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Abstract

Mathematical programs with nonlinear complementarity constraints are refor-
mulated using better-posed but nonsmooth constraints. We introduce a class of
functions, parameterized by a real scalar, to approximate these nonsmooth prob-
lems by smooth nonlinear programs. This smoothing procedure has the extra
benefits that it often improves the prospect of feasibility and stability of the con-
straints of the associated nonlinear programs and their quadratic approximations.
We present two globally convergent algorithms based on sequential quadratic pro-
gramming, SQP, as applied in exact penalty methods for nonlinear programs.
Global convergence of the implicit smooth SQP method depends on existence of
a lower-level nondegenerate (strictly complementary) limit point of the iteration
sequence. Global convergence of the explicit smooth SQP method depends on
a weaker property, i.e. existence of a limit point at which a generalized constraint
qualification holds. We also discuss some practical matters relating to computer
implementations.
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1 Introduction

Mathematical programs with equilibrium constraints (MPEC for short) form a rela-
tively new and interesting class of optimization problems. The roots of MPEC lie in
game theory and especially bilevel optimization. MPEC include a number of significant
applications in economics and engineering. See the monograph [28] for comprehensive
theoretical treatment, applications and references.

The MPEC considered in this paper is a mathematical program with nonlinear
complementarity problem (NCP) constraints:

min
x,y

f(x, y)

subject to g(x, y) ≥ 0
0 ≤ F (x, y) ⊥ y ≥ 0

(1)

where f : <n+m → <, g : <n+m → <l, F : <n+m → <m are continuously differen-
tiable, and w ⊥ y indicates orthogonality of any vectors w, y ∈ <m. The constraints
g(x, y) ≥ 0 are called the upper-level constraints. By lower-level or equilibrium con-
straints we mean the system 0 ≤ F (x, y) ⊥ y ≥ 0, which constitutes a nonlinear
complementarity problem in y for each fixed x.

We omit equality constraints in the upper-level for simplicity, but these can easily be
handled and would be useful for the following case. Lower-level mixed complementarity
constraints [7] can be dealt with quite easily by moving equations and their associated
variables to the upper level. For example, consider the following lower-level mixed
complementarity constraints

F1(x, y, z) = 0
0 ≤ F2(x, y, z) ⊥ z ≥ 0,

where F1 : <n+m1+m2 → <m1 , F2 : <n+m1+m2 → <m2 . By renaming the tuple (x, y)
as the upper-level vector and z as the lower-level vector, and moving the equations
F1(x, y, z) = 0 to the upper level, we obtain an MPEC with upper-level constraints
that are specified by nonlinear equalities and inequalities, and lower-level nonlinear
complementarity constraints.

Clearly, the MPEC (1) is equivalent to the smooth nonlinear program (NLP) ob-
tained by writing the complementarity condition F (x, y) ⊥ y as an inner product
F (x, y)T y = 0. Unfortunately, it has been proved [4] that the Mangasarian-Fromovitz
Constraint Qualification does not hold at any feasible point of this smooth NLP even if
the usual inequality constraints g(x, y) ≥ 0 are omitted and the lower-level NCP prob-
lem has very fine properties such as strong monotonicity with respect to y. Since this
constraint qualification is almost synonymous with numerical stability of the feasible
set, its failure to hold suggests that well-developed nonlinear programming theory and
numerical methods are not readily applicable for solving this form of MPEC: the fea-
sible set of the smooth NLP is numerically ill posed. See [19, 28] for more discussions
and numerical examples.

Instead we let w = F (x, y) and substitute a nonsmooth equation Φ(y, w) = 0 ∈ <m,
constructed using the Fischer-Burmeister functional [9] for example, for the comple-
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mentarity problem y, w ≥ 0, yTw = 0:

min
x,y,w

f(x, y)

subject to g(x, y) ≥ 0
F (x, y)− w = 0
Φ(y, w) = 0.

(2)

The mapping Φ is then “smoothed” by introducing a parameterization Ψ(y, w, µ) that
is differentiable if the scalar µ is nonzero but coincides with Φ(y, w) when µ = 0.
By a smoothing method we mean an algorithm that solves (1) either by solving an
augmented problem like

min
x,y,w,µ

f(x, y)

subject to g(x, y) ≥ 0
F (x, y)− w = 0
Ψ(y, w, µ) = 0,
eµ − 1 = 0,

(3)

where e is Euler’s constant, so that the last constraint requires µ = 0 (cf. [18] for
complementarity problems); or by approximately solving the following problem for a
sequence of values µ = µk → 0,

min
x,y,w

f(x, y)

subject to g(x, y) ≥ 0
F (x, y)− w = 0
Ψ(y, w, µ) = 0.

(4)

The introduction of the smoothing parameter µ has three consequences: Nonsmooth
problems are transformed into smooth problems, except when µ = 0; well-posedness
can be improved in the sense that feasibility and constraint qualifications, hence stabil-
ity, are often more likely to be satisfied for all values of µ; and solvability of quadratic
approximation problems is improved. This opens the way to use sequential quadratic
programming (SQP) methods from classical nonlinear programming.

The methods presented in this paper follow some ideas from [8, 12] which try to use
well-developed numerical methods for the solution of smooth nonlinear programs. In
[8], smooth nonlinear programs of the type (4) are formed and assumed to be solvable
by an unspecified (black box) method. Under further conditions — that will be relaxed
in the explicit smoothing method to be presented in Section 6 — it is shown that limit
points of the sequence of approximate solutions of the parametric nonlinear programs
satisfy generalized Karush-Kuhn-Tucker (KKT) conditions [16] given in terms of the
Clarke generalized derivatives [5]. We call this an explicit smoothing method because
the smoothing parameter is updated separately from the direction-finding process. In
[12] another explicit smoothing method is proposed, which is an SQP-based method
for MPEC with linear complementarity constraints and upper-level constraints only
on x, and limit points satisfying a lower-level nondegeneracy (strict complementarity)
condition are shown to be piecewise stationary points for (1).

This paper details methods for solving the problems (2) and (3) using SQP in
an `1-exact penalty framework. The first method, implicit smooth SQP, applies to
(3); Theorem 5.10 assumes lower-level nondegeneracy at limit points amongst other
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conditions to ensure that limit points of the iteration sequence are piecewise stationary
points of (1). The term implicit means that the smoothing parameter is included as
one of the variables of the problem formulation and updated at each iteration using the
QP solution, like the other variables. Neither of these convergence results is surprising
given that lower-level nondegeneracy at a feasible point of (1) implies locally that the
problem is a smooth nonlinear program.

To move beyond the realm of standard nonlinear programming, we present the
explicit smooth SQP method that is aimed at solving the problem (2) by solving a
sequence of problems (4) where we expect µ = µk → 0 and limit points of the iteration
sequence to satisfy generalized Karush-Kuhn-Tucker (KKT) conditions of (2). The
result of perhaps the most novelty is Theorem 6.4 which extends global convergence
theory for exact penalty methods in nonlinear programming to MPEC by using a
generalized constraint qualification at limit points of the iteration sequence. Explicit
smooth SQP can be viewed as an implementation of the smoothing method of [8]
though the convergence analysis of the new method is more demanding.

Our main goal is to explore convergence conditions and analysis for smooth SQP
methods. Given this and the length of the paper, a numerical investigation will be
pursued in a future publication.

We mention that the development of numerical methods for the solution of MPEC
is at a less advanced stage than optimality theory [4, 26, 27, 28, 29, 30, 32, 33, 34,
40, 43]. When the upper-level constraints exclude y, i.e. take the form g(x) ≥ 0, the
implicit function approach may be possible. In this approach it is assumed that y
can be found as a function of x by solving the NCP appearing in the constraints, and
the MPEC is collapsed to the problem of minimizing the nondifferentiable objective
function f(x, y(x)) subject to g(x) ≥ 0. This nonsmooth problem can be tackled by
bundle methods as proposed in [23, 24, 33, 34] or using another nonsmooth optimization
method such as Shor’s R-algorithm as implemented in SolvOpt [25]; see [7] for some
computational comparisons. However with mixed upper-level constraints, i.e. involving
y and possibly x, the implicit programming approach transforms an MPEC into a
problem with nondifferentiable constraints in addition to a nonsmooth objective, a
format which has not been seriously studied with regard to computational methods.

Some methods which can be extended to handle mixed upper-level constraints
include the penalty interior-point algorithm (PIPA for short) [28], smoothing meth-
ods [8, 12], which are related to the interior-point approach, and piecewise sequential
quadratic programming (PSQP) [28, 29, 37]. Apart from this paper, the only imple-
mentations of these algorithms we know of that handle joint upper-level constraints
are discussed in [19]. Penalty interior-point algorithms converge globally under suit-
able conditions, at least in the implicit case [28], while the piecewise SQP method
exhibits local superlinear convergence under the uniqueness of multipliers and some
second-order sufficient conditions, but surprisingly without requiring a strict comple-
mentarity condition. Some preliminary numerical experiments have been carried out
for the PIPA and PSQP [28, 29, 19], and smoothing methods [8, 12]. See also [7] for a
comparison of PIPA with implicit programming methods. The theoretical results and
numerical experience show some promise for these methods. We also refer the reader
to [24, 33, 34] for other numerical methods and applications of MPEC.

The rest of the paper is organized as follows. In the next section, we review
first-order optimality theory for nonsmooth programs using the Clarke calculus. In
Section 3, we reformulate the MPEC (1) into equivalent — in the sense of global op-
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tima, local optima, generalized stationarity, or piecewise stationarity as the case may
be — but generally better-posed nonsmooth programs by means of functions intro-
duced there. Constraint qualifications for the reformulated nonsmooth programs are
studied in Section 4. In Section 5, we present implicit smooth SQP for solving the re-
formulation (3) and give details of global convergence under lower-level nondegeneracy
at limit points. In Section 6, we propose explicit smooth SQP and establish its global
convergence to generalized KKT points under generalized constraint qualifications; the
analogs of the various results developed in Section 5 are given here. Section 7 briefly
gives concrete examples of smoothing functions from the literature.

A word about notation: For a locally Lipschitz real-valued function f and a vector-
valued locally Lipschitz function H, ∂f and ∂H denote the Clarke generalized sub-
gradient and the Clarke generalized Jacobian respectively, see [5]. For a continuously
differentiable real-valued function f and a vector-valued continuously differentiable
function H, we use ∇f and F ′ to indicate the gradient of f and the Jacobian of H.
If x1 and x2 are two vectors with the same dimension, then xT

1 x2 denotes the inner
products of these two vectors. By ‖ · ‖, we mean the Euclidean norm. <n denotes the
real Euclidean space of column vectors of length n; for u ∈ <n and v ∈ <m, (u, v)
denotes the column vector [uT vT ]T in <n+m.

2 Preliminaries on Nonsmooth Programming

Consider the nonsmooth program or NSP:

min
u

f(u)
subject to g(u) ≥ 0

h(u) = 0,
(5)

where f : <n → <, g : <n → <l and h : <n → <m are locally Lipschitz.

Definition 2.1 The point u∗ is said to be a generalized stationary point of (5) if there
exists a Karush-Kuhn-Tucker (KKT) multiplier vector (λg, λh) ∈ <l+m such that the
following generalized Karush-Kuhn-Tucker (GKKT) conditions hold:

∂f(u∗)− ∂g(u∗)Tλg + ∂h(u∗)Tλh 3 0
0 ≤ g(u∗) ⊥ λg ≥ 0
h(u∗) = 0,

where ∂ denotes the Clarke generalized gradient for a scalar function and the Clarke
generalized Jacobian for a vector-valued function [5].

If f , g and h happen to be smooth at u∗, then the GKKT conditions reduce to the
usual Karush-Kuhn-Tucker (KKT) condition:

∇f(u∗)− g′(u∗)Tλg + h′(u∗)Tλh = 0
0 ≤ g(u∗) ⊥ λg ≥ 0
h(u∗) = 0.

In this case, u∗ is called a stationary point or a KKT point of (5).
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For convenience, we may assume that in the above NSP, the first l1 (l1 ≤ l) in-
equality constraints are active and the rest are inactive at u∗, i.e.,

gi(u∗) = 0, 1 ≤ i ≤ l1
gi(u∗) > 0, i > l1.

Let

G(u) =



g1(u)
...

gl1(u)
h1(u)

...
hm(u)


.

Associated with the above NSP, we recall some well-known regularity conditions under
which a local solution is a generalized stationary point [16].

Generalized Linear Independence Constraint Qualification (GLICQ): Each el-
ement of the generalized Jacobian ∂G(u∗) [5] has full row rank.

Generalized Mangasarian-Fromovitz Constraint Qualification (GMFCQ): (i)
there exists d ∈ <n such that for all element (A1, . . . , Al1 , B1, . . . , Bm) ∈ ∂G(u∗),

AT
i d > 0, for i = 1, . . . , l1

BT
j d = 0, for j = 1, . . . ,m;

(ii) for any element of (A1, . . . , Al1 , B1, . . . , Bm) ∈ ∂G(u∗), (B1, . . . , Bm) has full
row rank.

Generalized Constant Rank Constraint Qualification (GCRCQ): There is a neigh-
borhood of u∗ such that for any u in this neighborhood, rank of each element of
the generalized Jacobian ∂G(u) is invariant.

We mention that the above three constraint qualifications are slightly stronger
than those given in [16] to keep notation simple. When (5) is defined by smooth
(continuously differentiable) functions, the GLICQ and GMFCQ reduce to the classical
LICQ and MFCQ, see [28, 31]; and, as in the smooth case, the GLICQ implies the
GMFCQ. However the CRCQ usually used in the smooth case [17] is stronger than the
smooth version of the GCRCQ in that the former requires constant rank of submatrices
of rows of the Jacobian G′(u) for u near u∗. (We mention an example to distinguish
these two CRCQs: let g(u1, u2) = (u1 + u2, (u1 + u2)2), and observe that the rank of
g′(u1, u2) is always one, whereas the rank of g′2(u1, u2) is either zero if (u1, u2) = (0, 0),
or one otherwise.)

Under these generalized CQs, Hiriart-Urruty [16] proved the optimality conditions
in the following proposition. These optimality conditions also hold under the next
assumption:

Piecewise Affine Constraint Condition (PACC): Both g and h are piecewise affine.

