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Abstract

Using standard nonlinear programming (NLP) theory, we establish formulas for first and
second order directional derivatives for optimal value functions of parametric mathematical
programs with complementarity constraints (MPCCs). The main point is that under a linear
independence condition on the active constraint gradients, optimal value sensitivity of MPCCs is
essentially the same as for NLPs, in spite of the combinatorial nature of the MPCC feasible set.
Unlike NLP however, second order directional derivatives of the MPCC optimal value function
show combinatorial structure.

1 Introduction

In this note, derived largely from the doctoral thesis of the first author [8], we will study the
rate of change of the optimal value function and optimal solutions of the following parametric
mathematical program with complementarity constraints (MPCC):

Minimize
z

f(z, p)

subject to g(z, p) ≤ 0, h(z, p) = 0
G(z, p) ≥ 0, H(z, p) ≥ 0
G(z, p)T H(z, p) = 0

(P (p))

where f : Rn1+n2 → R, g : Rn1+n2 → Rm1 , h : Rn1+n2 → Rm2 , G : Rn1+n2 → Rm,H : Rn1+n2 → Rm

are smooth and p ∈ Rn2 is the parameter vector. Problem (P (p)) is the parametric version of the
problem studied in [5, 20, 21]. In fact, the literature on this subject often concerns unperturbed
MPCCs in the form z = (x, y) ∈ R(n1−m) × Rm and H(x, y) = y [12, 13, 14]. The motivation and
mathematical techniques are identical, however.

The area of mathematical programs with complementarity constraints has received much atten-
tion within recent years (see, [1, 13, 16] and references therein). Unfortunately, the presence of the
complementarity constraint G(z, p)T H(z, p) = 0 in (P (p)) implies a lack of nonlinear programming
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2 X. Hu and D. Ralph(NLP) regularity of the constraints [3] (see also [26]) and leads to theoretical and numerical diffi-
culties; see discussion in [13, Chapter 3] or [9, Section 5]. An alternative piecewise or disjunctive
approach recognizes the nonconvex, combinatorial nature of the problem by explicitly decomposing
the feasible region into a possibly huge number of “branches”, each of which has the format of
a standard, often regular, nonlinear programming feasible set. This means that checking MPCC
optimality conditions is equivalent to checking NLP optimality conditions on many branches, in
fact 2c branches where c is the number of indices i for which Gi(z, p) = 0 = Hi(z, p). However
the combinatorial aspect of optimality conditions is completely relieved if a linear independence
condition on active gradients, MPCC-LICQ, holds [14, 20]; see [25] for generalizations. Since the
MPCC-LICQ is a generic property of MPCCs [22], this means first order sensitivity analysis of
the optimal value function of an MPCC is generically noncombinatorial, that is independent of
branches.

Our main point is that under the MPCC-LICQ, standard NLP sensitivity analysis yields sensi-
tivity of the optimal value function of the MPCC as a natural consequence, despite the combinatorial
properties of the MPCC feasible set. We summarize the results of Sections 2 and 3. Given p ∈ Rm2 ,
the MPCC Lagrangean [13, 20] of (P (p)) is the function

L(z, p;λ, µ, ξ, η)
= f(z, p) + λT g(z, p) + µT h(z, p)− ξT G(z, p)− ηT H(z, p)

(1)

where z ∈ Rn1 , and (λ, µ, ξ, η) in Rm1 × Rm2 × Rm × Rm is the vector of MPCC multipliers. This
is the usual Lagrangean for the globally relaxed NLP which is derived from (P (p)) by dropping
the complementarity condition. Fix p̄ ∈ Rm2 and let z̄ be a local minimizer of (P (p̄)) at which
the usual LICQ for the globally relaxed NLP holds. It is well known [14, 20] that there exists a
unique MPCC multiplier vector (λ̄, µ̄, ξ̄, η̄) such that the partial gradient ∇zL(z̄, p̄; λ̄, µ̄, ξ̄, η̄) is zero.
We suppose a second-order sufficient condition or inf-compactness condition, that is related to but
weaker than an associated condition for the globally relaxed NLP, also holds at z̄. Then optimal
value function, W(p), for (P (p)) restricted to a neighborhood of z̄, is differentiable at p̄ with

∇W(p̄) = ∇pL(z̄, p̄; λ̄, µ̄, ξ̄, η̄).

That is, MPCC sensitivity is precisely classical sensitivity for the relaxed NLP. Likewise, the MPCC
multipliers λ̄, µ̄, ξ̄, η̄ are the usual shadow costs associated with changes to their respective con-
straint functions g, h, G, H.

Even under the MPCC-LICQ however, second order analysis of the optimal value function of
MPCC cannot generally avoid a combinatorial curse. Recall that the second order directional
differentiability of the optimal value function of a parametric NLP is linked with some kind of
second order sufficient conditions which, in turn, imply some kind of first order sensitivity of
optimal solutions [2, 23]. In Section 4 we will show that for parametric MPCCs, a similar story is
true. However an important difference between optimal solution sensitivity for MPCC and NLP
is that even a strong second order sufficient condition cannot guarantee local uniqueness of the
MPCC solution as the parameter varies. The difficulty is that each NLP branch has its own locally
unique solution depending on the same parameter; some of these solutions will be local or global
MPCC solutions.

