solution as ŷ,

• but y = ŷ does not quite solve the NCP: 0 ≤ y ⊥ F (y) ≥ 0.

Apply least squares idea to estimate p

min
y,p

‖y − ŷ‖2
2

subject to y solves NCP: 0 ≤ y ⊥ Φ(y, p) ≥ 0.

... a Mathematical Program with
Equilibrium Constraints, MPEC
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4 Active research topics

Do a GOOGLE search:

VIs over positive semidefinite matrix variables

• Interior-point methods for SDP!

• Semismooth Newton methods for SDP

Dynamic variational inequalities

Stochastic variational inequalities

Infinite dimensional variational inequalities, PDE
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5 PART ONE Summary

• Equilibrium problems in the form of complementarity problems

and variational inequalities are all around us

• Many lessons from smooth systems of equations can be carried

over — directly — to nonsmooth reformulations

• Parameter estimation for equilibrium problems gives MPECs.

◦ The gap between nonlinear programs (NLPs) and

MPECs is still being explored, stay tuned for review of

MPEC ...
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General references on equilibrium modelling etc.

Lanchester prize winner

R.W. Cottle, J.S. Pang and R.E. Stone, The Linear

Complementarity Problem, Academic Press, Boston, 1992.

Excellent review of econ and eng applications

M.C. Ferris and J.S. Pang, SIAM Review 1997

A classic: infinite dimensional VIs in applied maths (PDE)

D. Kinderlehrer and G. Stampacchia, An Introduction to

Variational Inequalities and Their Applications, SIAM 2000.

Well known monograph in social sciences

A. Nagurney, Network Economics: A Variational Inequality

Approach (Revised second edition), Kluwer 1999.

Another well regarded monograph, an optimisation view

M. Patriksson,Nonlinear Programming and Variational Inequality

Problems: A Unified Approach, Kluwer 1998.
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PART TWO: Overview of MPECs

6. Introduction to MPEC

7. MPEC and NLP

8. Active research topics

9. Conclusion
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6 Introduction to MPEC

6.1 Milestones

6.2 Formulation

6.3 Where do MPECs come from?

6.4 Are MPECs typical optimization problems?

38



6.1 Milestones†

MPEC models go back to 1930s (von Stackelberg)

Pre 96: Focus on heuristic algorithms for global bilevel

optimisation

1996 onwards:

– Explicit efforts to create academic subject, e.g. monographs

[Luo-Pang-R 96], [Outrata-Kocvara-Zowe 98],

c.f. bilevel programming: [Bard 98], [Dempe 02]

– Local optimization of MPECs in applications

– Plethora of algorithms using decomposition or

nonsmooth/smoothing reformulations

2001ish: Standard NLP methods make an impact, MacMPEC

test set (Leyffer)

† Adapted from Stefan Scholtes
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6.2 Formulation

Mathematical Programs with Equilibrium Constraints have

the general form

min
x,y

f(x,y) subject to

(x,y) ∈ Z = standard region, e.g. polyhedron

y solves







optimization

equilibrium







problem that depends on x

where • x ∈ IRn is leader or design or control vector,

• y ∈ IRm is follower or response or state vector,

• f : IRn+m → IR is smooth, and

• lower-level optimization or equilibrium problem is smooth.
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Focus, later, on Complementarity Constraints (CC) for simplicity.

min
x,y

f(x, y) subject to

(x, y) ∈ Z standard region, e.g. polyhedron

0 ≤ F (x, y), y 0 = y>F (x, y)

where x ∈ IRn, y ∈ IRm, and F : IRn+m → IRm is smooth.

May refer to MPCC rather than MPEC.

More generally, equilibrium problems come from Variational

Inequalities, famous in economic equilibria models, traffic

equilibria, even partial differential equations.
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6.3 Where do MPECs come from?

Equilibrium model. E.g. Traffic network: Given network,

origin-destination volumes, function describing length of journey,

find link flows at which every user is on a shortest path.

Design. Set the parameters of an equilibrium model to achieve an

objective. E.g., Traffic network:

Set tolls on designated links to maximise revenue while bounding

worst case congestion of equilibrium traffic flow

Parameter Identification. Corresponding to an equilibrium

model for a real system is an inverse problem: find parameters of

the model for which the model equilibrium matches observed

(measured, actual) equilibrium. E.g., Traffic network:

Given empirical link flows (assumed to be equilibrium flows), find

origin-destination flows.
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6.3 Where do MPECs come from?

Equilibrium model. E.g. Structural Analysis: given topology

of truss = network of beams, material properties of each beam, and

the load it supports, find its shape, stresses, strains etc.

Design. Set the parameters of an equilibrium model to achieve an

objective. E.g. Structural Analysis:
determine least volume (cost) of beams in a bridge while

suppporting a given load

Parameter Identification. Corresponding to an equilibrium

model for a real system is an inverse problem: find parameters of

the model for which the model equilibrium matches observed

(measured, actual) equilibrium. E.g. Structural Analysis:
given the load on, and displacement (shape) of a structure, find the

properties of the materials used in construction ... which may

change over time
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Recall LCP for elasto-plastic structures

Plastic deformation occurs after “yield limit” R̂ is exceeded,

modelled by plastic multiplier λ.