See [41] for a proof of generalized stationarity under the PACC.
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Proposition 2.2 Suppose u∗ is a local minimizer of the nonsmooth program (5) and
one of the GCRCQ, GLICQ, GMFCQ or PACC holds at u∗. Then u∗ is a generalized
stationary point of (5). Furthermore, if f , g and h are smooth at u∗, then u∗ is a
stationary point or a KKT point of (5).

3 Equivalent Reformulations of MPEC

As explained in Section 1, the smooth nonlinear programming reformulation of the
MPEC (1) is numerically ill posed. The strategy we use in this article is to approxi-
mate the MPEC by well-behaved nonlinear programming problems. To this end, we
introduce a class of smoothing functions on which some properties are imposed as we
proceed. Suppose the function ψ : <3 → < satisfies the following assumptions:

(A1) ψ is locally Lipschitz and directionally differentiable on <3, and ψ is continuously
differentiable at every point (a, b, c) with c 6= 0.

(A2) ψ(a, b, 0) = 0 if and only if a ≥ 0, b ≥ 0, ab = 0.

Section 7 contains standard examples all of which satisfy the assumptions (A1)–
(A2) and the assumptions (A3)–(A5) to be introduced in the sequel.

Let φ : <2 → < and the parametric function φc : <2 → < be defined for any
(a, b) ∈ <2 and c ∈ < by

φ(a, b) = ψ(a, b, 0),

and
φc(a, b) = ψ(a, b, c).

Clearly, φ0 ≡ φ. By means of the functions φ and ψ, we define two nonsmooth
programs:

min
x,y,w

f(x, y)

subject to g(x, y) ≥ 0
F (x, y)− w = 0
φ(yi, wi) = 0, i = 1, . . . ,m

(6)

and
min

x,y,w,µ
f(x, y)

subject to g(x, y) ≥ 0
F (x, y)− w = 0
ψ(yi, wi, µ) = 0, i = 1, . . . ,m
eµ − 1 = 0.

(7)

It is easy to see that (6) and (7) are (2) and (3) respectively with

Ψ(y, w, µ) =

 ψ(y1, w1, µ)
...

ψ(ym, wm, µ)


and

Φ(y, w) =

 φ(y1, w1)
...

φ(ym, wm)

 = Ψ(y, w, 0).
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Since differentiability of φ and ψ is not assumed at (a, b) and (a, b, c) respectively, (6)
and (7) are nonsmooth programs in general. On the other hand, by the assumption
(A1), when µ 6= 0, the functions involved in (7) are smooth at (x, y, w, µ), which is a
nice property to be used in the subsequent analysis. Next we give some relationships
between the MPEC (1) and the nonsmooth programs (6) and (7).

Proposition 3.1 Under the assumptions (A1) and (A2), the following statements are
equivalent.

(i) (x, y) is a feasible point (local solution, global solution) of (1).

(ii) (x, y, w) with w = F (x, y) is a feasible point (local solution, global solution) of
(6).

(iii) (x, y, w, µ) with w = F (x, y) and µ = 0 is a feasible point (local solution, global
solution) of (7).

Proof. Given that eµ − 1 = 0 has a unique solution µ = 0 and the assumption
(A2) is satisfied, it is clear that all three statements are equivalent regarding feasible
points. The equivalence with respect to local solutions or global solutions is an obvious
consequence.

Since f , g and F are smooth, it can be shown, by Proposition 2.3.3 of [5] and its
Corollary 1, that (x∗, y∗, w∗) is a generalized stationary point of (6) if and only if the
following holds: there exists a KKT multiplier vector (λg, λF , λΦ) ∈ <l+2m such that
the following GKKT conditions hold:(

∇f(x∗, y∗)
0

)
−
(
g′(x∗, y∗)T

0

)
λg +

(
F ′(x∗, y∗)T

−I

)
λF

+

(
0

∂Φ(y∗, w∗)

)
λΦ 3 0

0 ≤ g(x∗, y∗) ⊥ λg ≥ 0
F (x∗, y∗)− w∗ = 0
Φ(y∗, w∗) = 0,

(8)

where 0 denotes appropriate zero vectors or matrices, and I ∈ <m×m is the identity
matrix. Similarly, (x∗, y∗, w∗, µ∗) is a generalized stationary point of (7) if and only if
there exists a KKT multiplier vector (λg, λF , λΨ, λµ) ∈ <l+2m+1 such that the following

8



GKKT conditions hold:(
∇f(x∗, y∗)

0

)
−
(
g′(x∗, y∗)T

0

)
λg +

 F ′(x∗, y∗)T

−I
0

λF

+

(
0

∂Ψ(y∗, w∗, µ∗)

)
λΨ +

(
0
eµ

∗

)
λµ 3 0

0 ≤ g(x∗, y∗) ⊥ λg ≥ 0
F (x∗, y∗)− w∗ = 0
Ψ(y∗, w∗, µ∗) = 0
eµ

∗ − 1 = 0.

(9)

Note in (9) that µ∗ = 0.
The assumption (A1) ensures the following inclusion

Πab∂ψ(a, b, 0) ⊇ ∂φ(a, b)

for any (a, b) ∈ <2, where Πab denotes the projection operator on <3: Πab(α, β, 0) =
(α, β); see Proposition 2.3.16 in [5]. We introduce another assumption to ensure that
these sets are in fact identical.

(A3) Πab∂ψ(a, b, 0) = ∂φ(a, b) for any (a, b) ∈ <2, where φ(a, b) is defined as ψ(a, b, 0).

A direct consequence of the assumption (A3) is that

Πab∂Ψ(y, w, 0) = ∂Φ(y, w), ∀(y, w) ∈ <2m.

Proposition 3.2 Under the assumptions (A1)–(A2), if (x∗, y∗, w∗) is a generalized
stationary point of (6), then (x∗, y∗, w∗, 0) is a generalized stationary point of (7).
Conversely, if (A3) holds as well as (A1)–(A2), and if (x∗, y∗, w∗, 0) is a generalized
stationary point of (7), then (x∗, y∗, w∗) is a generalized stationary point of (6).

Proof. Suppose (x∗, y∗, w∗) is a generalized stationary point of (6), then there exists
a KKT multiplier vector (λg, λF , λΦ) such that (8) holds. Let λµ be an element of
−∂µΨ(y∗, w∗, µ∗)λΦ with µ∗ = 0. It follows from the remark before the assumption
(A3) that (λg, λF , λΦ, λµ) is a KKT multiplier satisfying (9); i.e., (x∗, y∗, w∗, 0) is
a generalized stationary point of (7). Conversely, if (x∗, y∗, w∗, 0) is a generalized
stationary point of (7), it is easy to see from the assumption (A3) and the GKKT
conditions (8) and (9) that (x∗, y∗, w∗) is a generalized stationary point of (6).

By Propositions 3.1 and 3.2, (6) and (7) are completely equivalent in the sense
that global solutions, local solutions, generalized stationary points and feasible points
correspond one another. However, it is not yet clear what relationships the optimality
condition of the MPEC (1) and the nonlinear programming problems (6) and (7) have.

Let z∗ = (x∗, y∗) be a feasible point of the MPEC (1). Let F be the feasible set of
(1), i.e.,

F = {z = (x, y) : g(z) ≥ 0, 0 ≤ F (z) ⊥ y ≥ 0}.
Denote by T (z∗,F) the tangent cone to F at z∗: T (z∗,F) is the set of limit points of
sequences { zk−z∗

τk
} where {zk} ⊆ F converges to z∗ and τk ↓ 0.
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Definition 3.3 A point z∗ ∈ F is said to be a primal stationary [28] or B-stationary
[40] point of the MPEC (1) if the following condition holds:

∇f(z∗)Td ≥ 0, ∀d ∈ T (z∗,F).

A decomposition or disjunction technique was very useful in establishing optimality
conditions for MPEC in [28]. For any feasible point z∗ ∈ F , define

α(z∗) = {1 ≤ i ≤ m : Fi(z∗) = 0 < y∗i }
β(z∗) = {1 ≤ i ≤ m : Fi(z∗) = 0 = y∗i }
γ(z∗) = {1 ≤ i ≤ m : Fi(z∗) > 0 = y∗i }

(10)

and the family of index sets

A(z∗) = {(J ,K) : J ⊇ α(z∗), K ⊇ γ(z∗), J ∩ K = ∅, J ∪ K = {1, 2, . . . ,m}}.

For each partition J ∪ K of {i : 1 ≤ i ≤ m}, let

F(J ,K) = {z : g(z) ≥ 0,
Fi(z) = 0 ≤ yi, ∀i ∈ J ,
Fi(z) ≥ 0 = yi, ∀i ∈ K }.

Using the family of sets {F(J ,K) : (J ,K) ∈ A(z∗)}, the feasible set F of (1) can be
locally decomposed at any feasible point z∗ ∈ F , and hence stationarity conditions
for (1) defined in [28] can be characterized in terms of traditional nonlinear programs
associated with each F(J ,K), which has the form of a standard nonlinear programming
feasible region. The disjunctive approach can be carried over to constraint stability.

Piecewise Constraint Qualification at a point z∗ ∈ F : For each (J ,K) ∈ A(z∗),
the above representation of F(J ,K) satisfies a standard smooth constraint quali-
fication at z∗ (for example, the MFCQ, LICQ, or CRCQ).

We now state a disjunctive first-order optimality condition studied in [28] where it was
called “primal-dual stationarity”; we call it “piecewise stationarity” to distinguish it
from generalized stationarity which also has a primal-dual flavor.

Definition 3.4 A point z∗ = (x∗, y∗) is a piecewise stationary point of the MPEC (1)
if it is feasible and, for each (J ,K) ∈ A(z∗), there exist KKT multipliers ξ ∈ <l,
η ∈ <m and π ∈ <m such that

∇xf(x∗, y∗)− g′x(x∗, y∗)T ξ − F ′x(x∗, y∗)T η = 0,
∇yf(x∗, y∗)− g′y(x

∗, y∗)T ξ − F ′y(x
∗, y∗)T η − π = 0,

0 ≤ g(x∗, y∗) ⊥ ξ ≥ 0,
Fi(x∗, y∗) = 0, 0 ≤ y∗i ⊥ πi ≥ 0, ∀i ∈ J ,
0 ≤ Fi(x∗, y∗) ⊥ ηi ≥ 0, y∗i = 0, ∀i ∈ K.

(11)

The next result is essentially due to [28].

Proposition 3.5 Let z∗ = (x∗, y∗). If z∗ is a piecewise stationary point of the
MPEC (1) then it is primal stationary for (1). Conversely, if z∗ is primal station-
ary for (1) and a piecewise constraint qualification holds at z∗, then z∗ is piecewise
stationary for (1).
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The idea of strict complementarity of a solution of a complementarity problem is
adapted to nonfeasible points of the MPEC (1).

Definition 3.6 A point (x, y) ∈ <n+m is said to be lower-level nondegenerate if
yi 6= Fi(x, y) for i = 1, . . . ,m. A point (x, y, w) ∈ <n+2m is said to be lower-level
nondegenerate if yi 6= wi for i = 1, . . . ,m.

Suppose z∗ = (x∗, y∗) is feasible for the MPEC (1). Then lower-level nondegeneracy
of (x∗, y∗) is equivalent to the strict complementarity condition: for any i (1 ≤ i ≤
m), either y∗i > 0 = Fi(x∗, y∗) or y∗i = 0 < Fi(x∗, y∗). Lower-level nondegeneracy
of (x∗, y∗) is also equivalent to lower-level nondegeneracy of (x∗, y∗, w∗) with w∗ =
F (x∗, y∗); and to the family of index sets A(z∗) reducing to a singleton, i.e. A(z∗) =
{(α(z∗), γ(z∗))}. If the function Φ is continuously differentiable at such a feasible lower-
level nondegenerate point (x∗, y∗, w∗), then piecewise stationarity of (6) at (x∗, y∗, w∗)
coincides with the classical KKT conditions.

The next result shows that stationarity conditions on the MPEC (1), (6) and (7)
coincide at lower-level nondegenerate points. To this end, we impose another condition
on the function ψ.

(A4) If ψ(a, b, 0) = 0 and (p, q, r) ∈ ∂ψ(a, b, 0), then

p2 + q2 > 0, pq ≥ 0,

and
p = 0, q 6= 0, if a > 0
p 6= 0, q = 0, if b > 0.

Proposition 3.7 Suppose (x∗, y∗) is a lower-level nondegenerate feasible point of the
MPEC (1). Assume that the assumptions (A1)–(A4) are satisfied. Then the following
statements are equivalent.

(i) (x∗, y∗) is a piecewise stationary point of the MPEC (1).

(ii) (x∗, y∗, w∗) is a (generalized) stationary point of (6), where w∗ = F (x∗, y∗).

(iii) (x∗, y∗, w∗, µ∗) is a (generalized) stationary point of (7), where w∗ = F (x∗, y∗)
and µ∗ = 0.

Proof. (i) =⇒ (ii). Let J = α(z∗) and K = γ(z∗). (J ,K) is the unique element
of A(z∗) since β(z∗) = ∅. It follows that there exist multipliers ξ ∈ <l, η ∈ <m and
π ∈ <p such that (11) holds.

Let λg = ξ, λF = −η. We now define a vector λΦ. For i ∈ J = α(z∗) and
(Ai, Bi) ∈ ∂φ(y∗i , w

∗
i ), the assumption (A4) implies that Ai = 0, Bi 6= 0. Therefore,

(λΦ)i = (λF )i

Bi
is well-defined for any i ∈ α(z∗). Similarly, (λΦ)i = (−π)i

Ai
is well-defined

with (Ai, Bi) ∈ ∂φ(y∗i , w
∗
i ) for any i ∈ γ(z∗) by the assumption (A4).

By the assumption (A4), it is easy to verify that (λg, λF , λΦ) is a KKT multiplier
such that the GKKT conditions (8) holds, i.e., (x∗, y∗, w∗) is a generalized stationary
point of (6).

(ii) =⇒ (i). Suppose there exists a KKT multiplier (λg, λF , λΦ) ∈ <l+2m such that
(8) holds at (x∗, y∗, w∗). Let (

A
B

)
∈ ∂Φ(y∗, w∗).
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Clearly A = diag(A1, . . . , An) and B = diag(B1, . . . , Bn) are diagonal matrices. Since
z∗ = (x∗, y∗) is lower-level nondegenerate, y∗i 6= w∗i for i = 1, . . . ,m and β(z∗) = ∅.
By the assumptions (A3) and (A4), Ai = 0 for i ∈ α(z∗) and Bi = 0 for i ∈ γ(z∗).
Moreover, it can be shown from (8) that −λF + BλΦ = 0, i.e., λF = BλΦ. Let
ξ = λg, η = −λF = −BλΦ and π = −AλΦ. We immediately obtain that (ξ, η, π) is
a KKT multiplier such that (11) holds for the given (J ,K) such that J = α(z∗) and
K = γ(z∗). Since z∗ is a lower-level nondegenerate feasible point, (J ,K) is the only
element in A(z∗). This proves that (i) holds.