Lucet and Ye [12] address the sensitivity problem for the optimal value function of mathe-
matical programs with variational inequality constraints, which include MPCCs, in a nonsmooth
setting. They establish an upper estimate of the set of the generalized gradients of optimal value



A note on sensitivity of MPCCs 3function using the Mordukhovich calculus [15]. The piecewise programming approach is used in
[12] to compare various types of multipliers. In this note, we focus on the classical directional
differentiability of optimal value functions of MPCCs, by using their straightforward and standard
NLP counterparts under the MPCC-LICQ. Analysis of the MPCC optimal value function does not
necessarily require the MPCC-LICQ if an appropriate generalized directional derivative is used, as
in [12], but this constraint qualification is attractive from the point of view of clarity of hypothesis,
results and analysis.

Scheel and Scholtes [20] also study sensitivity issues for parametric MPCCs. [20, Theorem 11]
gives conditions, including an “upper level strict complementarity” condition and a strong second
order sufficient condition, such that all relevant NLP branches share the same perturbed optimal
solution as the perturbation parameter changes. That is, under these conditions, the perturbed
MPCC solution is a locally unique function of the parameter. Unfortunately this pleasant outcome
is not as natural for MPCC as it appears to be for NLP; see Section 4. Another result, [20,
Theorem 12], shows the existence of a continuous selection of stationary points under a constant
sign condition on the determinants of certain matrices relating to the Lagrangean on each branch.
Example 12 in Section 4, however, shows that the global optimal solution set of a parametric MPCC
need not have a continuous selection.

2 Strict differentiability of local optimal value function

We first define the following active index sets corresponding to a feasible point z̄ of (P (p̄)):

IG(z̄, p̄) = {i ∈ {1, . . . ,m} : Gi(z̄, p̄) = 0}
IH(z̄, p̄) = {i ∈ {1, . . . ,m} : Hi(z̄, p̄) = 0}

We further define a nonempty family of index sets J ⊆ {1, . . . ,m},

J (z̄, p̄) = {J : J ⊂ IG(z̄, p̄), JC ⊆ IH(z̄, p̄)},

where JC = {1, . . . ,m} \ J . Next we have the following nonlinear program corresponding to
J ⊂ {1, . . . ,m}:

Minimize
z

f(z, p)

subject to g(z, p) ≤ 0, h(z, p) = 0
Gi(z, p) = 0, Hi(z, p) ≥ 0, i ∈ J
Gi(z, p) ≥ 0, Hi(z, p) = 0, i ∈ JC .

(NLPJ(p))

Each of these nonlinear programs is called an NLP branch of (P (p)) and its feasible set is called a
branch [9] of the MPCC. An important but trivial fact is that the the branches over J ∈ J (z̄, p̄)
form a neighborhood of z̄ in the feasible set of (P (p̄)). As a result, first and second order conditions
can be specified in terms of NLP branches, e.g. Definition 1 and 4 below. Unfortunately the
cardinality of J (z̄, p̄) may be rather large, namely 2c where c is the number of indices i such that
Gi(z̄, p̄) = 0 = Hi(z̄, p̄).

Recall the MPCC Lagrangian function L(z, p;λ, µ, ξ, η) defined in (1). Observe that it is inde-
pendent of J , and coincides with the usual Lagrangian function for each (NLPJ(p)).



4 X. Hu and D. RalphDefinition 1 A feasible point z̄ of (P (p̄)) is said to be a piecewise stationary [13] or B-stationary
[20] point of (P (p̄)) if z̄ is a stationary point of NLPJ(p̄) for each J ∈ J (z̄, p̄), that is, for each
J ∈ J (z̄, p̄), there exist KKT multipliers λ̄J , µ̄J , ξ̄J and η̄J such that

∇zL(z̄, p̄; λ̄J , µ̄J , ξ̄J , η̄J) = 0, (2)
(λ̄J)T g(z̄, p̄) = 0, λ̄J ≥ 0
ξ̄J
i Gi(z̄, p̄) = 0, ξ̄J

i ≥ 0, for i ∈ JC

η̄J
i Hi(z̄, p̄) = 0, η̄J

i ≥ 0, for i ∈ J

The definition of B-stationarity above is actually slightly different from, but equivalent to, the
original one given by Scheel and Scholtes [20].