Equilibrium F̂ = Ĉ>Q force vs. stress

Compatibility q = Ĉu strain vs. displacement

Constitutive law



























q = ε + p

Q = Ŝε

p = N̂λ

φ = N̂>Q − Ĥλ − R̂ ≤ 0, λ ≥ 0, φ>λ = 0

strain = elastic + plastic strain

stress v.s. elastic strain

plastic strain vs. plastic multipliers

This is a mixed linear complementarity problem, LCP

44



Identification problem of finding yield limits

Given • LCP model including F̂ = loading, Ĥ = hardening,

but not R̂ = yield limits,

• û = measured displacements of actual structure,

estimate yield limits R by solving the MPEC

min
R, (Q,u,λ)

‖u − û‖2

subject to (Q,u, λ) solves the Mixed LCP(R),

bounds on R.

Here R is the leader, (Q,u, λ) is the follower = piecewise linear

function of R.

This is an inverse parameter identification problem.
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6.4 Are MPECs typical optimization problems?

Looking ahead, No.

MPECs are unusually challenging nonlinear programs:

• have nonconvex polyhedral feasible sets even when all

constraint functions are linear

• violate NLP constraint qualifications if complementarity between

y ≥ 0 and F (x, y) ≥ 0 is written as dot product y>F (x, y) = 0

• nevertheless, seem amenable to NLP analysis and algorithms in

many cases.
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7 MPEC & NLP

7.1 Decomposition

7.2 B-stationarity and

a linear independence constraint qualification

7.3 Sequential NLP methods

7.4 NLP methods
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7.1 Decomposition

Focus on MPCC written as NLP:

min
z∈IRn

f(z)

subject to g(z) ≤ 0

G(z) ≥ 0,H(z) ≥ 0

G(z)>H(z) = 0

(MPCC)

where f : IRn → IR

g : IRn → IRp

G : IRn → IRm, H : IRn → IRm (n ≥ m)

are smooth, at least C2. Omit upper-level equality constraints ...

Lower-level problem is parametric NCP when z = (x, y), x is the

leader/design/control, y is the follower/response/state, and

H(x, y) = y. Then y solves

0 ≤ G(x, y) ⊥ y ≥ 0.
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Example 1. Two-variable MPCC, z = (x, y) ∈ IR2,

min
x,y∈IR

f(x, y) subject to x, y ≥ 0; x>y = 0.

Why is Example 1 not like a standard NLP?

Feasible set decomposes into

{(x,y) : x = 0 ≤ y}
∪ {(x, y) : x ≥ 0 = y}

which is polyhedral nonconvex; it consists of two “pieces” or

“branches”.
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Standard difficulties for nonlinear programming (NLP) ideas

applied to MPEC:

× The feasible set of is nonconvex, even when polyhedral

−→ if x, y vectors in IRm then there are 2m pieces

−→ even checking stationarity is combinatorial

× Typical nonlinear constraint qualifications, e.g. Mangasarian-

Fromowitz CQ, fail at all feasible points [Chen-Florian 94,

Ye-Zhu-Zhu 97].

−→ existence of Karush-Kuhn-Tucker (KKT) multipliers?

−→ numerical stability?

In spite of these difficulties, decomposition into pieces is very useful

under a linear independence condition ...
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7.2 B-stationarity and a

linear independence constraint qualification

Definition. A point feasible point of (MPCC) is B-stationary or

piecewise stationary if it is stationary, i.e. has KKT multipliers, for

each piece for which it is feasible.

Stationary conditions for Example 1

Let (0, 0) be local min, then it is “biactive”, hence stationary for

each of two pieces of (MPCC)

min
x,y

f(x, y) subject to x = 0 ≤ y,

min
x,y

f(x, y) subject to x ≥ 0 = y.

That is, (0,0) is B-stationary.

If x, y ∈ IRm then B-stationarity of (0, 0) ∈ IRm × IRm entails

stationarity on 2m pieces.
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Continuing Example 1 with local min (0,0):

These pieces of the MPEC share same Lagrangian, called

MPEC-Lagrangian,

L(x, y; µ, ν) = f(x, y) − τ>x − µ>y

and same KKT conditions excepting sign of multipliers τ, µ.

So Lagrangian conditions for each piece are the same

0 = ∇xL = ∇xf(0, 0) − τ∗

0 = ∇yL = ∇yf(0, 0) − µ∗

and, in fact, define same multipliers τ ∗, µ∗ for each piece. These

MPEC-multipliers must satisfy sign conditions for each piece,

τ∗, µ∗ ≥ 0

Otherwise (0,0) cannot be B-stationary (or a local min).
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Generally: if Lagrangian conditions define unique multipliers then

can check B-stationarity by looking at sign of multipliers for

biactive constraints [Luo-Pang-R 98, Scheel-Scholtes 00].

Stationary conditions are non-combinatorial !

Definition.

MPEC-LICQ says that active constraints, excluding

complementarity equations (x>y = 0 in Example 1), have linearly

independent gradients.