The desired results follow from Proposition 3.2.

We next study the relationship between the piecewise stationary point and the
generalized stationary point of (6) or (7) under the assumptions (A1)–(A3).

Suppose (x∗, y∗) is a piecewise stationary point of the MPEC (1). It turns out that
(dx, dy) = 0 ∈ <n+m is a local solution of the following MPEC:

min
dx,dy

∇f(x∗, y∗)T (dx, dy)

subject to g′(x∗, y∗)(dx, dy) + g(x∗, y∗) ≥ 0
0 ≤ y∗ + dy ⊥ F (x∗, y∗) + F ′(x∗, y∗)(dx, dy) ≥ 0,

or that (dx, dy, dw) = 0 ∈ <n+2m is a local solution of the following MPEC:

min
dx,dy,dw

∇f(x∗, y∗)T (dx, dy)

subject to g′(x∗, y∗)(dx, dy) + g(x∗, y∗) ≥ 0
F (x∗, y∗) + F ′(x∗, y∗)(dx, dy)− (w∗ + dw) = 0
0 ≤ y∗ + dy ⊥ w∗ + dw ≥ 0,

or, by Proposition 3.2, that (dx, dy, dw) = 0 ∈ <n+2m is a local solution of the following
nonsmooth program:

min
dx,dy,dw

∇f(x∗, y∗)T (dx, dy)

subject to g′(x∗, y∗)(dx, dy) + g(x∗, y∗) ≥ 0
F (x∗, y∗) + F ′(x∗, y∗)(dx, dy)− (w∗ + dw) = 0
Φ(y∗ + dy,w∗ + dw) = 0.

(12)

Then under the GLICQ or GMFCQ at 0 on the last nonsmooth problem (12), which is
equivalent to the GLICQ or GMFCQ at (x∗, y∗, w∗) on the problem (6), we have that
0 ∈ <n+2m is a generalized stationary point of (12), which is equivalent to saying that
(x∗, y∗, w∗) is a generalized stationary point of (6). Similarly if the PACC holds for
(6), so that g, F and φ are affine functions, then piecewise stationarity of (1) implies
generalized stationarity.

The following result summarizes the above discussion.

Proposition 3.8 Suppose the assumptions (A1)–(A3) hold. Suppose (x∗, y∗) is a
piecewise stationary point of the MPEC (1). Assume that the GLICQ, GMFCQ,
or PACC is satisfied at (x∗, y∗, w∗) with w∗ = F (x∗, y∗) for the problem (6). Then
(x∗, y∗, w∗) is a generalized stationary point of the problem (6) and (x∗, y∗, w∗, µ∗)
with µ∗ = 0 is a generalized stationary point of the problem (7).

12



Remark. The PACC applies in particular when g and F are affine, and φ(a, b) =
min{a, b}; see also Section 7.

We point out that the converse of the above proposition does not hold in general.
This can be demonstrated by the following example, which also shows that the defini-
tion of generalized stationary points is much weaker than that of piecewise stationary
points.

Example 3.9 Consider the following MPEC problem:

min
x,y

0.5x2 + 0.5y2 + x− y

subject to 0 ≤ (y − x) ⊥ y ≥ 0.

This MPEC has a unique piecewise stationary point (−1, 0). Let

ψ(a, b, c) =
√
a2 + b2 + c2 − (a+ b),

and φ(a, b) = ψ(a, b, 0), which is the Fischer-Burmeister functional [9], see Section 7.
Clearly, ψ and φ satisfy the assumptions (A1)–(A4). However, (0, 0, 0) is a generalized
stationary point of the problem (6). Note that the feasible point (0, 0) of this MPEC is
lower-level degenerate (strict complementarity fails).

4 MPEC Constraint Qualifications

For a given feasible point z∗ = (x∗, y∗) of the MPEC (1), let α, β and γ be the
respective index sets α(z∗), β(x∗) and γ(z∗) defined in (10). The MPEC is said to be
R-regular in y at the feasible point (x∗, y∗) if the submatrix F ′y(x

∗, y∗)αα of F ′y(x
∗, y∗)

is nonsingular and the Schur-complement

F ′y(x
∗, y∗)ββ − F ′y(x

∗, y∗)βαF
′
y(x

∗, y∗)−1
ααF

′
y(x

∗, y∗)αβ

is a P -matrix.
Consider the constraint mapping

H(x, y, w, µ) =


g(x, y)

F (x, y)− w
Ψ(y, w, µ)
eµ − 1

 (13)

associated with (7). Let V be an element of the generalized Jacobian of this mapping
at (x∗, y∗, w∗, µ∗) with µ∗ = 0:

V =


g′x(x∗, y∗) g′y(x

∗, y∗) 0 0
F ′x(x∗, y∗) F ′y(x

∗, y∗) −I 0
0 A B C
0 0 0 1

 ,
where (A,B,C) ∈ ∂Ψ(y∗, w∗, µ∗), A and B are appropriate diagonal matrices. Then
the submatrix V̄ of V corresponding to the equilibrium constraints, i.e., the equality
constraint functions F (x, y)− w, Ψ(y, w, µ) and eµ − 1, is of the following form:

V̄ =

 F ′x(x∗, y∗) F ′y(x
∗, y∗) −I 0

0 A B C
0 0 0 1

 . (14)
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Clearly, the matrix V has full row rank if the following matrix is nonsingular:

U =

(
F ′y(x

∗, y∗) −I
A B

)
. (15)

The following lemma and proposition can be proved in a standard way in the
literature of nonlinear complementarity problems. For example [42, Proposition 2.1]
and also [10, Theorem 9].

Lemma 4.1 Suppose for M,N,E ∈ <m×m, M and N are diagonal matrices such that
MN positive semidefinite and M2+N2 is positive definite, and E is a P -matrix. Then
M +NE is nonsingular.

Proposition 4.2 Suppose the MPEC (1) is R-regular in y at a feasible point (x∗, y∗)
of the MPEC (1). Then under the assumptions (A1)–(A4), the matrix U defined in
(15) is nonsingular.

We now study generalized constraint qualifications for the problems (6) and (7)
(or (2) and (3) respectively) at the feasible point (x∗, y∗, w∗) and (x∗, y∗, w∗, µ∗) under
R-regularity respectively. Recall that V ∈ ∂H(x∗, y∗, w∗, µ∗). By Proposition 4.2, an
equivalent reduction of the matrix V is the following matrix (reduction of a matrix
under nonsingular transformation)

g′x(x∗, y∗)− g′y(x
∗, y∗)(U−1)yyF

′
x(x∗, y∗) 0 0 0

F ′x(x∗, y∗) F ′y(x
∗, y∗) −I 0

0 A B C
0 0 0 1


where A,B,C and U are defined in (14) and (15), (U−1)yy is a submatrix of the matrix
U−1:

U−1 =

(
(U−1)yy (U−1)yw

(U−1)wy (U−1)ww

)
.

By this observation, the following results can easily be verified.

Proposition 4.3 Suppose (x∗, y∗) is a feasible point of the MPEC (1), the MPEC
is R-regular at this point, and the assumptions (A1)–(A4) are satisfied. Let w∗ =
F (x∗, y∗) and µ∗ = 0 and define Ig = {i : gi(x∗, y∗) = 0} and

Γ = g′x(x∗, y∗)− g′y(x
∗, y∗)(U−1)yyF

′
x(x∗, y∗).

Then the following conclusions hold.

(i) The GCRCQ holds for (6) at (x∗, y∗, w∗) and for (7) at (x∗, y∗, w∗, µ∗) if the
row submatrix ΓIg corresponding to the active indexes of g at (x∗, y∗), for any
U defined in (15), has constant rank around (x∗, y∗). In particular, the GCRCQ
holds for (6) at (x∗, y∗, w∗) and for (7) at (x∗, y∗, w∗, µ∗) if g(x, y) = g(x) and
the matrix g′(x∗)Ig has constant rank around x∗.

(ii) The GLICQ holds for (6) at (x∗, y∗, w∗) and for (7) at (x∗, y∗, w∗, µ∗) if the row
submatrix ΓIg , for any U defined in (15), has full row rank. In particular, the
GLICQ holds for (6) at (x∗, y∗, w∗) and for (7) at (x∗, y∗, w∗, µ∗) if g(x, y) = g(x)
and the matrix g′(x∗)Ig has full row rank.
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(iii) The GMFCQ holds for (6) at (x∗, y∗, w∗) and for (7) at (x∗, y∗, w∗, µ∗) if there
exists a vector d ∈ <n such that for any U defined in (15)

ΓIgd > 0.

In particular, the GMFCQ holds for (6) at (x∗, y∗, w∗) and for (7) at (x∗, y∗, w∗, µ∗)
if g(x, y) = g(x) and there exists a vector d ∈ <n such that

(gi)′(x∗)d > 0, for i ∈ Ig.

5 Implicit Smooth SQP

5.1 Background and the Algorithm

By the assumption (A1), the nonsmooth programming problem (7) (or (3)) is smooth
for any µ 6= 0. This important feature allows us to use traditional nonlinear program-
ming approaches such as sequential quadratic programming (SQP) methods for solving
MPEC. To this end, we introduce a quadratic program (QP) that approximates (7).
For any given (x, y, w, µ) with µ 6= 0 and d = (dx, dy, dw, dµ),

min
d∈<n+2m+1

∇f(x, y)T

(
dx
dy

)
+ 1

2d
TWd

subject to g′(x, y)

(
dx
dy

)
+ g(x, y) ≥ 0

F ′(x, y)

(
dx
dy

)
− dw + (F (x, y)− w) = 0

Ady +Bdw + Cdµ+ Ψ(y, w, µ) = 0
eµdµ+ eµ − 1 = 0,

(16)

where {(A,B,C)} = ∂Ψ(x, y, µ) which is singleton by the assumption (A1) since µ 6= 0.
An exact penalty merit function of (7) is defined by

θρ(x, y, w, µ) = f(x, y) + ρ

[
l∑

i=1

max{−gi(x, y), 0}

+
m∑

j=1

(|Fj(x, y)− wj |+ |ψ(yj , wj , µ)|) + |eµ − 1|


where ρ is a positive number. If two penalty parameters are used, then we may define
another penalty function

Θ(ρg ,ρNCP)(x, y, w, µ) = f(x, y) + ρg
l∑

i=1

max{−gi(x, y), 0}

+ ρNCP

 m∑
j=1

(|Fj(x, y)− wj |+ |ψ(yj , wj , µ)|) + |eµ − 1|

 ,
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where ρg and ρNCP are two positive numbers. When ρg = ρNCP = ρ, Θ(ρg ,ρNCP)

reduces to the penalty function θρ. It is easy to see that Θ(ρg ,ρNCP) is not differentiable
in general, but directionally differentiable if ψ is directionally differentiable.

If the QP (16) has a solution d, then its KKT condition can be written as follows:
∇xf
∇yf

0
0

+Wd−


g′x(x, y)T

g′y(x, y)
T

0
0

λg +


F ′x(x, y)T

F ′y(x, y)
T

−I
0

λF +


0
AT

BT

CT

λΨ +


0
0
0
eµ

λµ = 0

0 ≤ g′(x, y)(dx, dy) + g(x, y) ⊥ λg ≥ 0
F ′(x, y)(dx, dy)− dw + (F (x, y)− w) = 0
Ady +Bdw + Cdµ+ Ψ(y, w, µ) = 0
eµdµ+ eµ − 1 = 0,

(17)
where (λg, λF , λΨ, λξ) is the corresponding KKT multiplier.

The existence of solutions to quadratic programs generated in traditional SQP
methods play a critical role, in particular SQP fails if one of the associated quadratic
programs is infeasible. In order to overcome QP infeasibility, some modifications have
been introduced; see [1, 2]. Our strategy below is similar to that proposed in [1, 2]
but with several notable differences. A modified quadratic program of (16) is defined
as follows:

min
d∈<n+2m+1,ξ∈<l

∇f(x, y)T (dx, dy) +
1
2
dTWd+ ρ

l∑
i=1

ξi

subject to g′(x, y)(dx, dy) + g(x, y) ≥ −ξ
F ′(x, y)(dx, dy)− dw + (F (x, y)− w) = 0
Ady +Bdw + Cdµ+ Ψ(y, w, µ) = 0
eµdµ+ eµ − 1 = 0
ξ ≥ 0,

(18)

where ρ is a positive penalty parameter. Note that if the constraint submatrix U given
in (15) is invertible then the second, third and fourth block-rows of constraints can be
solved for (dy, dw, dµ) in terms of dx. This means that by choice of ξ with sufficiently
large components, the QP (18) is a feasible problem, an observation which is put to
use in the next subsection to show that the modified SQP method is well defined.

If the modified QP (18) has a solution (d, ξ), then its KKT condition is a modifi-
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cation of the KKT condition (17):
∇xf
∇yf

0
0

+Wd−


g′x(x, y)T

g′y(x, y)
T

0
0

λg +


F ′x(x, y)T

F ′y(x, y)
T

−I
0

λF +


0
AT

BT

CT

λΨ +


0
0
0
eµ

λµ = 0

ρ ẽ = λg + λξ

0 ≤ g′(x, y)(dx, dy) + g(x, y) + ξ ⊥ λg ≥ 0
F ′(x, y)(dx, dy)− dw + (F (x, y)− w) = 0
Ady +Bdw + Cdµ+ Ψ(y, w, µ) = 0
eµdµ+ eµ − 1 = 0
0 ≤ ξ ⊥ λξ ≥ 0,

(19)
where ẽ is the vector of all ones in <l, (λg, λF , λΨ, λµ, λξ) is the corresponding KKT
multiplier.

The inequality constraints are perturbed by introducing a vector of artificial vari-
ables ξ ∈ <l. This modification improves the prospect of the feasibility of the modified
QP (18). One may also relax the equality constraints in the QP (16) by introducing
further artificial variables. However, because of the special structure of the MPEC, we
do not change the equality constraints. As shall be seen later, the modified QP (18) is
always feasible under assumptions that are considered mild in the context of nonlinear
complementarity problems.