Definition 2 The following nonlinear program is called the global NLP relaxation of (P (p)):

Minimize
z

f(z, p)

subject to g(z, p) ≤ 0, h(z, p) = 0
G(z, p) ≥ 0,H(z, p) ≥ 0

(3)

and the following nonlinear program is called the (local) NLP relaxation [13] at (z̄, p̄) of (P (p̄)):

Minimize
z

f(z, p̄)

subject to g(z, p̄) ≤ 0, h(z, p̄) = 0
Gi(z, p̄) = 0 i : Hi(z̄, p̄) > 0,
Hi(z, p̄) = 0 i : Gi(z̄, p̄) > 0,
Gi(z, p̄) ≥ 0 and Hi(z, p̄) ≥ 0 all other i.

(4)

The following condition has been widely used in MPCC literature [5, 13, 14, 21]. It is just the
usual linear independence constraint qualification at z̄ for the global NLP relaxation of (P (p̄)). Let
IG(z, p) and IH(z, p) be as above and, similarly, Ig(z, p) be the set of active indices of g at (z, p).

Definition 3 The linear independence constraint qualification for MPCC (P (p̄)) (MPCC-LICQ)
is said to hold at a feasible point z̄ of this problem if the following gradients,{

∇zgi(z̄, p̄)
}

i∈Ig(z̄,p̄)
,

{
∇zhi(z̄, p̄)

}m2

i=1
,

{
∇zGi(z̄, p̄)

}
i∈IG(z̄,p̄)

,
{
∇zHj(z̄, p̄)

}
i∈IH(z̄,p̄)

are linearly independent.

MPCC-LICQ is a nontrivial assumption but one that holds in some sense generically [22].
Under MPCC-LICQ, local minima of (P (p̄)) are B-stationary points [14, 20]. Moreover, if z̄ is a
B-stationary point at which MPCC-LICQ holds, then

i) for each J ∈ J (z̄, p̄), there exists a unique KKT multiplier vector (λ̄J , µ̄J , ξ̄J , η̄J) correspond-
ing to z̄ for (NLPJ(p̄)); and

ii) since the Lagrangian gradient equation (2) specifies the KKT multiplier uniquely and is
independent of J , the associated multiplier vector is also independent of J .



A note on sensitivity of MPCCs 5In short, there is a unique multiplier vector (λ̄, µ̄, ξ̄, η̄), called the MPCC multiplier vector, that
satisfies (2), and this MPCC multiplier vector is the unique KKT multiplier at z̄ for each (NLPJ(p̄)).

Under the MPCC-LICQ one can easily deduce [14, 20] that the MPCC multiplier is also the
unique KKT multiplier z̄ of the local NLP relaxation (4). If the vectors ξ̄ and η̄, which correspond
to complementarity functions, are nonnegative, then the MPCC multiplier is also the unique KKT
multiplier at z̄ of the global NLP relaxation (3).

We give a strong second order sufficient condition, denoted MPCC-SSOSC, for the problem
(P (p̄)) based on the branching structure of the feasible set about a given feasible point z̄. It is
closely related to the second-order sufficient conditions for mathematical programs with nonlinear
complementarity constraints discussed in [13]. The standard SSOSC [18] for the global NLP relax-
ation at z̄ is sufficient but not necessary for MPCC-SSOSC, though it is a useful concept in some
MPCC algorithms [21].

Definition 4 Let z̄ be a B-stationary point of (P (p̄)) with a unique MPCC multiplier vector
(λ̄, µ̄, ξ̄, η̄). We say that the strong second order sufficient condition (MPCC-SSOSC) for (P (p̄))
holds at z̄ if

dT∇2
zzL(z̄, p̄; λ̄, µ̄, ξ̄, η̄)d > 0

for each J ∈ J (z̄, p̄) and every nonzero d satisfying

∇zgi(z̄, p̄)T d = 0, i : λ̄i > 0
∇zh(z̄, p̄)d = 0,
∇zGi(z̄, p̄)T d = 0, i : either i ∈ J or (i ∈ JC and ξ̄i > 0)
∇zHi(z̄, p̄)T d = 0, i : either i ∈ Jc or (i ∈ J and η̄i > 0)

(5)

Remark 5 The above second order condition is piecewise, i.e. posed with respect to active branches.
A related condition is used in [20, Theorem 12], that is a constant sign condition on the determinants
of certain matrices of the Lagrangean functions corresponding to (NLPJ(p̄)), for some J .

A sufficient condition for MPCC-SSOSC that does not use the branching structure of the feasible
set, is positive definiteness of the Hessian matrix ∇2

zzL(z̄, p̄; λ̄, µ̄, ξ̄, η̄) on the directions d satisfying
the first two conditions of (5) as well as

∇zGi(z̄, p̄)T d = 0, i : either Hi(z̄, p̄) > 0 or ξ̄i > 0
∇zHi(z̄, p̄)T d = 0, i : either Gi(z̄, p̄) > 0 or η̄i > 0.

This condition is implied by the conditions of [20, Theorem 11]. Moreover, it is precisely the
standard SSOSC for the local NLP relaxation of (P (p̄)) at (z̄, p̄).