Obviously MPEC-LICQ ensures that Lagrangian conditions define

unique multipliers, if there are any, hence stationarity is easy to

check as above.

Check Example 1 at (0,0): active gradients — excluding the

complementarity equation — are (1, 0) and (0,1), LI vectors.
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MPEC-multipliers in decomposition active set approach

In Example 1, suppose (0, 0) is stationary for one piece. Look at

KKT multipliers τ , µ corresponding to x ≥ 0, y ≥ 0 respectively.

• If τ < 0 then, as in classical active set methods, there is

descent direction with x ≥ 0.

=⇒ determine next iterate by one step of NLP method on

piece of MPEC: min f(x, y) subject to x ≥ 0 = y.

• If µ < 0 then there is descent direction in piece x = 0 ≤ y.

• Finally, if τ, µ ≥ 0 then (0,0) is B-stationary point.

Globally convergent decomposition schemes [Stöhr-Scholtes 99,

Stöhr 99, Fukushima-Tseng 02], recently [Giallombardo-R 04].

See also general approach in [Scholtes 03]. PSQP method closely

related [Luo-Pang-R 96, 98], [Jiang-R 99, 02].

[Zhang-Liu 01] enumerates extreme rays, without MPEC-LICQ.
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7.3 Sequential NLP methods

Recall (MPCC)















min
z

f(z)

subject to g(z) ≤ 0

G(z),H(z) ≥ 0, G(z)>H(z) = 0

Sequential NLP:

• Embed (MPCC) into family (NLPε) indexed by scalar ε > 0

where, roughly speaking,

◦ CQ holds for each (NLPε)

◦ (NLPε) → (MPCC) as ε → 0+

• Algorithm.

Given εk > 0, use NLP method to find a stationary point zk of

(NLPεk). Let 0 < εk+1 < εk, k = k + 1, and repeat.

• Expect good behaviour of limit points of {zk} if εk → 0+
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Smoothing method goes back to [Facchinei-Jiang-Qi 99]. Use

smoothed Fischer-Burmeister function φε for small ε > 0:

min
z

f(z)

subject to g(z) ≤ 0

φε(Gi(z), Hi(z)) = 0 for all i

(Sε)

where φε(a, b) := a + b −
√

a2 + b2 + ε for any scalars a, b.

Regularization method, given small ε > 0:

min
z

f(z)

subject to g(z) ≤ 0

G(z), H(z) ≥ 0

Gi(z)Hi(z) ≤ ε (or = ε) for all i

(Rε)

56



Penalty method: Given small ε > 0, set penalty parameter 1/ε

and move the complementarity equation into the objective:

min
z

f(z) + 1
ε
G(z)T H(z)

subject to g(z) ≤ 0

G(z), H(z) ≥ 0

(Pε)

Straightforward convergence analysis available for

Clarke-stationary points of smoothing method, using

generalised gradients of active FB constraints

Globally optimal solutions, e.g.

If zk is a global min of (Pεk) and (zk, εk) → (z̄, 0+),

then z̄ is global min of (1).

Latter impractical since (Pεk) nonconvex =⇒ local solutions or

stationary points of (Pεk) are computationally desirable.
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Breakthrough for convergence of sequential NLP methods:

Smoothing. [Fukushima-Pang 00] smooth NLP family (Sε)

Followed shortly by

Regularisation. [Scholtes 01] regularisation/relaxation (Rε)

Penalty. [Hu-R 01] C2 penalty family (Pε)

[Huang-Yang-Zhu 01] F-B squared penalty term which is C1,1

but not C2.

Do Sequential NLP as above by “solving” (NLPεk)

• zk+1 is KKT point of (NLPεk)

• A Weak Second Order Necessary Condition, WSONC, is

required at zk+1

• Given MPEC-LICQ & nonzero multipliers of biactive

complementarity constraints (“upper-level strict

complementarity”), get B-stationary limit points of {zk}
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7.4 NLP methods

Sequential Quadratic Programming, SQP. Leyffer revisited

NLP methods by demonstrating superlinear convergence of

SQP codes Filter and SNOPT on MPECs, [Fletcher-Leyffer 02]

Local superlinear convergence analysis of SQP, e.g.

[Anitescu 03]

[Fletcher-Leyffer-R-Scholtes 02]

[Izmailov-Solodov 03]

[Wright 03]

Interior-point methods. Tailoring IP approaches to MPECs

shown to be effective, e.g.

[Benson-Shanno-Vanderbei 02]

[DeMiguel-Friedlander-Nogales-Scholtes 03]

[Liu-Sun 01]

[Raghunathan-Biegler 03]
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8 Active research topics

Do a GOOGLE search:

Stochastic MPEC

Global optimisation and bounding of MPEC

MPECs in infinite dimensions or Control of PDE

Bilevel games and EPECs
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9 Conclusion

MPECs/MPCCs

• include

- system design, optimising parameters in an equilibrium

setting

- parameter identification = inverse equilibrium problems, a

large application area.

• are not standard nonlinear programs.

• but are (locally) solvable by some standard NLP techniques

and codes

• require serious effort to understand computational performance
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