Let u = (x, y, w, µ). We propose our first modified SQP method.

Algorithm: Implicit Smooth SQP

Step 0. (Initialization) Let ρ−1 > 0, δ1 > 0, δ2 > 0, σ ∈ (0, 1), τ ∈ (0, 1). Choose
(x0, y0, w0, µ0) ∈ <n+2m+1 such that µ0 > 0, and a symmetric positive definite
matrix W0 in <(n+2m+1)×(n+2m+1). Set k := 0.

Step 1. (Search direction) Solve the modified QP (18) with (x, y, w, µ) = (xk, yk, wk, µk),
W = Wk, and ρ = ρk−1. Let (dk, ξk) be a solution of this modified QP and
λk = (λk

g , λ
k
F , λ

k
Ψ, λ

k
µ, λ

k
ξ ) be its corresponding multiplier.

Step 2. (Termination check) If a stopping rule is satisfied, terminate. Otherwise,
go to Step 3.

Step 3. (Penalty update) Let

ρ̃k =

 ρk−1 if ρk−1 ≥ max
1≤i≤l+2m+1

|λk
i |

δ1 + max
1≤i≤l+2m+1

|λk
i | otherwise.

Define ρg
k = ρk−1, ρNCP

k = ρ̃k, and

ρk =

 ρ̃k if
∑

1≤i≤l

ξk
i = 0

ρ̃k + δ2 otherwise.
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Step 4. (Line search) Let tk = (τ)ik where ik is the smallest nonnegative integer
such that i = ik satisfies

Θ(ρg
k
,ρNCP

k
)(u

k + (τ)idk)−Θ(ρg
k
,ρNCP

k
)(u

k) ≤ −σ(τ)i(dk)TWkd
k.

Step 5. (Update) Let uk+1 = uk +tkdk. Choose a symmetric positive definite matrix
Wk+1 ∈ <(n+2m+1)×(n+2m+1). Set k := k + 1. Go to Step 1.

Remarks.

(i) If the modified QP (18) is replaced by the QP (16) to generate the search direction
in the above algorithm, then our SQP method is very similar to classical SQP
methods for smooth nonlinear programming [15, 36]. The difference is that here
we anticipate nonsmoothness of ψ. If further µ is treated as a parameter rather
than a variable, namely the last equation in (16) is omitted at each iteration,
then the above modified SQP method begins to look like the explicit smoothing
SQP method proposed in Fukushima, Luo and Pang [12]. See Section 6 for an ex-
plicit SQP method that has the convergence properties of the explicit smoothing
method of Facchinei, Jiang and Qi [8].

(ii) Since only inequality constraints are relaxed, we use the merit function Θ(ρg ,ρNCP)

which has two (likely different) penalty parameters, unlike θρ used in the classical
SQP methods. The updates for ρ̃, ρg and ρNCP are to ensure that the solution of
the modified QP (18) is a descent direction of the merit function Θ(ρg ,ρNCP). In
the update of ρ, we increase it by a positive constant δ2 in the case that

∑
ξi > 0

in an attempt to force a decrease in the feasibility gap of the QP (16) at the next
iteration.

5.2 QP Subproblems and the Penalty Function

Definition 5.1 F is said to be a P0-function with respect to y if for each x ∈ <n,
F (x, ·) is a P0-function; i.e., for any y, ȳ ∈ <m with y 6= ȳ, there exists an index i such
that yi 6= ȳi and

(yi − ȳi)(Fi(x, y)− Fi(x, ȳ) ≥ 0.

We introduce a new condition on ψ to extend invertibility of the matrix U in (15).
to infeasible points.

(A5) For c 6= 0, if (p, q, r) ∈ ∂ψ(a, b, c), then pq > 0.

Proposition 5.2 Suppose F is a P0-function with respect to y. If the assumptions
(A1)–(A5) hold, then the matrix given by (15),

U =

(
F ′y(x, y) −I

A B

)
,

is nonsingular for any (x, y, w, µ) with µ 6= 0, where (A,B,C) ∈ ∂Ψ(y, w, µ) =
{Ψ′(y, w, µ)}.
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Proof. Since (A,B,C) ∈ ∂Ψ(y, w, µ), both A and B are diagonal matrices with
nonzero diagonal elements. It turns out that nonsingularity of the matrix U is equiv-
alent to nonsingularity of the matrix A + BF ′y(x, y), or B−1A + F ′y(x, y). Note that
B−1A is a diagonal positive definite matrix, and F ′y(x, y) is a P0-matrix. Therefore,
nonsingularity of B−1A+ F ′y(x, y) follows; see [6]. This completes the proof.

The following result concerns the feasibility of the quadratic programs (16) and
(18).

Proposition 5.3 Suppose F ′y(x, y) is a P0-matrix, the assumptions (A1)–(A5) hold
and µ 6= 0. Let U be defined in Proposition 5.2. Then

(i) The modified QP (18) is always feasible.

(ii) The QP (16) has a nonempty feasible set if and only if the following system is
consistent with respect to dx:

[g′x(x, y)− g′y(x, y)(U
−1)yyF

′
x(x, y)]dx

−g′y(x, y)[(U−1)yy(F (x, y)− w) + (U−1)yw(Ψ(y, w, µ) + Cdµ)] + g(x, y) ≥ 0.

(iii) If d is a solution of (16) or (d, ξ) is a solution of (18), then

dµ = −e
µ − 1
eµ

and (dy, dw) is uniquely determined by dx and dµ, i.e.,

(dy, dw) = U−1

(
−F ′x(x, y)dx− F (x, y) + w

−Ψ(y, w, µ)− Cdµ

)
.

The above proposition gives not only a characterization for nonemptiness of the
feasible set of (16), but also shows that a solution of (16) can be found by solving
a reduced QP in the variable x-space, and a system of linear equation (the similar
argument also applies to the modified QP (18)). This fact can be computationally
significant as n is often much smaller than m.

The feasibility of the QP (16) is a serious issue in the context of MPEC. Fukushima
and Pang [13] discussed it from a different angle, namely for mathematical programs
with linear complementarity constraints. We remark that the P0 property assumed in
our paper is not necessarily required in [13].

The following is a simple yet important consequence of the above proposition for
the case when there are no joint (upper-level) constraints on (x, y).

Corollary 5.4 Suppose F ′y(x, y) is a P0-matrix, (A1)–(A5) hold and µ 6= 0. Assume
that g(x, y) = g(x). Then (16) has a nonempty feasible set if and only if g′(x)dx +
g(x) ≥ 0 is consistent with respect to dx.

The next result on dµ is proved in [18]. It basically says that {µk} is a positive
and monotonically decreasing sequence.
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Lemma 5.5 Suppose (x, y, w, µ) ∈ <n+2m+1, µ > 0, and d = (dx, dy, dw, dµ) solves
the QP (16) or (d, ξ) solves the modified QP (18). Then dµ ∈ (−µ, 0) so that

µ+ tdµ ∈ (0, µ)

for any t ∈ (0, 1].

We now study some properties of the exact penalty function Θ(ρg ,ρNCP). The vector
u∗ = (x∗, y∗, w∗, µ∗) is said to be a critical point of (or stationary for) the penalty
function Θ(ρg ,ρNCP) for the given positive parameters ρg and ρNCP if for any direction
d ∈ <n+2m+1,

Θ′
(ρg ,ρNCP)(u

∗; d) ≥ 0.

In the rest of this subsection, we collect some useful properties which shall be
used for proving global convergence of the (modified) implicit smooth SQP in the next
subsection. Since all functions are smooth when µ 6= 0, these properties follow directly
from the nonlinear programming results presented in the Appendix of the manuscript
of this paper [20]. Moreover, we are mainly concerned with the properties associated
with the modified QP.

Proposition 5.6 Let µ 6= 0.

(i) For d ∈ <n+2m+1, Θ′
(ρg ,ρNCP)

is directionally differentiable at u along the direction
d and Θ′

(ρg ,ρNCP)
(x, y, w, µ; d) can be easily evaluated.

(ii) If (d, ξ) is a solution of the modified QP (18), ρg = ρ and ρNCP ≥ max
1≤i≤l+2m+1

|λi|

with λ the KKT multiplier of the modified QP (18), then

Θ′
(ρg ,ρNCP)

(x, y, w, µ; d) ≤ ∇f(x, y)T (dx, dy)− (λg)T g′(x, y)(dx, dy)
+(λF )T (F ′(x, y)(dx, dy)− dw)
+(λΨ)T Ψ′(y, w, µ)(dy, dw, dµ) + λµe

µdµ

and
Θ′

(ρg ,ρNCP)(x, y, w, µ; d) ≤ −dTWd.

Proof. When µ 6= 0, g(x, , y), F (x, y)−w, Ψ(y, w, µ), and eµ − 1 are all continuously
differentiable at (x, y, w, µ). Hence the results follow from [20, Proposition A.1] and
Lemma 5.5.

Proposition 5.7 Let u∗ = (x∗, y∗, w∗, µ∗) be given. Suppose the matrix W ∗ is sym-
metric positive definite, F ′y(x

∗, y∗) is a P0 matrix and Ψ is smooth at (y∗, w∗, µ∗).

(i) For given ρg > 0 and all large ρNCP > 0, u∗ is a critical point of Θ(ρg ,ρNCP) if
and only if there exists (d, ξ) with d = 0 that is a solution of the modified QP
(18) with u = u∗, W = W ∗ and ρ = ρg.

(ii) If u∗ is a KKT point of (7) and λ is its KKT multiplier, then u∗ is a critical
point of Θ(ρg ,ρNCP) with min{ρg, ρNCP) ≥ max

1≤i≤l+2m+1
|λi|.

(iii) If u∗ is a critical point of Θ(ρg ,ρNCP) for some ρg > 0 and all sufficiently large
ρNCP > 0, and u∗ is feasible for (7), then u∗ is a KKT point of (7).

Proof. The desired results can be proved from Propositions 5.3, Propositions A.3 and
A.5 of [20].
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5.3 Global Convergence under Lower-Level Nondegeneracy

Lemma 5.8 Suppose (x, y, w, µ) ∈ <n+2m+1 with µ 6= 0, and W ∈ <(n+2m+1)×(n+2m+1)

is symmetric positive definite. Suppose (d, ξ) is a solution of the modified QP (18) and
λ is its corresponding KKT multiplier. Then d is a descent direction of the merit
function Θ(ρg ,ρNCP) if d 6= 0, ρg = ρ and ρNCP ≥ max

1≤i≤l+2m+1
|λi|.

Proof. The lemma follows from the second inequality of (ii) in Proposition 5.6.

Lemma 5.8 shows that solving the modified QP (18) generates a descent direction of
the merit function Θ(ρg ,ρNCP) for sufficiently large ρNCP when W is symmetric positive
definite and µ 6= 0. Furthermore the line search in Step 4 is well-defined, i.e., tk can
be determined in a finitely many steps. Therefore, the implicit smooth SQP method is
well-defined when µ 6= 0 and W is symmetric positive definite at each step. Moreover,
since the line search chooses the step size tk ∈ (0, 1), Lemma 5.5 can be used to show
that µk+1 > 0 if µk > 0; hence µk 6= 0 for each k if µ0 > 0.

To present the global convergence of implicit smooth SQP, we assume the following
standard conditions:

(B1) There exist two positive numbers α < β such that each of the symmetric matrices
Wk used in implicit smooth SQP satisfies the following condition for all vectors
u of appropriate dimension:

α‖u‖2 ≤ uTWku ≤ β‖u‖2.

(B2) For all large k, ρk = ρ∗ > 0.

Under the assumption (B1) and the feasibility of the modified QP (18) at each
iteration, implicit smooth SQP is well-defined. The assumption (B2) can be shown to
hold under some further conditions. As a consequence of the condition (B2), we obtain
that for all sufficiently large k,

ρg
k = ρ∗, ρ

NCP
k = ρNCP

∗ , ξk = 0,

where ρNCP
∗ is a positive constant. We assume that implicit smooth SQP does not

terminate in Step 2. Let {uk} = {(xk, yk, wk, µk)} be generated by implicit smooth
SQP.

Lemma 5.9 Suppose (A1)–(A5) hold, (B1)–(B2) hold, and F is a P0-function with
respect to y. Suppose {uk} is the sequence generated by the algorithm, {(dk, ξk)} is the
sequence of solutions of the modified QP (18), and limk→∞,k∈K uk = u∗ for a subset
K ⊆ {1, 2, . . . , }. Then the following conclusions hold.

(i) {dk}k∈K and {ξk}k∈K are bounded.

(ii) Assume Ψ is continuously differentiable near u∗. If d∗, ξ∗ and W ∗ are accumu-
lation points of the sequences {dk}k∈K , {ξk}k∈K and {Wk}k∈K respectively, then
(d∗, ξ∗) is a solution of the modified QP (18) with u = u∗, W = W ∗ and ρ = ρ∗.
Furthermore, Θ(ρ∗,ρNCP

∗ ) is directionally differentiable at u∗ and it holds that

Θ′
(ρ∗,ρNCP

∗ )(u
∗; d∗) ≤ −(d∗)TW ∗d∗.
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(iii) Assume the step size sequence {tk} determined by the Armijo line search satisfies
limk→∞,k∈K tk = 0. Under the smoothness assumption in (ii), we have

lim sup
k→∞,k∈K

Θ(ρ∗,ρNCP
∗ )(u

k + tkd
k)−Θ(ρ∗,ρNCP

∗ )(u
k)

tk
≤ Θ′

(ρ∗,ρNCP
∗ )(u

∗; d∗).

Proof. Since g(x, y), F (x, y)−w, Ψ(y, w, µ) and eµ− 1 are smooth at u∗, The desired
results follows from Lemmas A.2 and A.3 of [20].

The condition (B2) may not hold in general. The following additional conditions
ensure that (B2) is satisfied, as shown below. Let H be the function representing the
equality constraints of (7), i.e. H(u) = (F (x, y)− w, Ψ(y, w, µ)) with u = (x, y, w, µ).

(B3) {uk} is bounded.

(B4) The generalized Jacobian ∂H(u∗) has full row rank at any accumulation point
u∗ of {uk}.