Our main result in this section is next. We need some notation for localized global optimal value
functions. Fix z̄ as a feasible point of (P (p̄)) and let N (z̄) denote a sufficiently small neighborhood
of z̄. For p near p̄ and J ∈ J (z̄, p̄),

let W(p) be the global optimal value function of (P (p)) with the extra constraint z ∈ N (z̄);
and

let WJ(p) be the global optimal value function of (NLPJ(p)) with the extra constraint z ∈
N (z̄).



6 X. Hu and D. RalphThe role of N (z̄) is indirect; under the conditions of the next theorem, for p near p̄, the values
of W(p) and each WJ(p) are attained in the interior of N (z̄) at local minimizers of (P (p)) and
(NLPJ(p)) respectively.

Recall strict differentiability at p̄ of a Lipschitz function W : Rn → Rm is equivalent [4] to the
derivatives ∇W (p), where they exist, converging to ∇W (p̄) as p → p̄.

Theorem 6 Let z̄ be a B-stationary point of (P (p̄)). If MPCC-LICQ and MPCC-SSOSC hold for
(P (p̄)) at z̄ then

1) z̄ is an isolated optimal solution of (P (p̄));

2) the optimal value function W(p) is piecewise smooth (hence Lipschitz) near p̄; and

3) the optimal value function W(p) is strictly differentiable at p̄, with gradient ∇W(p̄) =
∇pL(z̄, p̄; λ̄, µ̄, ξ̄, η̄).

Proof First of all, MPCC-LICQ and MPCC-SSOSC imply the usual LICQ and SSOSC at z̄ for
each (NLPJ(p̄)), J ∈ J (z̄, p̄). Standard NLP theory [10, 18] says z̄ is an isolated optimal solution
of each (NLPJ(p̄)), hence of the MPCC since these branches form a neighborhood of z̄ in the
feasible set of (P (p̄)). In fact, for each J ∈ J (z̄, p̄), by the well known implicit function theorem
for NLP [11, Theorem 7.2], there is a neighborhood OJ(p̄) of p̄ and a neighborhood N J(z̄) of z̄
such that the optimization problem (NLPJ(p)) with the additional constraint z ∈ N J(z̄) added
has a unique optimal solution zJ(p) for p ∈ OJ(p̄) and zJ(·) is continuous in p ∈ OJ(p̄). Now, let
N (z̄) = ∩

J∈J (z̄,p̄)
N J(z̄) in the definition of W(·) and WJ(·).

Second, for J ∈ J (z̄, p̄), the same NLP theory says WJ(p) is C1 near p̄ and its derivative
∇WJ(p̄) equals the partial derivative with respect to p of its Lagrangean function at (z̄, p̄). Since
the Lagrangian function and KKT multipliers at z̄ for each (NLPJ(p̄)) are independent of J , and
coincide with the MPCC Lagrangean and MPCC multipliers at z̄, respectively, we have ∇WJ(p̄) =
∇pL(z̄, p̄; λ̄, µ̄, ξ̄, η̄) for each such J .

Finally, for p near p̄, W(p) is the minimum value of the C1 functions WJ(p) for J ∈ J (z̄, p̄),
hence it is piecewise smooth (PC1). It is, furthermore, strictly differentiable at p̄ since the gradients
∇WJ(p̄) are independent of J ; this conclusion relies on standard arguments for min (or max)
functions or PC1 functions. �

Part 1) has appeared in a number of forms, see [13, 14, 20], and Part 3) is related to Lucet and
Ye’s recent work [12].

Remark 7 The theorem implies that, under MPCC-LICQ and MPCC-SSOSC, the rate of change
of the MPCC optimal value function with respect to the parameter coincides with the rate of change
of the optimal value function of any one of (NLPJ(p̄)) with J ∈ J (z̄, p̄). That is, ∇W(p̄) = ∇WJ(p̄)
for each J ∈ J (z̄, p̄).

Remark 8 The MPCC multipliers are, as usual in NLP, shadow prices corresponding to per-
turbations of the constraint functions (excluding the complementarity function G(z, p)T H(z, p)).
Consider a special case of (P (p)) with only right-hand side perturbations, that is

Minimize
z

f(z)

subject to g(z)− pg ≤ 0, h(z)− ph = 0
G(z)− pG ≥ 0,H(z)− pH ≥ 0
(G(z)− pG)T (H(z)− pH) = 0



A note on sensitivity of MPCCs 7with the parameter vector p = (pg, ph, pG, pH). Theorem 6 gives conditions under which the change
rate of the optimal value function under any of the constraints is exactly the corresponding MPCC
multiplier. Lucet and Ye [12, Corollary 3.5] obtained essentially the same result relating optimal
value sensitivity to shadow prices, with a slightly different problem format, as a corollary of more
general results in nonsmooth analysis.

3 Directional differentiability of global optimal value functions

Here we establish the directional differentiability of the global optimal value function of (P (p))
under MPCC-LICQ and the inf-compactness assumption. First, we introduce notation for global
optimal value functions.

Let V(p) be the global (infimal) optimal value function of (P (p)) and S(p) denote the corre-
sponding set of global optimal solutions (possible empty).