(B5) For any accumulation point u∗ of {uk} and any V ∈ ∂H(u∗), there exists d =
(dx, dy, dw, dµ) such that g′(x∗, y∗)(dx, dy) + g(x∗, y∗) > 0 and V d+H(u∗) = 0.

Note that the conditions (B4) and (B5) together are equivalent to the GMFCQ if u∗

is a feasible point of (7).
We are now ready to establish global convergence of implicit smooth SQP under the

assumption that Ψ is smooth at the accumulation point. We remark that the smooth-
ness of Ψ at a limit point means that the problem has essentially (asymptotically) been
reduced to smooth nonlinear programming.

Theorem 5.10 Suppose the assumptions (A1)–(A5) hold, the standing assumptions
(B1) holds, and F is a P0-function with respect to y. Suppose µ0 > 0, {uk} is the
sequence generated by the algorithm. We obtain the following conclusions.

(i) If (a) the condition (B2) holds, (b) u∗ is an accumulation point of {uk}, (c) Ψ
is continuously differentiable at u∗, then u∗ is both a critical point of Θ(ρ∗,ρNCP

∗ )

and a (classical or primal or piecewise) stationary point of the MPEC (7).

(ii) If conditions (B3), (B4) and (B5) hold, then so does (B2).

Proof. (i) Since Ψ is smooth at u∗, all results follow from Theorems A.1 of [20] and
Proposition 3.7.

(ii) This follows from Theorem A.2 in [20] but with some suitable modifications
given that Ψ may be nonsmooth at some accumulation points of the sequence {uk}.

Remark. In the above theorem, global convergence of implicit smooth SQP requires
smoothness of the function Ψ at u∗ = (x∗, y∗, w∗, µ∗). As shall be seen in Section 7, if
φ is the Fischer-Burmeister function in Example 7.1, the min function in Example 7.2,
or the Kanzow-Kleinmichel function in Example 7.3, then the smoothness condition
on Ψ is satisfied at any lower-level nondegenerate point, i.e., Ψ is smooth, in fact twice
continuously differentiable.

As already noted, lower-level nondegeneracy at a limit point u∗ often results in
smoothness of the function Ψ at this point, which means that we can apply classical
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theory and obtain classical results. Hence superlinear convergence under the lower-
level nondegeneracy condition and the assumption that the stepsize takes the value
1 for all large k would be no surprise though our merit function Θ(ρg ,ρNCP) has two
penalty parameters. The unit stepsize assumption is needed in nonlinear programming
due to the well-known Maratos effect, which can prevent superlinear convergence of an
SQP method that uses an exact penalty merit function unless a second-order correction
to the feasibility of the iterate is performed at each iteration. See [11, 36].

In order to study the rate of convergence of implicit smooth SQP, further conditions
such as the LICQ, the second order sufficient condition, careful update rules of the
matrix sequence {Wk}, etc. are needed. We conjecture that superlinear convergence
results similar to those of [35, 36] can be obtained.

6 Explicit Smooth SQP

Global convergence of the implicit smooth SQP method requires the lower-level non-
degeneracy condition at an accumulation point. This assumption is not unusual for
convergence of MPEC algorithms such as PIPA [28] and also the explicit smoothing
SQP method of Fukushima, Luo and Pang [12], but is still rather strong in that it
essentially reduces the problem to one of nonlinear programming, which is not tenable
in general.

As an alternative we propose an explicit smooth SQP algorithm for which global
convergence can be established without assuming lower-level nondegeneracy. This
method has a similar computational form to the SQP method of [12], although our
smoothing parameter update has to be carried out more carefully, like the original
smoothing method for MPEC of Facchinei, Jiang and Qi [8]. Moreover the method
given here weakens the assumptions needed in [8] as explained in Remark (ii) following
Theorem 6.4.

Note that the term explicit refers to the fact that the smoothing parameter µ is
not treated as a variable in the QP subproblem at each iteration, nor is it updated in
the line search which determines the next iterate (xk+1, yk+1, wk+1). In our explicit
smooth SQP method, the smoothing parameter tends to be updated less often than
once per QP-solve, unlike the the implicit smooth SQP method of the last section and
the explicit smoothing algorithm of [12].

Recall definitions of φµ and Φµ in Section 3. We approximate the MPEC (1) by
the following nonlinear programming problem with µ 6= 0:

min
x,y,w

f(x, y)

subject to g(x, y) ≥ 0
F (x, y)− w = 0
Φµ(y, w) = 0

(20)

which is (4) with

Φµ(y, w) =

 φµ(y1, w1)
...

φµ(ym, wm)

 = Ψ(y, w, µ).

Obviously, when µ = 0, the above problem reduces to (6). Therefore, our goal is to find

23



approximate solutions of (6) for each µ 6= 0 and then locate a solution or a generalized
stationary point of (6) by driving µ to zero.

Similar to implicit smooth SQP, we want to find an approximate solution of (20)
by solving a sequence of quadratic programs. More precisely, for any given (x, y, w),
µ 6= 0 and d = (dx, dy, dw), we define a modified quadratic program (which is a
modified quadratic model of (20) at (x, y) for the fixed µ 6= 0 and ρ > 0) as follows:

min
d∈<n+2m,ξ∈<l

∇f(x, y)T (dx, dy) + 1
2d

TWd+ ρ
l∑

i=1

ξi

subject to g′(x, y)(dx, dy) + g(x, y) ≥ −ξ
F ′(x, y)(dx, dy)− dw + (F (x, y)− w) = 0
Ady +Bdw + Φµ(y, w) = 0
ξ ≥ 0,

(21)

where [A B] = Φ′µ(x, y) and the matrix W ∈ <(n+2m)×(n+2m) is symmetric positive
definite.

If the modified QP (21) has a solution (d, ξ), then its KKT condition has the
following form: ∇xf

∇yf
0

+Wd−

 g′x(x, y)T

g′y(x, y)
T

0

λg +

 F ′x(x, y)T

F ′y(x, y)
T

−I

λF +

 0
AT

BT

λΦµ = 0

ρ ẽ = λg + λξ

0 ≤ g′(x, y)(dx, dy) + g(x, y) + ξ ⊥ λg ≥ 0
F ′(x, y)(dx, dy)− dw + (F (x, y)− w) = 0
Ady +Bdw + Φµ(y, w) = 0
0 ≤ ξ ⊥ λξ ≥ 0,

(22)
where ẽ is the vector of all ones in <l.

We can immediately write down a quadratic model of (20), that is without the
artificial variable ξ:

min
d∈<n+2m,ξ∈<l

∇f(x, y)T (dx, dy) + 1
2d

TWd

subject to g′(x, y)(dx, dy) + g(x, y) ≥ 0
F ′(x, y)(dx, dy)− dw + (F (x, y)− w) = 0
Ady +Bdw + Φµ(y, w) = 0.

(23)

A penalty merit function of (20) is defined by

Θ(ρg ,ρNCP,µ)(x, y, w) =

f(x, y) + ρg
l∑

i=1

max{−gi(x, y), 0}+ ρNCP
m∑

j=1

[(|Fj(x, y)− wj |+ |φµ(yj , wj)|)]

where ρg and ρNCP are positive numbers.
Before presenting our second method, we give a result for the case µ 6= 0, when

the problem (20) is a smooth NLP, that is parallel to Proposition 4.3 which deals with
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the case µ = 0. This result will not be used directly in the proof of convergence of
the explicit smooth SQP method but gives some idea of when the constraints of the
nonlinear problem (20) are numerically stable.

Proposition 6.1 Suppose (x, y, w) is a feasible point of (20) with µ 6= 0, F is a P0-
function with respect to y, and the assumptions (A1)–(A2) and (A5) are satisfied.
Define Ig = {i : gi(x, y) = 0},

Γ = g′x(x, y)− g′y(x, y)(U
−1)yyF

′
x(x, y)

U =

(
F ′y(x, y) −I

A B

)
, [A B] = Φ′µ(y, w).

Then the following conclusions hold.

(i) The CRCQ holds for (20) at (x, y, w) if the row submatrix ΓIg corresponding to
the active indexes of g at (x, y) has a constant rank around (x, y, w), In particular,
the CRCQ holds for (20) at (x, y, w) if g(x, y) = g(x) and if the matrix g′(x)Ig

has constant rank around x.

(ii) The LICQ holds for (20) at (x, y, w) if the row submatrix ΓIg has full row rank.
In particular, the LICQ holds for (20) at (x, y, w) if g(x, y) = g(x) and if the
row submatrix g′(x)Ig has full row rank.

(iii) The MFCQ holds for (20) at (x, y, w) if there exists a vector d ∈ <n such that

ΓIgd > 0.

In particular, the MFCQ holds for (20) at (x, y, w) if g(x, y) = g(x) and there
exists a vector d ∈ <n such that

g′i(x)d > 0, for i ∈ Ig.

Unlike in Section 3, in this section we let u = (x, y, w) and d = (dx, dy, dw) because
µ is regarded as a parameter, but not a variable. For the same reason, we use the
subscript k, i.e. µk, to denote the value of the parameter µ at the kth iteration.

Algorithm: Explicit Smooth SQP

Step 0. (Initialization) Let ρ−1 > 0, δ1 > 0, δ2 > 0, βµ ∈ (0, 1), βε ∈ (0, 1),
σ ∈ (0, 1), τ ∈ (0, 1). Choose u0 = (x0, y0, w0) ∈ <n+2m, and choose µ0 > 0,
ε0 > 0, and a symmetric positive definite matrix W0 ∈ <(n+2m)×(n+2m). Set
k := 0.

Step 1. (Search direction) Solve the modified QP (21) with (x, y, w) = (xk, yk, wk),
µ = µk and W = Wk and ρ = ρk−1. Let (dk, ξk) be a solution of this QP and
λk = (λg, λF , λΦ, λξ) be its corresponding KKT multiplier.

Step 2. (Termination check) If a stopping rule is satisfied, terminate. Otherwise,
go to Step 3.
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Step 3. (Penalty update) Let

ρ̃k =

 ρk−1 if ρk−1 ≥ max
1≤i≤l+2m+1

|λk
i |

δ1 + max
1≤i≤l+2m+1

|λk
i | otherwise.

Define ρg
k = ρk−1 and ρNCP

k = ρ̃k and

ρk =

 ρ̃k if
∑

1≤i≤l

ξk
i = 0

ρ̃k + δ2 otherwise.

Step 4. (Line search) Let tk = (τ)ik where ik is the smallest nonnegative integer
such that i = ik satisfies

Θ(ρg
k
,ρNCP

k
,µk)(u

k + (τ)idk)−Θ(ρg
k
,ρNCP

k
,µk)(u

k) ≤ −σ(τ)i(dk)TWkd
k.

Step 5. (Update) Let

uk+1 = uk + tkd
k

µk+1 =


βµ µk if ‖dk‖ ≤ εk

µk otherwise

εk+1 =


βε εk if ‖dk‖ ≤ εk

εk otherwise.

Choose a symmetric positive definite matrix Wk+1 ∈ <(n+2m)×(n+2m). Set k :=
k + 1, and go to Step 1.

We next present some results analogous to those in Subsection 5.2. The proofs are
very similar, so we omit all proofs.

Proposition 6.2 Suppose F ′y(x, y) is a P0-matrix, the assumptions (A1)–(A5) hold
and µ 6= 0. Then (21) has a nonempty feasible set. Moreover (23) has a nonempty
feasible set if and only if the following system is consistent with respect to dx:

Γdx+ g(x, y, w, µ) ≥ 0

where Γ and U are given by Proposition 6.1 and g(x, y, w, µ) is the vector

g(x, y, w, µ) = g(x, y) − g′y(x, y)[(U
−1)yy(F (x, y)− w) + (U−1)ywΦµ(y, w)].

Furthermore, (dy, dw) is uniquely determined by dx, i.e.,

(dy, dw) = U−1

(
−F ′x(x, y)dx− F (x, y) + w

−Φµ(y, w)

)
.

In the case where g(x, y) = g(x), the above consistency condition becomes consistency
with respect to dx:

g′(x)dx+ g(x) ≥ 0.
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Proposition 6.3 Let µ 6= 0.

(i) Θ′
(ρg ,ρNCP,µ)

is directionally differentiable at u. Furthermore, if (d, ξ) is a solution

of the modified QP (21), ρg = ρ and ρNCP ≥ max
1≤i≤l+2m

|λi| with λ its KKT

multiplier, then

Θ′
(ρg ,ρNCP,µ)

(x, y, w; d) ≤ ∇f(x, y)T (dx, dy)− (λg)T g′(x, y)(dx, dy)
+(λF )T (F ′(x, y)(dx, dy)− dw)
+(λΦµ)T Φ′µ(y, w)(dy, dw)

and
Θ′

(ρg ,ρNCP,µ)(x, y, w; d) ≤ −dTWd.

(ii) Suppose W is symmetric positive definite. If (d, ξ) is a solution of the modi-
fied QP (21) with d 6= 0, then d is a descent direction of the penalty function
Θ(ρg ,ρNCP,µ) for ρg = ρ and any ρNCP satisfying the condition in (i).

We need assumptions (B1) and (B2) as Subsection 5.3, although here u = (x, y, w),
i.e. µ is omitted, hence the order of each matrix Wk is n+ 2m rather than n+ 2m+ 1
as in Section 5. As before, we can ensure (B2) by assuming conditions (B3)–(B5). The
function H in the conditions (B4) and (B5) now corresponds to the equality constraints
of (6), that is H(u) = (F (x, y)− w,Φ(y, w)) = (F (x, y)− w,Ψ(y, w, 0)).

Theorem 6.4 Assume the assumptions (A1)–(A5) hold, the assumption (B1) holds,
and F is a P0-function with respect to y. Let µ0 > 0, {uk}, {µk} and {εk} be the
sequences generated by the algorithm.

(i) If the assumption (B2) holds and {uk} has a limit point, then

lim
k→∞

µk = 0, lim
k→∞

εk = 0.

(ii) Let K = {k : ‖dk‖ ≤ εk}. If we assume that the assumption (B2) holds and
{uk}k∈K has an accumulation point u∗ = (x∗, y∗, w∗), then u∗ is a generalized
stationary point of (6). Furthermore, if (x∗, y∗) is lower-level nondegenerate,
then (x∗, y∗) is a (classical or primal or piecewise) stationary point of the MPEC

(iii) If conditions (B1), (B3), (B4) and (B5) hold, then so does (B2).

Proof. (i) Obviously {µk} is bounded. Suppose µ∗ is an accumulation point of {µk}.
If µ∗ > 0, then ‖dk‖ ≤ εk occurs only finitely many times. This means that after
finitely many iterations, µk and εk remain unchanged, i.e., for some k0 and all k ≥ k0,
µk = µk0 > 0 and εk = εk0 > 0. In this case, our smoothing method reduces to the
modified SQP method presented in [20, Appendix] for a smooth nonlinear program
(20). By [20, Theorem A.1] and its proof, it follows that some subsequence of {dk}
approaches to 0 as k → ∞, which implies that ‖dk‖ ≤ εk0 will eventually happen, a
contradiction. Therefore, limk→∞ µk = 0. By the update rule in Step 5, it is also true
that limk→∞ εk = 0.

(ii) By the assumption (B2) and the update rule of the penalty parameter, the
KKT multiplier sequence {λk}k∈K is bounded and ξk = 0 for all large enough k since
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ρk = ρ∗ for all sufficiently large k. Note that for each k ∈ K, ‖dk‖ ≤ εk. Hence
limk→∞,k∈K dk = 0. By passing to the limit for k ∈ K, it follows from the KKT
condition (22) and the assumption (A3) that u∗ is a generalized stationary point of
(6). From Proposition 3.7, (x∗, y∗) is a piecewise stationary point of the MPEC if
(x∗, y∗) is lower-level nondegenerate.

(iii) This follows, as does part (ii) of Theorem 5.10, by a straightforward extension
of a similar result for the smooth case [20, Theorem A.2].

Remarks.

(i) As discussed in Subsection 5.5, we may find a solution of the modified QP (21) by
solving a reduced QP and some systems of linear equations, which may reduce
the computational cost significantly especially if the matrices defining the QP
are dense.

(ii) Loosely speaking, the first part of Theorem 6.1 under the assumption (iii) can
be viewed as a generalization of Theorem 5.14(b) of [8] when the assumptions
(A1)-(A5) in [8] are valid, and the smoothing function ψ used in (20) has the
form of that defined in Example 7.2 below. To explain further, in [8]: (a) The
upper-level constraints have the form g(x, y) ≡ g(x) ≤ 0, i.e. the MPEC is an
implicit program. (b) The upper-level and lower-level feasible sets are assumed
to be compact, while in our case compactness is not assumed in either the upper
or lower levels (the lower-level feasible set is <m

+ , corresponding to an NCP).
(c) The lower-level objective function F is assumed to be uniformly strongly
monotone in [8]; we assume that F is at most a uniform P0-function in y.

Regarding (b), we should say that nonlinear constraints are allowed in the def-
inition of lower-level feasible set in [8]. However, the KKT conditions of the
lower-level variational inequality problem are a parametric mixed complemen-
tarity problem. As mentioned in Section 1, this case can be treated as an MPEC
of the form (1) with some additional upper-level equality constraints.

7 Special Examples of Smoothing Functions

In this section we give examples of the function ψ satisfying the assumptions (A1)–
(A5). Hence these special forms of ψ correspond to particular implementations of
smooth SQP methods for MPEC.

Example 7.1
ψ(a, b, c) =

√
a2 + b2 + c2 − (a+ b).

This function is used for proposing an SQP method in [12]. Corresponding to ψ is the
function φ(a, b) =

√
a2 + b2 − (a+ b), which is now known as the Fischer-Burmeister

function [9]. The introduction of ψ originates from [21] for handling linear comple-
mentarity problems.

If (a, b, c) 6= (0, 0, 0), then ψ is smooth at (a, b, c) with ∇ψ(a, b, c) = (p, q, r) such
that

p =
a√

a2 + b2 + c2
− 1, q =

b√
a2 + b2 + c2

− 1, r =
c√

a2 + b2 + c2
.
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If (a, b, c) = (0, 0, 0), then ψ is locally Lipschitz at (a, b, c) and its generalized Jacobian
is the ball [18]:

∂ψ(a, b, c) = {(p, q, r) : (p+ 1)2 + (q + 1)2 + r2 ≤ 1}.

Example 7.2
ψ(a, b, c) =

√
(a− b)2 + c2 − (a+ b).

This function is used for proposing a smoothing method in [8]. Corresponding to ψ
is the function φ(a, b) = |a − b| − (a + b) = −2 min{a, b}. The introduction of ψ also
originates from [21].

If either a 6= b or c 6= 0, then ψ is smooth at (a, b, c) with ∇ψ(a, b, c) = (p, q, r)
such that

p =
a− b√

(a− b)2 + c2
− 1, q =

b− a√
(a− b)2 + c2

− 1, r =
c√

(a− b)2 + c2
.

If a = b, and c = 0, then ψ is locally Lipschitz at (a, b, c) and its generalized Jacobian
is the intersection of a plane with a box:

∂ψ(a, b, c) = {(p, q, r) : p+ q = −2, p ∈ [−2, 0], q ∈ [−2, 0], r ∈ [−1, 1]}.

Example 7.3
ψ(a, b, c) =

√
a2 + b2 + λab+ c2 − (a+ b)

φ(a, b) =
√
a2 + b2 + λab− (a+ b)

where λ ∈ [−2, 2) is a parameter. The function φ is introduced in [22] for solving non-
linear complementarity problems. Apparently, when λ = 0, φ reduces to the Fischer-
Burmeister function (Example 7.1), and when λ = −2, φ reduces to the min function
(Example 7.2).

So we may assume that λ ∈ (−2, 2). If (a, b, c) 6= (0, 0, 0), then ψ is smooth at
(a, b, c) and ∇ψ(a, b, c) = (p, q, r) with

p =
a+ λb/2√

a2 + b2 + λab+ c2
− 1, q =

b+ λa/2√
a2 + b2 + λab+ c2

− 1, r =
c√

a2 + b2 + λab+ c2
.

If (a, b, c) = (0, 0, 0), then ψ is locally Lipschitz at (a, b, c) and its generalized Jacobian
is an ellipsoid:

∂ψ(a, b, c) = {(p, q, r) : α(p+ 1)2 + α(q + 1)2 + β(p− q)2 + r2 ≤ 1},

where α = 2
2+λ , β = 2λ

4−λ2 .

Example 7.4

ψ(a, b, c) = λ[
√
a2 + b2 + c2 − (a+ b)]− (1−λ)

4 (
√
a2 + c2 + a)(

√
b2 + c2 + b)

φ(a, b) = λ[
√
a2 + b2 − (a+ b)]− (1− λ) max{a, 0} max{b, 0}

where λ ∈ (0, 1] is a parameter. The function φ is introduced in [3] for solving nonlinear
complementarity problems. When λ = 1, φ reduces to the Fischer-Burmeister function
in Example 7.1.
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If c 6= 0, then ψ is smooth at (a, b, c) and ∇ψ(a, b, c) = (p, q, r) with

p = λ( a√
a2+b2+c2

− 1)− 1−λ
4 ( a√

a2+c2
+ 1)(

√
b2 + c2 + b)

q = λ( b√
a2+b2+c2

− 1)− 1−λ
4 ( b√

b2+c2
+ 1)(

√
a2 + c2 + a)

r = λ c√
a2+b2+c2

− 1−λ
4 [ c√

a2+c2
(
√
b2 + c2 + b) + c√

b2+c2
(
√
a2 + c2 + a)].

If (a, b, c) = (0, 0, 0), then ψ is locally Lipschitz at (a, b, c) and its generalized Jacobian
is the ball:

∂ψ(a, b, c) = {(p, q, r) : (p+ λ)2 + (q + λ)2 + r2 ≤ λ2}.

If (a, b) 6= (0, 0) and c = 0, then ψ is locally Lipschitz at (a, b, 0) and its Jacobian or
generalized Jacobian is of the form:

∂ψ(a, b, 0) =



(p, q, r) :

p = λ( a√
a2+b2

− 1)− 1−λ
4 α(|b|+ b)

q = λ( b√
a2+b2

− 1)− 1−λ
4 β(|a|+ a)

r = −1−λ
4 [γa(|b|+ b) + γb(|a|+ a)]

α ∈ [0, 2] if a = 0
α = a

|a| + 1 if a 6= 0

β ∈ [0, 2] if b = 0
β = b

|b| + 1 if b 6= 0

γa ∈ [−1, 1] if a = 0
γa = 0 if a 6= 0

γb ∈ [−1, 1] if b = 0
γb = 0 if b 6= 0



.

Note that a/|a| is equal to the sign of a for a 6= 0.

Part (i) of the next proposition demonstrates that special explicit smooth SQP
methods can be proposed based on these smoothing functions. Its proof is an easy
consequence of the above formulae for ∂ψ(a, b, c). Part (ii), which is evident, says
that the smoothing functions in Examples 7.1, 7.2 and 7.3 satisfy the smoothness
assumption needed for global convergence in Theorems 5.10.

Proposition 7.5

(i) Each function ψ defined in Examples 7.1, 7.2, 7.3 and 7.4 satisfies the assump-
tions (A1)–(A5).

(ii) Each function φ defined in Examples 7.1, 7.2 and 7.3 is twice continuously dif-
ferentiable at any nondegenerate point (a, b), i.e., a 6= b.
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8 Concluding Remarks

In this article, mathematical programs with equilibrium constraints are reformulated
as better-posed nonsmooth programs and then, by means of so-called smoothing func-
tions, approximated by (smooth) nonlinear programs. Consequently, some techniques
that are well known in the context of nonlinear programming can be used for solving
MPEC. In particular, we have developed two classes of SQP methods. Some global
convergence results of these methods have been established. Numerical experience is
yet to be established.

The extent of these convergence results depends critically on the convergence the-
ory available for the corresponding nonlinear programming algorithm. So we expect
the future application of different nonlinear programming methods in the context of
smoothing for MPEC and other nonsmooth optimization problems will give rise to
different global convergence results.

We have also given concrete examples of smoothing functions motivated by the lit-
erature on complementarity problems. It would be interesting to find other smoothing
functions to satisfy the assumptions (A1)–(A5), and other smoothing functions which
may not satisfy those assumptions but may play similar roles in other algorithms.

Acknowledgement. The authors thank Francisco Facchinei for suggesting the refer-
ence [1] and for subsequent discussions on nonlinear programming; Jong-Shi Pang for
comments on the meaning of “well-posedness”; and two anonymous referees for their
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A Appendix: Global Convergence of a Modified SQP
Method for Smooth Nonlinear Programs

Consider the nonlinear programming problem:

min
u

f(u)
subject to g(u) ≥ 0

h(u) = 0,
(24)

where f : <n → <, g : <n → <l and h : <n → <m are continuously differentiable. The
standard `1-exact penalty function for this problem is defined as

θρ(u) = f(u) + ρ

 ∑
1≤i≤l

max{−gi(u), 0}+
∑

1≤j≤m

|hj(u)|


where ρ > 0 is a parameter. Associated with the above penalty function, we define
another penalty function using two different penalty parameters:

Θ(ρg ,ρh)(u) = f(u) + ρg
∑

1≤i≤l

max{−gi(u), 0}+ ρh
∑

1≤j≤m

|hj(u)|.

When ρg = ρh = ρ, θρ = Θ(ρg ,ρh). We will give references and comments after present-
ing a sequential quadratic programming (SQP) method which uses this exact penalty
function and its associated penalty function as a merit function.

Algorithm: Modified SQP Method

Step 0. (Initialization) Let ρ−1 > 0, δ1 > 0, δ2 > 0, σ ∈ (0, 1), τ ∈ (0, 1). Choose
u0 ∈ <n and a symmetric positive definite matrix W0 ∈ <n×n. Set k := 0.

Step 1. (Search direction) Solve the following modified QP problem (which is a
modified quadratic model of (24)) with u = uk, W = Wk, and ρ = ρk−1:

min
d∈<n,ξ∈<l

∇f(u)Td+ 1
2d

TWd+ ρ
l∑

i=1

ξi

subject to g′(u)d+ g(u) ≥ −ξ
h′(u)d+ h(u) = 0
ξ ≥ 0.

(25)

Let (dk, ξk) be a solution of this QP and λk = (λk
g , λ

k
h, λ

k
ξ ) be its corresponding

KKT multiplier.

Step 2. (Termination check) If a stopping rule is satisfied, terminate. Otherwise,
go to Step 3.

Step 3. (Penalty update) Let

ρ̃k =

 ρk−1 if ρk−1 ≥ max
1≤i≤l+m

|λk
i |

δ1 + max
1≤i≤l+m

|λk
i | otherwise.
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Define ρg
k = ρk−1, ρh

k = ρ̃k, and

ρk =

 ρ̃k if
∑

1≤i≤l

ξk
i = 0

ρ̃k + δ2 otherwise.

Step 4. (Line search) Let tk = (τ)ik where ik is the smallest nonnegative integer
such that i = ik satisfies

Θ(ρg
k
,ρh

k
)(u

k + (τ)idk)−Θ(ρg
k
,ρh

k
)(u

k) ≤ −σ(τ)i(dk)TWkd
k.

Step 5. (Update) Let uk+1 = uk +tkdk. Choose a symmetric positive definite matrix
Wk+1 ∈ <n×n. Set k := k + 1. Go to Step 1.

SQP methods and variants are amongst the most important and most popular
methods for general nonlinear programs. In classical SQP methods such as [15, 36],
the search direction is usually obtained by solving a quadratic model of (24), i.e., the
following QP problem with u = uk and W = Wk:

min
d∈<n

∇f(u)Td+ 1
2d

TWd

subject to g′(u)d+ g(u) ≥ 0
h′(u)d+ h(u) = 0.

(26)

Global convergence of the SQP methods can be established under standard assump-
tions. See for example, [15, 36]. See also [1, 2, 11] for variants.

Our modified SQP method is close to the modified SQP methods proposed in [1, 2];
in particular we use [1] as a kind of template for the development of the subsequent
results. However unlike [1], we use the `1- rather than the `∞-exact penalty function,
which leads to modified QP (25) different from the QP used in [1], and our penalty
parameter update must also take into account the way the equality constraints are
treated differently from the inequality constraints (the former are not relaxed).

Remarks.

(i) The introduction of the modified QP (25) aims to improve the prospect of feasibil-
ity of the QP (26). Certainly, one may further improve the prospect of feasibility
of the modified QP (25) by relaxing the equality constraints. However, we do not
proceed in this way since the relaxation of the inequality constraints is enough
as far as this paper is concerned. It can be easily seen that our modified SQP
method is exactly the same as the classical SQP methods of [15, 36] if the mod-
ified QP (25) is replaced by the QP (26) at Step 3 and ρg

k = ρh
k = ρ̃k at Step

4.