Let VJ(p) be the global (infimal) optimal value function of (NLPJ(p)), and SJ(p) be the set
of global optimal solutions.

Inf-Compactness Assumption [23, Assumption 1, p.217]: There exist a number α and a compact
set S ⊂ Rn1 such that α > V(p̄) and the set

{z : f(z, p) ≤ α and z is feasible for (P (p))} ⊂ S (6)

for all p in a neighborhood of p̄.

It is easy to see that MPCC-LICQ at a feasible point z0 of (P (p̄)) allows, following the standard
implicit function theorem (see [7] for the NLP case), construction of feasible solutions of (P (p))
and (NLPJ(p)) for J ∈ J (z0, p̄) near z0 for p in some neighborhood of p̄. Moreover, it is easy
to see that the Inf-Compactness Assumption implies the inf-compactness of (NLPJ(p)) for each
J ∈ J̄ := {J : J ∈ J (z̄, p̄), z̄ ∈ S(p̄)} since for the same α, S, and the same neighborhood of p̄ in
the Inf-Compactness Assumption the set {z : f(z, p) ≤ α, z is feasible for (NLPJ(p))} is a subset
of the level set in (6) and V(p̄) = VJ(p̄) for J ∈ J̄ .

We will apply the standard sensitivity results [6, 7, 23] for the optimal value function of a NLP
to that of (P (p)) under the inf-compactness, instead of the stronger uniform compactness [6] or inf-
boundedness [19], together with the MPCC-LICQ. The result for a NLP under the inf-compactness
and the NLP-LICQ can be established by repeating the processes in [7, 23, 6], but we follow
another way here to apply the explicitly-stated results which hold under the uniform compactness
assumption in [6]. First we state a result for a parametric NLP. Its proof is straightforward and is
given in Appendix.

Consider the parametric NLP with smooth functions f, g, h:

(NLP (p))
Minimize

z
f(z, p)

subject to g(z, p) ≤ 0, h(z, p) = 0.

Let V (p) and S(p) denote the global optimal value function and the set of global optimal solutions
of (NLP (p)), respectively and let L(z, p;λ, µ) = f(z, p) + λT g(z, p) + µT h(z, p) be the Lagrangean
of (NLP (p)) at (z, p).



8 X. Hu and D. RalphProposition 9 Suppose the Inf-Compactness Assumption holds with V (p) replacing V(p) and
(NLP (p)) replacing (P (p)). Suppose further that the usual LICQ holds for (NLP (p̄)) at each
z ∈ S(p̄). Then the optimal value function V (p) is Lipschitz and directionally differentialbe near
p̄, and its directional derivative at p̄ in the direction q is given by

V ′(p̄; q) = min
z̄∈S(p̄)

{∇pL(z̄, p̄; λ̄, µ̄)T q}

where (λ̄, µ̄) denotes the Lagrangian multiplier vector of (NLP (p̄)) at the optimal solution z̄ ∈ S(p̄).

Under MPCC-LICQ, the first order sensitivity result for the optimal value function of (P (p))
is exactly the same as that in standard nonlinear programming theory:

Theorem 10 Under the Inf-Compactness Assumption, if MPCC-LICQ holds at each z̄ ∈ S(p̄)
then the optimal value function V(·) is Lipschitz and directionally differentiable near p̄. Moreover,
the directional derivative of V(·) at p̄ in any direction q is given by

V′(p̄; q) = min
z̄∈S(p̄)

{
(
∇pL(z̄, p̄; λ̄, µ̄, ξ̄, η̄)

)T
q} (7)

where (λ̄, µ̄, ξ̄, η̄) denotes the vector of MPCC multipliers that is uniquely defined by each z̄ ∈ S(p̄).
In particular, when S(p̄) is a singleton, the optimal value function V(·) is strictly differentiable at p̄.

Proof Without any assumptions we know V(p) is the minimum of VJ(p) over all branches
J ⊂ {1, . . . ,m}, where VJ takes the value +∞ or −∞ if (NLPJ(p)) is infeasible or unbounded,
respectively. First, we claim for p near p̄ that

V(p) = min
J∈J̄

VJ(p). (8)

Nonemptiness of J̄ is due to nonemptiness of S(p̄), which is a consequence of the Inf-Compactness
Assumption. Of course V(p) ≤ minJ∈J̄ VJ(p). The reverse inequality follows from finite cardinality
of the set of all branch indices J and the Inf-Compactness Assumption, for if pk → p̄ then there
is a branch index J such that V(pk) = VJ(pk) for infinitely many k, and, using inf compactness in
the limit, we get V(p̄) = VJ(p̄) and S(p̄) ∩ SJ(p̄) 6= ∅. To avoid a contradiction, (8) follows.