(ii) In the merit function Θ(ρg ,ρh), there are two different penalty parameters ρg

and ρh. In order to ensure a solution of the modified QP (25) to be a descent
direction of the merit function Θ(ρg ,ρh) at its noncritical point, we must carefully
choose values for penalty parameters ρg and ρh. It turns out that ρg should
be equal to ρ used in the objective function of (25), and that ρh should be no
less than the minimum of the absolute values of all multipliers corresponding to
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equality constraints in (25). The inequality constraints are relaxed through the
introduction of the nonnegative variable ξ, which measures the feasibility gap of
inequality constraints. The ultimate goal of the algorithm is to find a solution
for (24), which must be at least feasible. Therefore, The penalty term ρ

∑
xii in

the objective function of (25) is to force the feasibility gap as small as possible.
As can be seen from Step 3, the penalty parameter ρ is increased by a positive
constant δ2 if such a gap is not zero.

If the QP (26) has a solution d and λ = (λg, λh) is its corresponding KKT multiplier,
then the KKT condition of this QP can be written as follows:

∇f(u) +Wd− g′(u)Tλg + h′(u)Tλh = 0
0 ≤ g′(u)d+ g(u) ⊥ λg ≥ 0
h′(u)d+ h(u) = 0.

(27)

Similarly, if the modified QP (25) has a solution (d, ξ) and λ = (λg, λh, λξ) is its
corresponding KKT multiplier, then the KKT condition of the modified QP is read as:

∇f(u) +Wd− g′(u)Tλg + h′(u)Tλh = 0
ρ ẽ = λg + λξ

0 ≤ g′(u)d+ g(u) + ξ ⊥ λg ≥ 0
h′(u)d+ h(u) = 0
0 ≤ ξ ⊥ λξ ≥ 0,

(28)

where ẽ is the vector of all ones in <l.
Before giving a proof of the global convergence of the modified SQP method, we

next study some useful properties associated with KKT points of the NLP (24) and
critical points of the penalty function Θ(ρg ,ρh).

Proposition A.1

(i) For any u ∈ <n and d ∈ <n, ρg ∈ < and ρh ∈ <, Θ′
(ρg ,ρh)

is directionally
differentiable at u along the direction d and it holds that

Θ′
(ρg ,ρh)

(u; d) = ∇f(u)Td

+ρg

 ∑
i: gi<0

−g′i(u)d+
∑

i: gi=0

max{−g′i(u)d, 0}+
∑

i: gi>0

0



+ρh

 ∑
j: hj>0

h′j(u)d+
∑

j: hj=0

|h′j(u)d|+
∑

j: hj<0

−h′j(u)d

 .
(ii) If d is a solution of the QP (26), and if min{ρg, ρh} ≥ max

1≤i≤l+m
|λi| where λ =

(λg, λh) is the KKT multiplier of the QP (26), then

Θ′
(ρg ,ρh)

(u; d) ≤ ∇f(u)Td− (λg)T g′(u)d+ (λh)Th′(u)d

and
Θ′

(ρg ,ρh)(u; d) ≤ −dTWd.
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(iii) If (d, ξ) is a solution of the modified QP (25), ρg = ρ and ρh ≥ max
1≤i≤l+m

|λi| where

λ = (λg, λh, λξ) is the KKT multiplier of the modified QP (25), then

Θ′
(ρg ,ρh)

(u; d) ≤ ∇f(u)Td− (λg)T g′(u)d+ (λh)Th′(u)d

and
Θ′

(ρg ,ρh)(u; d) ≤ −dTWd.

Proof. (i) The directional differentiability of Θ(ρg ,ρh) follows from the continuous
differentiability of f , g and h. The directional derivative of Θ(ρg ,ρh) is straightforward
to calculate.

(ii) By direct calculation, one may show that

Θ′
(ρg ,ρh)(u; d) ≤ ∇f(u)Td− ρg‖max{−g(u), 0}‖1 − ρh‖h(u)‖1.

Since λ = (λg, λh) is the KKT multiplier of the QP (26), it follows from the KKT
condition (27) of this QP that

−(λg)T g′(u)d = (λg)T g(u) ≥ −
∑

1≤i≤l

(λg)i |max{−gi(u), 0}|

(λh)Th′(u)d = −(λh)Th(u) ≥ −
∑

1≤j≤m

|(λh)j | |hj(u)|.

Therefore, the first inequality in (ii) follows from min{ρg, ρh} ≥ max
1≤i≤l+m

|λi|, and the

second inequality follows from the KKT condition (27).
(iii) Let the directional derivative of max{−gi(u), 0} at u along the direction d

be denoted by (max{−gi(u), 0})′(u; d) for each i (1 ≤ i ≤ l). It suffices to show the
following inequality holds for each i:

ρg(max{−gi(u), 0})′(u; d) ≤ −(λg)ig
′
i(u)d. (29)

Case I: ξi = 0. If gi(u) < 0, then

(max{−gi(u), 0})′(u; d) = −g′i(u)d ≤ gi(u) + ξi < 0,

which implies (29) by (λg)i ≤ ρg. If gi(u) = 0, then

(max{−gi(u), 0})′(u; d) = max{−g′i(u)d, 0} = 0

and
−(λg)ig

′
i(u)d = (λg)i(gi(u) + ξi) = 0,

where the second equation follows from the complementarity condition (λg)i(g′i(u)d+
gi(u) + ξi) = 0. Therefore (29) follows. If gi(u) > 0, then the complementarity
condition shows that

−(λg)ig
′
i(u)d = (λg)i(gi(u) + ξi) ≥ 0.

So the fact that (max{−gi(u), 0})′(u; d) = 0 shows (29).
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Case II: ξi > 0. In this case, we have ρg = (λg)i. If gi(u) < 0, it is straightforward.
If gi(u) = 0, then the complementarity condition implies that

ρg(max{−gi(u), 0})′(u; d) = ρg max{−g′i(u)d, 0}
= max{−(λg)ig

′
i(u)d, 0}

= max{(λg)iξi, 0}
= (λg)iξi
= −(λg)ig

′
i(u)d.

If gi(u) > 0, the complementarity condition shows that

ρg(max{−gi(u), 0})′(u; d) = 0
≤ (λg)i(gi(u) + ξi)
= −(λg)ig

′
i(u)d.

Proposition A.2 Suppose the matrix W is symmetric positive semi-definite.

(i) If d is a solution of the QP (26) and λ = (λg, λh) is its KKT multiplier, then
(d, 0) is a solution of the modified QP (25) for any ρ ≥ max

1≤i≤l+m
|λi|.

(ii) If (d, 0) is a solution of the modified QP (25) for any ρ > 0, then d is a solution
of the QP (26).

Proof. (i) If d is a solution of the QP (26) and λ = (λg, λh) is its KKT multiplier,
then (d, 0) is a KKT point of the modified QP (25) with a KKT multiplier (λg, λh, λξ)
such that λξ = ρ ẽ − λg for any ρ ≥ max

1≤i≤l+m
|λi|. Since W is symmetric positive

semi-definite, the modified QP (25) is a convex quadratic program. This shows that
(d, 0) is a solution of the modified QP (25).

(ii) Similar to (i).

Proposition A.3 Suppose the matrix W is symmetric positive definite.

(i) Assume the modified QP (25) is feasible at u∗. If for a given ρg > 0 and all
sufficiently large ρh > 0, u∗ is a critical point of Θ(ρg ,ρh), then there exists a
vector (d, ξ) with d = 0 such that (d, ξ) is a solution of the modified QP (25) with
u = u∗ and ρ = ρg.

(ii) If there exists a vector (d, ξ) with d = 0 such that (d, ξ) is a solution of the
modified QP (25) with u = u∗ and ρ = ρg and λ = (λg, λh) is its associated
multiplier, then u∗ is a critical point of Θ(ρg ,ρh) for any ρh ≥ max

1≤i≤m+l
|λi|.

Proof. (i) Suppose u∗ is a critical point of Θ(ρg ,ρh). Since the modified QP (25)
is feasible and convex, it has an optimal solution (d, ξ). If d 6= 0, then the second
inequality of (iii) in Proposition A.1 and the positive definiteness of the matrix W
imply that Θ′

(ρg ,ρh)
(u∗; d) < 0, which is a contradiction. Therefore d = 0.
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(ii) Suppose (0, ξ) is a solution of the modified QP (25). Then the KKT condition
of (25) is read as follows: For some KKT multiplier (λg, λh, λξ),

∇f(u∗)− g′(u∗)λg + h′(u∗)λh = 0
ρg ẽ = λg + λξ

0 ≤ g(u∗) + ξ ⊥ λg ≥ 0
h(u∗) = 0
0 ≤ ξ ⊥ λξ ≥ 0.

Assume that d 6= 0 is any given vector in <n. We now calculate Θ′
(ρg ,ρh)

(u∗; d) term
by term. If gi(u∗) < 0, then the above KKT condition shows that ξi > 0, (λξ)i = 0
and (λg)i = ρg. It follows that

ρg(−g′i(u∗)d) = −(λg)ig
′
i(u

∗)d.

If gi(u∗) = 0, then it is easy to show that

ρg max{−g′i(u∗)d, 0} ≥ −(λg)ig
′
i(u

∗)d.

If gi(u∗) > 0, then (λg)i = 0 and

ρg 0 = −(λg)ig
′
i(u

∗)d.

The KKT condition shows that h(u∗) = 0. Clearly, we have

ρh|h′j(u∗)d| ≥ |(λh)j h
′
j(u

∗)d| ≥ (λh)jh
′
j(u

∗)d.

From the above argument, we have the following inequality

Θ′
(ρg ,ρh)

(u∗; d) ≥ ∇f(u∗)Td− λT
g g

′(u∗)d+ λT
hh

′(u∗)d
= (∇f(u∗)− g′(u∗)Tλg + h′(u∗)Tλh)Td
= 0,

where the last equality follows from the first equation of the above KKT condition.
Therefore, u∗ is a critical point of Θ(ρg ,ρh).

Proposition A.4 Suppose the matrix W is symmetric positive definite. Then u∗ is a
KKT point of the nonlinear program (24) if and only if d = 0 is the unique solution of
the QP (26) at u = u∗.

Proof. This result is classical and we omit the proof.

Proposition A.5

(i) If u∗ is a KKT point of the nonlinear program (24) and λ is its KKT multiplier,
and if min{ρg, ρh} ≥ max

1≤i≤l+m
|λi|, then u∗ is a critical point of Θ(ρg ,ρh).

(ii) If u∗ is a critical point of Θ(ρg ,ρh) for some ρg > 0 and some sufficiently large
ρh, and u∗ is a feasible point of the nonlinear program (24), then u∗ is a KKT
point of (24).
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Proof. (i) If u∗ is a KKT point of the nonlinear program (24) and λ is its KKT
multiplier, then Proposition A.4 implies that d = 0 is a unique solution of the QP (26)
with any positive definite matrix W and u = u∗ and λ its multiplier. It follows from
(i) of Proposition A.2 that (0, 0) is a solution of the modified QP (25) with the matrix
W , u = u∗ and ρ ≥ max

1≤i≤l+m
|λi|. Hence (ii) of Proposition A.3 shows that u∗ is a

critical point of Θ(ρg ,ρh) if ρh is sufficiently large.
(ii) If u∗ is a critical point of the penalty function Θ(ρg ,ρh) for some ρg > 0 and

ρh > 0, then (i) of Proposition A.3 implies that (d, ξ) with d = 0 is a solution of
the modified QP with the matrix W , the penalty parameter ρ = ρh and u = u∗.
Consequently, the KKT condition (28) holds for some KKT multiplier λ = (λg, λh, λξ)
with u = u∗. Here we show that ξ = 0. If ξi 6= 0, then ξi > 0. The complementarity
condition (gi(u∗) + ξi)(λg)i = 0 and the feasibility condition that gi(u∗) ≥ 0 show
that (λg)i = 0. This means that (λξ)i = ρg > 0. By the complementarity condition
ξi(λξ)i = 0, we have that ξi = 0, a contradiction. Therefore, ξ = 0. It follows from (ii)
of Proposition A.2 that d = 0 is a (unique) solution of the QP (26) with the matrix
W and u = u∗. Then the desired result follows from Proposition A.4.

Proposition A.6 Suppose the matrix W is symmetric positive definite.

(i) If the QP (26) has nonempty feasible set, then it has a unique solution d. Suppose
d 6= 0 and λ ∈ <l+m is its KKT multiplier. Then d is a descent direction of the
merit function Θ(ρg ,ρh) if min{ρg, ρh} ≥ max

1≤i≤l+m
|λi|.

(ii) If the modified QP (25) has nonempty feasible set, then it has a solution (d, ξ).
Suppose d 6= 0 and λ = (λg, λh, λξ) ∈ <l+2m is its KKT multiplier. Then d is a
descent direction of the merit function Θ(ρg ,ρh) for ρg = ρ and ρh ≥ max

1≤i≤l+m
|λi|.

Proof. (i) The first part follows from the symmetric positive definiteness of the matrix
W . The second part follows from (ii) of Proposition A.1.

(ii) The first part follows from the fact that the modified QP (25) is convex. The
second part follows from (iii) of Proposition A.1.

To study global convergence of our modified SQP algorithm, in the sequel, we
impose the following standard standing conditions:

(C1) For each k, the modified QP (25) has a nonempty feasible set.

(C2) There exist two positive constants α < β such that for each k, the following
condition holds:

α‖d‖2 ≤ dTWkd ≤ β‖d‖2, ∀d ∈ <n.

(C3) After finitely many iterations, the value of the penalty parameter ρk does not
change, i.e, for sufficient large k, ρk = ρ∗, ρ

g
k = ρk = ρ∗, ρh

k = ρh
∗ .

Remarks. The condition (C3) is usually not assumed in the literature. However, it
is implied by appropriate constraint qualifications on all accumulation points of the
sequence {uk}. We first investigate global convergence results under the assumption
(C3). Later on we shall study global convergence without it.
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Lemma A.7 Under the standing assumptions (C1)–(C3), the modified SQP method
is well-defined, and the algorithm either terminates in Step 2 after finitely many iter-
ations, or generates infinite sequences {uk}, {dk} and {λk}.