Second, for any J ∈ J̄ , S(p̄) ∩ SJ(p̄) is nonempty and thus ∅ 6= SJ(p̄) ⊂ S(p̄). The MPCC-
LICQ assumption therefore gives the LICQ for (NLPJ(p̄)) at each member of SJ(p̄), hence also
nonemptiness of the NLP feasible set for p near p̄. The condition i) in Proposition 9 for (NLPJ(p))
follows from the Inf-Compactness Assumption. By Proposition 9, the optimal value function VJ(p)
is Lipschitz near p̄ and directionally differentiable near p̄ with

V ′
J(p̄; q) = min

z∗∈SJ (p̄)
∇pL(z∗, p̄;λ∗, µ∗, ξ∗, η∗)T q (9)

where, from the MPCC-LICQ, (λ∗, µ∗, ξ∗, η∗) is the unique KKT multiplier corresponding to z∗ for
(NLPJ(p̄)) and we are using the MPCC Lagrangean since it coincides with the Lagrangean for the
NLP branch.

Finally, we apply the standard formula for directional derivatives of min functions to (8), as
described in the Appendix, see (12); details (for max functions) appear in [17, Section 5.4]. We
have

V′(p̄; q) = min
J∈J̄ (p̄)

V ′
J(p̄; q)



A note on sensitivity of MPCCs 9where J̄ (p̄) = {J ∈ J̄ : VJ(p̄) = V(p̄)}. Using (9) gives

V′(p̄; q) = min
J∈J̄ (p̄)

min
z∗∈SJ (p̄)

{
(
∇pL(z∗, p̄;λ∗, µ∗, ξ∗, η∗)

)T
q}.

It can be checked that the set {z∗ : z∗ ∈ SJ(p̄), J ∈ J̄ (p̄)} is exactly S(p̄) and (7) follows. �

Lucet and Ye [12] establish some inclusion relations between the set of the generalized gradients
of the optimal value function of an MPCC in a slightly different format to (P (p)). Their result
[12, Theorem 4.8] is related to Theorem 10, but describes the generalized gradient of the optimal
value function by using a generalized equation approach involving nonsmooth functions, where the
Mordukhovich calculus is applied to obtain CD (coderivative) multipliers. It may be worth noting
that the set of generalized gradients does not necessarily describe the directional derivative or vice
versa.

Corollary 11 is a local version of Theorem 10. It provides most of the conclusions of Theorem 10,
except piecewise smoothness of W(·), while weakening the MPCC-SSOSC to the requirement that
z̄ is an isolated local minimizer of (P (p̄)). The latter requirement implies that the Inf-Compactness
Assumption will hold if feasibility is restricted to a small enough neighborhood of z̄.

Corollary 11 Let z̄ be an isolated local minimum of (P (p̄)) at which the MPCC-LICQ holds.
Then the optimal value function W(p) is Lipschitz near p̄ and strictly differentiable at p̄ with
∇W(p̄) = ∇pL(z̄, p̄; λ̄, µ̄, ξ̄, η̄).

4 Second order sensitivity analysis and some elementary observa-
tions

Unlike in the NLP case, the following example shows that the MPCC-LICQ plus MPCC-SSOSC do
not ensure local uniqueness of the optimal solution, or existence of a continuous selection from the
set of global optimal solutions, or smoothness of the optimal value function near p̄. Nevertheless it
is easy to see that the set of all local optimal solutions of (P (p)) near z̄ is a continuous set-mapping
at p̄ under MPCC-LICQ and MPCC-SSOSC.

Example 12 Consider
Minimize

z
(x− p)2 + (y − q(p))2

subject to x ≥ 0, y ≥ 0
xy = 0

where q : R1 → R1 is the twice continuously differentiable function given by

q(p) =
{

p + p5 sin(π
p ), if p 6= 0;

0, if p = 0.

So, the set S(p) of global optimal solutions for p > 0 is

S(p) =


{(0, q(p))}, if p ∈ ∪k∈N( 1

2k+1 , 1
2k );

{(p, 0)}, if p ∈ ∪k∈N( 1
2k , 1

2k−1);
{(p, 0), (0, q(p))}, if p ∈ { 1

k : k ∈ N};
{(0, 0)}, otherwise.



10 X. Hu and D. Ralphwhere N is the set of positive integers. Observe that every selection function of S(p) is discontinuous
at p = 1/k, k ∈ N, hence S(p) has no continuous selection function in a neighborhood of p = 0.

The optimal value function of the problem for p > 0 is

V(p) =


p2, for p ∈ ∪k∈N( 1

2k+1 , 1
2k );

q(p)2, for p ∈ ∪k∈N( 1
2k , 1

2k−1);
p2 + q(p)2, otherwise .

which is not differentiable at p = 1
2k or 1

2k−1 for all k ∈ N.

Now we establish that second order sensitivity of the optimal value function of (P (p)), though
similar to that in NLP case, is no longer independent of the branches.

We use the notation of [23] for second order directional derivatives: if, for ϕ : Rn2 → R, the
following limit

lim
t→0+

ϕ(p(t))− ϕ(p̄)− tϕ′(p̄; d)
t2

exists for all d,w ∈ Rn2 and any p(t) = p̄ + td + t2w + o(t2), then we say ϕ(·) is second order
directionally differentiable at p̄; the limit is denoted by ϕ′′(p̄; d, w).

The next example is taken from [20], which also shows the lack of local uniqueness of parametric
solutions.

Example 13 [20] Let z = (x, y) ∈ R2 and consider the following simple program:

Minimize
z

f(z, p) = (x− p1)2 + (y − p2)2

subject to G1(z, p) = x ≥ 0,H1(z, p) = y ≥ 0
G1(z, p)H1(z, p) = xy = 0

with parameter vector p = (p1, p2) at p̄ = (p̄1, p̄2) = (0, 0), where z̄ = (x̄, ȳ) = (0, 0) is the unique
local and global optimal solution of the problem at p̄. Note that SSOSC mentioned in Remark 5
holds for this MPCC at (z̄, p̄).

The family of branches J (z̄, p̄) consists of the index sets J = ∅ and J = {1}. It is easy to see
that

V∅(p1, p2) =
{

p2
2, if p1 ≥ 0,

p2
1 + p2

2, otherwise
and V{1}(p1, p2) =

{
p2
1, if p2 ≥ 0,

p2
1 + p2

2, otherwise

Each of the derivatives of V∅ and V{1} is zero at p̄.
The global optimal value function of the MPCC is

V(p1, p2) =
{

min{p2
1, p

2
2}, if p1 ≥ 0, p2 ≥ 0;(

(p1)−
)2 +

(
(p2)−

)2
, otherwise

which is also differentiable at (0, 0), where (α)− = min{α, 0}.
For d = (d1, d2) with d1 > 0, d2 > 0 and w = (w1, w2) ∈ R2, it can be seen that

V′′(p̄; d,w) = min{d2
1, d

2
2} = min{V ′′

{1}(p̄; d, w), V ′′
∅ (p̄; d,w)}



A note on sensitivity of MPCCs 11A second order directional derivative formula for the optimal value function of (P (p)) under
MPCC-SSOSC in addition to the Inf-Compactness Assumption and MPCC-LICQ is given below.
Note the explicit combinatorial construction needed there. Before stating this result, we need a
technical result on the second order directional derivatives of min (or max) function, whose proof
uses standard ideas and appears in Appendix.

Recall that a function g : Rn2 → R is said to be directionally differentiable in the Hadamard
sense at p̄ ∈ Rn2 if it is directionally differentiable at p̄ such that for each d ∈ Rn2 , there exists the
limit

lim
t→0+,d′→d

g(p̄ + td′)− g(p̄)
t

which must therefore coincide with g′(p̄; d).
It is easy to see that if g(·) is locally Lipschitz near p̄ and it is directionally differentiable at

p̄ then g(·) is directionally differentiable at p̄ in the Hadamard sense. In particular, under the
assumptions of Theorem 10, the global optimal value function V(p) is directionally differentiable
at p̄ in the Hadamard sense.

Proposition 14 Consider
φ(·) = min

w∈W
φw(·)

where W is a finite index set and φw : Rn1 → R1. Let φw(·) be directionally differentiable at z̄ in
the Hadamard sense for each w ∈ W . If φ′′w(z̄; d, q) exists for all d, q ∈ Rn1, then φ(·) is also twice
directionally differentiable at z̄ and its second order directional derivative is

φ′′(z̄; d, q) = min
w∈Iφ′ (z̄;d)

φ′′w(z̄; d, q) (10)

where Iφ(z̄) = {w : φw(z̄) = φ(z̄)} and Iφ′(z̄; d) = {w ∈ Iφ(z̄) : φ′(z̄; d) = φ′w(z̄; d)}.

Theorem 15 Under the Inf-Compactness Assumption, if MPCC-LICQ and MPCC-SSOSC hold
at each z̄ ∈ S(p̄), then V(·) is twice directionally differentiable at p̄, and the second order directional
derivative is

V′′(p̄; d, w) = min
z̄∈M(p̄)

min
J∈J (z̄,p̄)

V ′′
J (p̄; d, w) (11)

where M(p̄) := {z̄ ∈ S(p̄) :
(
∇pL(z̄, p̄; λ̄, µ̄, ξ̄, η̄)

)T
d = V′(p̄; d)}.

Proof First, note from the proof of Theorem 10 that V(p) is the min function minJ∈J̄ VJ(p) for
p near p̄, where each VJ(·) is Lipschitz near p̄ and directionally differentiable at p̄. Second, the
MPCC-SSOSC implies the usual SSOSC at z̄ for each (NLPJ(p̄)), J ∈ J̄ . Standard results [23]
give second order directional differentiability of the associated global optimal value functions VJ(·)
at p̄. Third, min functions of locally Lipschitz, twice directionally differentiable mappings are seen
to be twice directionally differentiable by standard techniques (see Appendix), giving

V′′(p̄; d, w) = min
J∈J̄ ′(z̄,p̄)

V ′′
J (p̄; d, w)

where J̄ ′(z̄, p̄) = {J : VJ(p̄) = V(p̄), V ′
J(p̄; d) = V′(p̄; d)}. Finally, (11) follows after showing that

J̄ ′(z̄, p̄) = {J : J ∈ J (z̄, p̄) for some z̄ ∈ M(p̄)}. �



12 X. Hu and D. RalphSome investigations, e.g. [23], relax the constraint qualification and second order conditions for
NLPs and still obtain second order directional derivatives of the optimal value functions. Theo-
rem 15 can be similarly relaxed.