Proof. By the standing assumption (C1), the search direction and the penalty param-
eter update is well-defined at Step 1 and Step 3 respectively. By (iii) of Proposition A.1,
Proposition A.6 and the standing assumption (C2), it can be easily shown that the
line search at Step 4 is well-defined. Therefore, the well-definedness of the algorithm
follows. The proof is complete.

At Step 2 of the algorithm, we did not specify a stopping rule. If at some iteration
k, (dk, ξk) with dk = 0 is a solution of the modified QP (25), then Proposition A.3
shows that a critical point of the penalty function Θ(ρg

k
,ρh

k
) is obtained if ρh

k is sufficiently

large. By Proposition A.5, if uk is feasible for (24), this critical point is also a KKT
point of the nonlinear program (24). Therefore, in the sequel, we assume that the
algorithm does not terminate and generates the sequences {uk}, {dk} and {λk} with
dk 6= 0.

Lemma A.8 Assume the standing conditions (C1)–(C3) hold. Suppose u∗ is an ac-
cumulation point of {uk}, i.e., for some subset K, limk→∞,k∈K uk = u∗. Then the
following conclusions hold.

(i) For all sufficiently large k,
∑

1≤i≤l ξ
k
i = 0, i.e., the QP (26) is feasible, and

furthermore, ρg
k = ρk = ρ∗, ρh

k = ρh
∗ .

(ii) {λk} and {dk}k∈K are bounded.

(iii) If d∗, ξ∗ and W ∗ are accumulation points of the sequences {dk}k∈K , {ξk}k∈K and
{Wk}k∈K respectively, then (d∗, ξ∗) is a solution of the modified QP (25) with
u = u∗, W = W ∗ and ρ = ρ∗. Furthermore,

Θ′
(ρg
∗,ρh

∗ )
(u∗; d∗) ≤ −(d∗)TW ∗d∗.

Proof. (i) It follows from the penalty update rule in Step 3 and the standing condition
(C3).

(ii) The penalty update rule in Step 3 implies that the boundedness of {λk}. By
the first equation of the KKT condition, we can show that the set {Wkd

k}k∈K is
bounded. Then the boundedness of the subsequence {dk}k∈K is implied by the standing
assumption (C2).

(iii) In view of (i), (ii), and the KKT condition (28) for each k ∈ K, by taking the
limit, we obtain for some vector ξ∗ = 0 that (d∗, ξ∗) is a KKT point of the modified QP
(25) with u = u∗, W = W ∗ and ρ = ρ∗. Since this modified QP is convex, (d∗, ξ∗) is a
solution of this QP. Furthermore, the assumption in (iii) of Proposition A.1 is satisfied
for this modified QP. Therefore the last inequality in (iv) follows.

The following lemma is a technical result.

Lemma A.9 Let ρg > 0 and ρh > 0. Suppose limk→∞,k∈K uk = u∗, limk→∞,k∈K tk =
0, and limk→∞,k∈K dk = d∗. Then it holds that

lim sup
k→∞,k∈K

Θ(ρg ,ρh)(uk + tkd
k)−Θ(ρg ,ρh)(uk)
tk

≤ Θ′
(ρg ,ρh)(u

∗; d∗).
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Proof. Let G : <n → <1+l+m be defined by G(u) = (f(u), g(u), h(u)). Then the
function Θ(ρg ,ρh)(u) is a composite function of some piecewise affine convex function ϕ
and the function G, i.e., Θ(ρg ,ρh)(u) = ϕ(G(u)). For any k, convexity of the function
ϕ implies that there exists a vector ηk ∈ ∂ϕ(G(uk + tkd

k)) such that

ϕ(G(uk + tkd
k))− ϕ(G(uk)) ≤ (ηk)T (G(uk + tkd

k)−G(uk)).

Therefore, because of boundedness of {ηk}k∈K , we obtain

lim sup
k→∞,k∈K

ϕ(G(uk + tkd
k))− ϕ(G(uk))
tk

≤ lim supk→∞,k∈K (ηk)T G(uk+tkdk)−G(uk)
tk

≤ max
η∗∈∂ϕ(G(u∗))

(η∗)T∇G(u∗)Td∗

= ϕ′(G(u∗);∇G(u∗)Td∗),

where the last inequality follows from the classical convex analysis [39]. Again, con-
vexity of ϕ and continuous differentiability of G imply that

ϕ′(G(u∗);∇G(u∗)Td∗) = Θ′
(ρg ,ρh)(u

∗; d∗).

The desired result is proved.

We now establish the main global convergence result.

Theorem A.10 Assume limk→∞,k∈K uk = u∗. Suppose the standing assumptions
(C1)–(C3) are satisfied. Then u∗ is both a critical point of the penalty function Θ(ρg

∗,ρh
∗ )

and a KKT point of the nonlinear program (24).

Proof. By the standing assumption (C3), ρk = ρ∗ for all sufficiently large k. This
means that {Θ(ρg

k
,ρh

k
)(u

k)} is a monotonically decreasing sequence when k ≥ k∗ for
some k∗. By Lemma A.8, passing to the subsequence, we may assume that

lim
k→∞,k∈K

dk = d∗

lim
k→∞,k∈K

Wk = W ∗.

We next aim to prove the following equality:

d∗ = 0. (30)

If the step length sequence {tk}k∈K is bounded away from zero, by the line search rule,
the monotonically decreasing property of {Θ(ρg

k
,ρh

k
)(u

k)}, then

lim
k→∞,k∈K

(dk)TWkd
k = 0,

i.e.,
(d∗)TW ∗d∗ = 0,
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which implies (30) by the standing assumption (C2). Otherwise, by passing to the
subsequence, we may assume that

lim
k→∞,k∈K

tk = 0.

The line search rule implies that for any k ∈ K

−σ(dk)TWkd
k ≤

Θ(ρg
k
,ρh

k
)(u

k + tk
τ d

k)−Θ(ρg
k
,ρh

k
)(u

k)

tk/τ
.

Taking the super limit, we obtain

−σ(d∗)TW ∗d∗

≤ lim sup
k→∞,k∈K

Θ(ρg
∗,ρh

∗ )(u
k + tk

τ d
k)−Θ(ρg

∗,ρh
∗ )(u

k)

tk/τ

≤ Θ′
(ρg
∗,ρh

∗ )
(u∗; d∗)

≤ −(d∗)TW ∗d∗,

where the second last inequality follows from Lemma A.9 and the last inequality follows
from (iv) of Lemma A.8. The above inequality shows that

(1− σ)(d∗)TW ∗d∗ ≤ 0,

which implies (30) by the standing assumption (C2). Taking the limit in the KKT
conditions (28) with u = uk (k ∈ K), we claim that (d∗, ξ∗) with d∗ = 0 and some
ξ∗ ∈ <l, is a KKT point of the modified QP (25) with u = u∗, W = W ∗, and ρ = ρ∗.
Since the modified QP is convex by the positive definiteness of W ∗, (d∗, ξ∗) with d∗ = 0
and some ξ∗ ∈ <l is a solution of the modified QP (25) with u = u∗, W = W ∗, and
ρ = ρ∗. In view of (ii) of Proposition A.3 u∗ is a critical point of the penalty function
Θ(ρg

∗,ρh
∗ ).

Since ξ∗ = 0, u∗ must also be a KKT point of (24).

We now turn to the case when the condition (C3) is not assumed, i.e., ρk → ∞.
To this end, we need to impose new conditions in addition to (C1) and (C2).

(C4) {uk} is bounded.

(C5) h′(u∗) is of full row rank for any accumulation point u∗ of {uk}.

Lemma A.11 Assume the standing conditions (C1), (C2), (C4) and (C5) hold. Then
{(dk, λk

g , λ
k
h, λ

k
ξ )/ρk−1} is bounded.

Proof. Since ρk−1ẽ = λk
g + λk

ξ and λk
g ≥ 0, λk

ξ ≥ 0 for any k, we only need to prove
that {rk} is bounded where rk = ‖(dk, λk

h)/ρk−1‖. Assume for contradiction that {rk}
is unbounded, i.e., for some subset K, limk→∞,k∈K rk = ∞. We may assume that
limk→∞,k∈K uk = u∗, limk→∞,k∈K Wk = W ∗ without loss of generality. Dividing the
KKT conditions (28) at the kth iteration by ρk−1rk and passing to the limit, we obtain

W ∗d̃+ h′(u∗)T λ̃h = 0
h′(u∗)d̃ = 0,
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for some vectors d̃ and λ̃h. These equations and the Conditions (C2) and (C5) show
that d̃ = 0 and λ̃h = 0, which contradicts the assumption that

‖(d̃, λ̃h)‖ = lim
k→∞,k∈K

rk/rk = 1.

Therefore, {rk} is bounded and the desired result holds.

(C6) There exists d such that h′(u∗)d + h(u∗) = 0 and g′(u∗)d + g(u∗) > 0 for any
accumulation point u∗ of {uk}.

For a feasible point u∗, assumptions (C5) and (C6) together are equivalent to the usual
Mangasarian Fromovitz constraint qualification (MFCQ).

Lemma A.12 Assume the standing conditions (C1), (C2), (C4), (C5) and (C6) hold.
If {ρk} → ∞ then

(i) {(dk, ξk)} is bounded;

(ii) {λk/ρk−1} → 0; and

(iii) ξk = 0 for all sufficiently large k.

Proof. (i) For a contradiction let {(uk,Wk)}k∈K be a convergent subsequence with
limit (u∗,W ∗) such that {‖(dk, ξk)‖} → ∞. Let d̂ be the vector such that d = d̂ satisfies
(C6). ¿From (C5) and (C6) respectively, h′(u∗) has full rank and h′(u∗)d̂+ h(u∗) = 0;
thus the classical calculus results of Lyusternik and Graves assure the existence of a
convergent sequence {d̂k}k∈K with limit d̂ satisfying h′(uk)d̂k + h(uk) = 0. By (C6),
for large enough k ∈ K, g′(uk)d̂k + g(uk) > 0. Note that {(d̂k, 0)}k∈K is bounded by
boundedness of {d̂k}k∈K , and the pair (d̂k, 0) is feasible for the QP at iteration k ∈ K,
where 0 is the origin in <l.

We now have

∇f(uk)T d̂k +
1
2
(d̂k)TW kd̂k (31)

≥ ∇f(uk)Tdk +
1
2
(dk)TW kdk + ρk−1

∑
ξk
i

≥ ∇f(uk)Tdk +
1
2
(dk)TW kdk

because first, (dk, ξk) is optimal for the QP at iteration k, and second, ξk ≥ 0. Since
the quantity (31) is bounded for k ∈ K, it follows, by uniform positive definiteness
of {Wk}k∈K and boundedness of {uk}k∈K , that {dk}k∈K is bounded. Finally, it is
obvious from optimality of (dk, ξk) that ξk = [−g′(uk)dk + g(uk)]+ for each k, hence
{ξk}k∈K is also bounded. This contradicts the unboundedness condition.

(ii) We have {dk/ρk−1} → 0 because {dk} is bounded from (i), and {ρk} →
∞ by hypothesis. Adapting the proof of Lemma A.11 we get, for any limit point
(u∗, d∗, ξ∗, λ̂g, λ̂h) of {(uk, dk, ξk, λk

g/ρk−1, λ
k
h/ρk−1)}, that

0 = −g′(u∗)T λ̂g + h′(u∗)T λ̂h

0 ≤ g′(u∗)d∗ + g(u∗) + ξ∗ ⊥ λ̂g ≥ 0
0 = h′(u∗)d∗ + h(u∗)
0 ≤ ξ∗.
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Let I = {i : (λ̂g)i > 0} and observe that for i ∈ I, 0 = g′i(u
∗)d∗ + gi(u∗) + ξ∗i . Thus

the first equation above gives

0 = −
∑
i∈I

g′i(u
∗)(λ̂g)i + h′(u∗)λ̂h (32)

Now for i ∈ I, g′i(u∗)d∗ + gi(u∗) = −ξ∗i ≤ 0. Also for the vector d̂ satisfying (C6),
as above, we have g′i(u

∗)d̂+ gi(u∗) > 0 for any i, and h′(u∗)d̂+h(u∗) = 0. Subtracting
inequalities involving gi and h respectively gives: g′i(u

∗)(d̂ − d∗) > 0 for i ∈ I, and
h′(u∗)(d̂− d∗) = 0, where h′(u∗) has full rank by (C5). We have just verified that the
MFCQ holds for the system g′I(u

∗)(u − u∗) ≥ 0 and h′(u∗)(u − u∗) = 0 at u = u∗. It
follows that the set of multipliers (λ̂g)I ≥ 0 and λ̂h satisfying the Lagrangian equation
(32) is bounded [14]; hence ((λ̂g)I , λ̂h) = (0, 0) is the unique solution of this equation
with (λ̂g)I ≥ 0.

Since {(λk
g/ρk−1, λ

k
h/ρk−1)} is already known to be bounded from Lemma A.11, it

follows that this sequence converges to 0.
(iii) The KKT conditions for the QP solved at iteration k include ρk−1ê = λk

g +λk
ξ ,

hence using part (ii),
λk

ξ

ρk−1
= ê−

λk
g

ρk−1
→ ê.

Thus λk
ξ is strictly positive for all large k. ¿From the previously mentioned KKT

conditions, λk
ξ is complementary (orthogonal) to the nonnegative vector ξk, hence

ξk = 0 for sufficiently large k.

Theorem A.13 Assume the standing conditions (C1), (C2), (C4), (C5) and (C6)
hold. Then (C3) also holds.

Proof. Assume (C3) fails, in which case we have {ρk} → ∞. Applying Lemma A.12,
part (ii) yields that ρ̃k = ρk−1 for large enough k; and part (iii) yields that ρk = ρ̃k for
large enough k. Thus ρk−1 = ρk for all large k, a contradiction.

Remark. Theorem A.13 remains to hold under suitable conditions when the function
h is smooth at all uk but possibly nonsmooth at some accumulation points of {uk}. To
this end, the Conditions (C5) and (C6) need to be replaced by the Conditions (C5’)
and (C6’) below:

(C5’) V is of full row rank for any V ∈ ∂h(u∗) and for any accumulation point u∗ of
{uk}.

(C6’) For any accumulation point u∗ of {uk} and for any V ∈ ∂h(u∗), there exists d
such that

V d+ h(u∗) = 0
g′(u∗)d+ g(u∗) > 0.

This generalized version of Theorem A.13 is useful in the context of MPEC.
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