Also, there are several different notions of second order directional derivatives used to analyse
the second order variations of NLP optimal value functions, see the survey paper [2]. We can
replace V′′(p̄; d,w) in (11) by any of them under the appropriate conditions.

Theorem 15 can be applied to the case of locally unique MPCC solution z̄ ∈ S(p̄). Here V(·)
becomes the global minimum of MPCC near z̄.
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14 X. Hu and D. RalphAppendix

Proof of Proposition 9
First, it is easy to see that there exists a neighborhood N1(p̄) ⊂ N(p̄) of p̄ such that V (p) < α for
p ∈ N1(p̄) under the assumptions of the proposition since (NLP (p)) is feasible for all p near p̄ due
to the LICQ at all solutions of (NLP (p̄)), whose solution set is not empty under the assumptions.
Then we consider the following NLP:

(NLPα(p))
Minimize

z
f(z, p)

subject to g(z, p) ≤ 0, h(z, p) = 0
f(z, p) ≤ α

where the constraint f(z, p) ≤ α is inactive at any optimal solution of (NLPα(p)) when p ∈ N1(p̄).
In particular, the LICQ holds for (NLPα(p̄)) and the uniform compactness [6, Definition 3.3]
holds for (NLPα(p)) with p near p̄. Let V α(p) denote the optimal value function of (NLPα(p)).
Then V α(p) is locally Lipschitz [6, Theorem 5.1] near p̄ and V α(p) is directionally differentiable [6,
Corollary 4.4] at p̄. Moreover, its directional derivative [6, Corollary 4.4] is given by the formula
specified in the proposition. Note that the conditions of the proposition remain valid under small
perturbations of p̄, hence V α is directionally differentiable near p̄.

Now, for p ∈ N1(p̄), we have V (p) = V α(p). So, the proposition follows. �

Consider the min function φ(z) = minw φw(z) defined in Proposition 14. If φw(·) is Lipschitz
near z̄ and directionally differentiable at z̄ for each w ∈ W , then by standard results, see [17, Section
4.5], φ(·) is directionally differentiable in the Hadamard sense at z̄ and its directional derivative is
given by

φ′(z̄; d) = min
w∈I(z̄)

φ′w(z̄; d) (12)

where I(z̄) := {w ∈ W : φw(z̄) = φ(z̄)}.

Proof of Proposition 14
It is easy to see that Iφ′(z̄; d) 6= ∅ and that for any z(t) = z̄ + td + t2q + o(t2),

lim sup
t→0+

φ(z(t))− φ(z̄)− tφ′(z̄; d)
t2

≤ φ′′w(z̄; d, q) for any w ∈ Iφ′(z̄; d).

Now, for those indices w′ ∈ Iφ(z̄) \ Iφ′(z̄; d), one has

φw′(z(t)) > φw(z(t)), for any w ∈ Iφ′(z̄; d)

because φw′(·)−φw(·) is directionally differentiable in the Hadamard sense at z̄ for any w ∈ Iφ′(z̄; d)
and φ′w′(z̄; d) > φ′w(z̄; d). Therefore, one has

lim inf
t→0+

φw′(z(t))− φ(z̄)− tφ′(z̄; d)
t2

≥ lim
t→0+

φw(z(t))− φ(z̄)− tφ′(z̄; d)
t2

= φ′′w(z̄; d, q) (13)

for any w ∈ Iφ′(z̄; d).
Let {tk} → {0+} such that

lim
tk→0+

φ(z(tk))− φ(z̄)− tkφ
′(z̄; d)

t2k
= lim inf

t→0+

φ(z(t))− φ(z̄)− tφ′(z̄; d)
t2

.



A note on sensitivity of MPCCs 15Since W is a finite set, there is at least one index v such that

lim inf
t→0+

φ(z(t))− φ(z̄)− tφ′(z̄; d)
t2

= lim
tk→0+

φv(z(tk))− φv(z̄)− tkφ
′
v(z̄; d)

t2k

where if necessary, we can choose some convergent subsequence of {tk}. By (13), without loss of
generality, we can assume that v ∈ Iφ′(z̄; d). Hence,

lim inf
t→0+

φ(z(t))− φ(z̄)− tφ′(z̄; d)
t2

= φ′′v(z̄; d, q) ≥ min
w∈Iφ′ (z̄;d)

φ′′w(z̄; d, q)

which implies the formula (10). �


