
Working Paper December 1997.

Revised & published in Computational Optimization and Applications 13 (1999), 25–59.

QPECgen, a MATLAB generator for mathematical programs

with quadratic objectives and affine variational inequality

constraints∗

Houyuan Jiang and Daniel Ralph

The University of Melbourne

Department of Mathematics and Statistics

Parkville, Vic. 3052, Australia

Email: jiang@mundoe.maths.mu.oz.au

Email: danny@mundoe.maths.mu.oz.au

Abstract

We describe a technique for generating a special class, called QPEC, of mathematical
programs with equilibrium constraints, MPEC. A QPEC is a quadratic MPEC, that is
an optimization problem whose objective function is quadratic, first-level constraints are
linear, and second-level (equilibrium) constraints are given by a parametric affine variational
inequality or one of its specialisations. The generator, written in MATLAB, allows the user
to control different properties of the QPEC and its solution. Options include the proportion
of degenerate constraints in both the first and second level, ill-conditioning, convexity of
the objective, monotonicity and symmetry of the second-level problem, and so on. We
believe these properties may substantially effect efficiency of existing methods for MPEC,
and illustrate this numerically by applying several methods to generator test problems.

Key Words. Mathematical programs with equilibrium constraints, bilevel program, constrained opti-
mization, quadratic program with affine variational inequality constraints, degeneracy, ill-conditioning,
optimality conditions, variational inequality, complementarity problem, MATLAB, test problem genera-
tor.

1 Introduction

Mathematical Programs with Equilibrium Constraints, MPEC, is an important and new field in
mathematical programming with roots in game theory and bilevel optimization. It has found a

∗This work is supported by the Australian Research Council.

1

number of significant applications in economics and engineering sciences. See [19] for applications
and references; see also the survey [31] on the closely related area of bilevel programming.

Due to the complex structure of the feasible set of MPEC, the analysis of optimality condi-
tions and the development of algorithms are associated with more difficulties than ordinary non-
linear programming problems. Nevertheless, much progress has been made in recent years. We
will focus on several recently announced algorithms designed to find local minimizers of MPEC:
the penalty interior-point algorithm (PIPA for short) [19], smoothing methods [9, 14], which are
related to the interior-point approach, and piecewise sequential quadratic programming (PSQP)
[19, 20, 28]. Penalty interior-point algorithms converge globally under some suitable conditions
that include strict complementarity of the lower-level solution, while the piecewise SQP method
exhibits local superlinear convergence under the uniqueness of multipliers and some second-order
sufficient conditions, but without requiring a strict complementarity condition. Some prelimi-
nary numerical experiments have been carried out for PIPA and PSQP [19, 20], and smoothing
methods [9, 14]. The theoretical results and numerical experience show some promise for these
recent methods.

We mention, among others, implicit programming methods, exact penalty approaches and
descent methods which will not be considered in this paper. Implicit programming reformula-
tions of MPEC aim to remove the equilibrium constraints by solving for, or eliminating some
variables in terms of others. The resulting problem is often a simply constrained optimization
problem with a nonconvex and nonsmooth Lipschitz objective function for which bundle meth-
ods are available. The theoretical development and numerical experiments along this direction
can be found in [7, 8, 10, 12, 19, 25, 26]. Using exact penalization of equilibrium constraints,
MPEC can also be converted to nonsmooth optimization problems with smooth constraints; see
[1, 3, 19, 21, 30]. Based on exact penalization, a trust region method is proposed in [30] and
its global convergence is established. Several descent methods can be found from [16, 23, 32].
Note that the descent method proposed in [16] is similar to the aforementioned PSQP. For other
numerical algorithms of MPEC, see [2, 19, 31].

Efficiency of MPEC methods is an important issue that has hardly been explored. The
development of numerical methods of MPEC is still in the early stages and lags somewhat
behind the theory [19]. More and more practical problems have been studied. However, we still
lack of enough good test examples to judge numerical performance of existing methods.

The purpose of this paper is two-fold. The first goal is to randomly generate test prob-
lems for the QPEC, a mathematical program with a quadratic objective function, polyhedral
“first-level” constraints, and “second-level” affine variational inequality constraints, while allow-
ing user controls on certain properties of the problem and its solution. Properties of QPEC
we believe are important include constraint degeneracy and the degree of degeneracy of both
the first-level and the second-level constraints, conditioning of the objective function and the
second-level problem, and convexity and monotonicity properties of the objective function and
the second-level variational inequality respectively. We mention that degeneracy (the lack of
strict complementarity) in the solution of the second-level variational inequality gives rise to po-
tentially huge numbers of subproblems that need to be examined in order to check stationarity.
The second goal of the paper is to compare MPEC methods which are designed to find local

2

minimizers, using test problems provided by the generator. Some preliminary conclusions are
drawn from the numerical results.

Algorithms designed to find global minimizers of MPEC are beyond the scope of this paper.
Note that Calamai and Vicente [4] have implemented a generator of bilevel programs aimed at
global optimization, which allows user controls on the number and type of local versus global
minimizers. In the next section we give some examples of QPEC with multiple local minimizers
and make some comparison with the generator of [4].

The paper is organized as follows. In the next section, the MPEC is formally defined and
its reformulation via KKT conditions is presented. Section 3 is a brief discussion of optimality
conditions of the MPEC which are the basis for developing the generator. We explain the
main features and input data of the generator, and present the generator QPECgen in Section 4.
Section 5 is very large compared with other sections, where we describe several algorithms we
are going to test for the problems generated by QPECgen. Numerical results are also reported
and discussed in this section. Finally, we conclude the paper by giving some discussions and
possible future work.

2 Formulation

Consider an MPEC with affine variational inequality constraints:

minimize(x,y)∈<n+m f(x, y)
isubject to (x, y) ∈ Z = {(x, y) : Gx+Hy + a ≤ 0}

y ∈ S(x) = {y ∈ C(x) : ∀v ∈ C(x), (v − y)TF (x, y) ≥ 0},
(2.1)

where f : <n+m → < is twice continuously differentiable, G ∈ <l×n, H ∈ <l×m, a ∈ <l,

F (x, y) = Nx+My + q ∈ <m,
C(x) = {y : g(x, y) ≤ 0} ∈ <m,

g(x, y) = Dx+ Ey + b ∈ <p,

and N ∈ <m×n, M ∈ <m×m, q ∈ <m, D ∈ <p×n, E ∈ <p×m, b ∈ <p. From (2.1) we see that
S(x) is the solution set of an affine variational inequality, AVI, that is parametric in x.

We will mainly be interested in QPEC of the form (2.1) that is when

f(x, y) =
1
2

(x, y)TP (x, y) + cTx+ dT y,

where P ∈ <(n+m)×(n+m), c ∈ <n, d ∈ <m.
A QPEC of the form (2.1) belongs to the class of mathematical programs with affine equilib-

rium constraints or MPAEC, also called AVI-constrained MP or AVI-MP since the equilibrium
constraints specify an affine variational inequality. We now refer to a QPEC of this type as
a QPAEC or AVI-QP. The condition (x, y) ∈ Z is called a first-level or upper-level or outer
constraint. The equilibrium condition y ∈ S(x) is called a second-level or lower-level or inner
constraint. Note that in general, MPEC differ from bilevel programs in that the second-level

3

constraint y ∈ S(x) represents a parametric (nonlinear) VI in the former, and a parametric
nonlinear program in the latter; hence an MPEC is entirely equivalent to a bilevel program if
the second-level VI is the optimality condition for a convex program.

Implicit programs are an important subclass of two-level optimization problems in which the
first-level constraints only impinge on the first-level variables. Implicit QPEC is the class of
problems of the type (2.1) or one of its variants below, with f quadratic, in which

Z = X ×<m, X = {x : Gx+ a ≤ 0}.

Some algorithms such as [18, 25, 26] depend on the implicit program structure by attempting
to eliminate y as a function of x, and solve a reduced-dimension problem with a generally
nondifferentiable objective function f(x, y(x)) subject to constraints only on x ∈ X.

Suppose x ∈ <n is given. Note for the second-level AVI y ∈ S(x), that the function F

is affine and the feasible region C(x) is polyhedral. Thus the first-order necessary conditions,
namely the Karush-Kuhn-Tucker (KKT) conditions, characterise solvability: y belongs to S(x)
if and only if there exists a multiplier vector λ ∈ <p such that

F (x, y) + ETλ = 0
g(x, y) ≤ 0, λ ≥ 0, λT g(x, y) = 0.

(2.2)

So the MPAEC can be reformulated as a KKT-constrained mathematical program or KKT-MP,
which is also a nonlinear program (NLP):

minimize(x,y,λ)∈<n+m+p f(x, y)
subject to (x, y) ∈ Z

F (x, y) + ETλ = 0
g(x, y) ≤ 0, λ ≥ 0, λT g(x, y) = 0.

(2.3)

By specifying D,E and b in g, we may obtain an important special case of (2.3) which is
termed as MPEC with box constraints (Box-MP for short):

minimize(x,y) f(x, y)
subject to (x, y) ∈ Z

li < yi < ui =⇒ Fi(x, y) = 0
yi = li =⇒ Fi(x, y) ≥ 0
yi = ui =⇒ Fi(x, y) ≤ 0,

(2.4)

where −∞ ≤ li < ui ≤ ∞ for i = 1, 2, · · · ,m. Furthermore, if li = 0, ui =∞ for i = 1, 2, · · · ,m,
then the above problem reduces to a mathematical program with linear complementarity con-
straints, or LCP-MP:

minimize f(x, y)
subject to (x, y) ∈ Z

0 ≤ F (x, y) ⊥ y ≥ 0,
(2.5)

where ⊥ denotes orthogonality.

4

If f is quadratic, the problems (2.3), (2.4) and (2.5) may be called KKT-QP, Box-QP and
LCP-QP respectively.

At first glance, the AVI-MP (2.3) is nothing but a nonlinear programming problem; indeed
if f is quadratic, it would be a quadratic program except for the bilinear (nonlinear) constraint
λT g(x, y) = 0. Similarly the equilibrium constraints of the Box-MP (2.4) and LCP-MP (2.5) can
be written as bilinear equality constraints. Therefore it appears that MPEC can be studied and
solved using nonlinear programming techniques. Unfortunately, a significant difficulty is that
the usual constraint qualifications in nonlinear programming fail to be satisfied even when the
MPEC has very fine properties such as strong monotonicity of the second-level function F with
respect to the second-level variable y. This casts considerable doubt about the applicability of
standard nonlinear programming approaches to MPEC. See [5, 19, 29] for more discussion.

The following simple examples help to explain why the MPEC is such a difficult problem in
optimization.

Example 1. Let f : <2 → < and the MPEC be defined by

minimize f(x, y) = (x+ 1)2 + (y − 2)2

subject to 0 ≤ (y − x) ⊥ y ≥ 0.

Notice that there are no first-level constraints, that the objective function f is strictly convex
with respect to (x, y), and that, given x, the second-level problem is a strongly monotone linear
complementarity problem in y. For any fixed x ∈ <, the second-level problem LCP has a unique
solution. One may find that the feasible solution set of this LCP-QP is {(x, 0) : x ≤ 0}∪{(x, x) :
x ≥ 0}. It is interesting to note that this LCP-QP has two local minimizers (−1.0) and (0.5, 0.5).
This demonstrates the well-known fact that an MPEC may have more than one local minimizers
in spite of rather nice properties of the lower-level VI.

Example 2. Suppose a linear inequality 2y − x − 1 ≥ 0 is added as a first-level constraint
in Example 1. It is easy to see that the feasible solution set of the LCP-QP: {(x, 0) : x ≤
−1} ∪ {(x, x) : x ≥ 1} is unconnected. There is no doubt that this LCP-QP has more than one
local minimizer.

Calamai and Vicente [4] developed a quadratic bilevel programming generator, the basic
model of which has some similarity to Example 3 below. The objective function of the bilevel
program discussed in [4] is a strictly convex quadratic function, and the second-level problem is a
strictly convex quadratic program with bounded convex polyhedral constraints. It is known that
a convex quadratic program is equivalent to a monotone affine variational inequality problem.
Therefore, the test problems produced by Calamai and Vicente’s generator are equivalent to the
MPEC problem with a strictly convex objective function, and with the second level problem be-
ing an affine variational inequality problem. However, the second-level constraint set of Calamai
and Vicente’s test problem is bounded in contrast to unbounded ones (nonnegative orthants for
any x) in Examples 3 and 4 which are presented below. Moreover, the parameters defining those
bounds play an important role as far as the number of local and global minimizers is concerned.
More importantly, Examples 3 and 4 are just some simple examples provided by our generator,

5

which are not relevant to the main part of our generator. More complicated examples generated
by Calamai and Vicente’s generator heavily rely on their basic model. The interested reader is
referred to [4] for more details.

Example 3. This example is a generalization of Example 1. Let n ≤ m. Let f : <m+n → <
and the MPEC be defined by

minimize f(x, y) =
∑n
i=1(xi + ri)2 +

∑m
j=1(yj − sj)2 −

∑n
i=1 r

2
i −

∑m
j=1 s

2
j

subject to 0 ≤ (y − (x, 0)) ⊥ y ≥ 0,

where ri = 1 (i = 1, . . . , n), sj = 2 (j = 1, . . . ,m), and (x, 0) ∈ <n×<m−n. The feasible solution
set of this LCP-QP is

{(x, y) : (xi, yi) ∈ Si, i = 1, . . . , n, yi = 0, i = n+ 1, . . . ,m}

where for i = 1, . . . , n, Si = S1
i ∪ S2

i ,

S1
i = {(xi, yi) : xi = yi ≥ 0}, S2

i = {(xi, yi) : yi = 0 ≥ xi}.

The feasible set is the union of 2n convex polyhedra Ωk (1 ≤ k ≤ 2n), which are branches of
the feasible set. In each branch, (xi, yi) ∈ S1

i or (xi, yi) ∈ S2
i for i = 1, . . . , n, and yi = 0 for

i = n+ 1, . . . ,m.
Since f is strictly convex, it has a unique global minimizer zk on each branch Ωk. In fact,

for each k, zk = (xk, yk) where (xki , y
k
i) is either (−1, 0) or (1/2, 1/2) for i = 1, . . . , n and y∗i = 0

for i = n+ 1, . . . ,m. If j 6= k, then zj does not belong to the branch Ωk, from which it follows
that the global minimizer zj of the objective function f over the branch Ωj is a local minimizer
of the LCP-QP. It is easy to calculate the objective function value at each local minimizer.

The global minimizer is (x∗, y∗) where x∗i = −1 and y∗j = 0 for i = 1, . . . , n and j = 1, . . . ,m.
The global minimum is −n.

One may construct more examples which have similar characteristics as this example by
choosing different data for ri and sj such that ri > 0 and sj > 0.

Example 4. This example is a slight modification of Example 3 by setting ri = −1 (i = 1, . . . , n)
and sj = −2 (j = 1, . . . ,m) in the objective function f of Example 3. The feasible set of this
LCP-QP is the same as that in Example 3 but the (strictly convex) objective function is such
that the unique (local) global minimizer on each branch is the same point, namely the origin.
Thus the origin is also a unique (local) global minimizer of this LCP-QP. Furthermore, more
examples can be constructed by choosing any negative ri and sj .

3 Optimality Conditions

The feasible solution set of the KKT-constrained MP (2.3) is

F = {w = (x, y, λ) ∈ Z ×<p+ : (x, y, λ) satisfies (2.2)}. (3.1)

6

It follows that for each (x, y, λ) ∈ F we have (x, y) ∈ Z and y ∈ S(x).
Let w∗ = (x∗, y∗, λ∗) ∈ F . The tangent cone T (w∗,F) to F at w∗ is defined by

T (w∗,F) = {lim(wk − w∗)/τk : wk(∈ F)→ w∗, τk ↓ 0}.

Write dw = (dx, dy, dλ) ∈ <n×<m×<p. Then a first-order necessary condition (or stationarity
condition) for the feasible point w∗ to be a local minimizer of (2.3) is

∇f(x∗, y∗)T (dx, dy) ≥ 0, ∀dw ∈ T (w∗,F).

As studied in [19], under some MPEC constraint qualifications, the tangent cone T (w∗,F)
coincides with a certain linearized cone of F at w∗ and, therefore, it is possible to obtain a
primal-dual formulation of the above stationarity condition which can be used in algorithms
for MPEC. QPEC satisfy a natural constraint qualification — their constraints are defined by
polyhedral and AVI constraints — so that stationarity is equivalent to primal-dual stationarity;
see part (iii) of the next proposition.

To this end, recall some notation introduced in [19]. For any w∗ = (x∗, y∗, λ∗) ∈ F , define
index sets

α(w∗) = {1 ≤ i ≤ p : λ∗i = 0 < −(Dx∗ + Ey∗ + b)i}
β(w∗) = {1 ≤ i ≤ p : λ∗i = −(Dx∗ + Ey∗ + b)i = 0}
γ(w∗) = {1 ≤ i ≤ p : λ∗i > −(Dx∗ + Ey∗ + b)i = 0}

and the family of index sets

A(w∗) = {α ⊆ {1, . . . , p} : α ⊇ α(w∗), αc ⊇ γ(w∗)},

where αc is the complement set of α with respect to {1, . . . , p}. For each α ∈ A(w∗), we define
a branch of the decomposition as

Fα = {w ∈ Z ×<p+ : F (x, y) + ETλ = 0,
λi = 0 ≤ −(Dx+ Ey + b)i, ∀i ∈ α,
λi ≥ 0 = (Dx+ Ey + b)i, ∀i ∈ αc }.

(3.2)

Using the family of sets {Fα : α ∈ A(w)}, the feasible set F of (2.3) can be locally decomposed at
any feasible point and stationarity of (2.3) can be characterized in terms of traditional nonlinear
programming optimality conditions associated associated with each {Fα : α ∈ A(w)}. These
can be stated precisely in the following proposition extracted from [19].

Proposition 3.1 Let F denote the feasible solution set of (2.3) and w∗ ∈ F .

(i) There exists a neighborhood W of w∗ such that

F ∩W =
⋃

α∈A(w∗)

Fα ∩W. (3.3)

7

(ii) The feasible point w∗ is a local minimizer of (2.3) if and only if, for each α ∈ A(w∗), w∗

is a local minimizer of the nonlinear program

minimize f(x, y)
subject to w ∈ Fα.

(3.4)

(iii) The feasible point w∗ is a stationary point of (2.3) if and only if, for each α ∈ A(w∗),
there exist multipliers ξ ∈ <l, η ∈ <m and π, ζ ∈ <p such that

∇xf(x∗, y∗) +GT ξ −NT η +DTπ = 0,
∇yf(x∗, y∗) +HT ξ −MT η + ETπ = 0,
Eη − ζ = 0,
ξ ≥ 0, (Gx∗ +Hy∗ + a)T ξ = 0,
πα ≥ 0, (Dx∗ + Ey∗ + b)Tαπα = 0
ζαc ≥ 0, λ∗αc

T ζαc = 0.

(3.5)

(iv) The feasible point w∗ is a stationary point of (2.3) if there exist multipliers ξ ∈ <l, η ∈ <m

and π, ζ ∈ <p such that

∇xf(x∗, y∗) +GT ξ −NT η +DTπ = 0,
∇yf(x∗, y∗) +HT ξ −MT η + ETπ = 0,
Eη − ζ = 0,
ξ ≥ 0, (Gx∗ +Hy∗ + a)T ξ = 0,
ζi = 0, ∀i ∈ α(w∗),
πi ≥ 0, ζi ≥ 0, ∀i ∈ β(w∗),
πi = 0 , ∀i ∈ γ(w∗).

(3.6)

Given w∗ ∈ F , the system (3.6) is in turn equivalent to the KKT conditions at w = w∗ for
the following so-called relaxed nonlinear program:

minimize f(x, y)
subject to (x, y) ∈ Z

(x, y) ∈ Rw = {(x, y) : F (x, y) + ETλ = 0
(Dx+ Ey + b)i = 0, i ∈ α(w)
(Dx+ Ey + b)i ≤ 0, λi ≥ 0, i ∈ β(w)
λi = 0, i ∈ γ(w)}.

(3.7)

Part (iv) of the Proposition says that if a feasible point of the MPEC (2.3) is a KKT point of the
relaxed NLP, then it is stationary for the MPEC. Conversely for w∗ ∈ F and any α ∈ A(w∗),
it can be proved [19] under linear independence of the active constraint gradients of (3.4),
that solvability of the relaxed KKT system (3.6) implies solvability of all KKT systems (3.5),
i.e. relaxed stationary points coincide with stationary points.

As it will be seen in the following sections, the relaxed NLP (3.7) and its KKT conditions
(3.6) play an important role in the development of our generator. In particular for each problem

8

produced by the generator, the associated “solution” vector wgen = (xgen, ygen, λgen) is deter-
mined as feasible point of the QPEC such that w∗ = wgen satisfies (3.6); hence it is stationary
for the QPEC. Since wgen is merely stationary it need not to be a local solution of the QPEC if
the objective function is nonconvex. Under convexity of the objective or second-order sufficient
conditions [20, 19], wgen will indeed be a local minimizer of the QPEC.

The above analysis of optimality conditions for the AVI-MP also applies to the special cases
of Box-MP and LCP-MP. However for the Box-MP and LCP-MP there is no need to introduce
the second-level multipliers λ. Consequently, the definitions of index sets α(z∗), β(z∗) and γ(z∗)
(note that z∗ replaces w∗) are different in the contexts of the Box-MP and LCP-MP. The details
are omitted here.

By definition of the index set β(w∗), if β(w∗) = ∅, then the index set A(w∗) is singleton. In
this case, the MPEC (2.3) is locally a linearly constrained quadratic program. If β(w∗) 6= ∅, the
feasible set of the MPEC (2.3) around w∗ is more complicated. Usually any index in β(w∗) is
called degenerate. Existence of degenerate indices reflects the complexity of MPEC. We formally
introduce several definitions of degeneracy.

Definition 3.1 Suppose w∗ = (x∗, y∗, λ∗) is a KKT point of the relaxed nonlinear program
(3.7), i.e., w∗ is feasible for (3.7) and there exist multipliers ξ, η, π and ζ such that (3.6) holds.

(i) An index i (1 ≤ i ≤ l) is called first-level degenerate if ξi = (Gx∗ +Hy∗ + a)i = 0.

(ii) An index i (1 ≤ i ≤ p) is called second-level degenerate if i ∈ β(w∗).

(iii) A second-level degenerate index i is called mixed degenerate if either πi = 0 or ζi = 0.

By degree of degeneracy of a particular type, we mean the number of degeneracy indices of that
type.

We remark that our presentation on optimality conditions, though brief, should be enough
for subsequent developments here. Moreover since QPEC are generally are much better behaved
than (nonlinear) MPEC, we have not discussed MPEC constraint qualifications, or local unique-
ness issues for local minimizers, stationary points, or the corresponding Lagrange multipliers.
To fully understand optimality conditions of the MPEC, extra care is needed regarding to some
of basic concepts such as tangent cones and certain linearized cones of the MPEC at a feasible
point. Particularly, these cones are generally nonconvex, for example unions of polyhedral con-
vex cones, in contrast to traditional nonlinear programming where linearized cones are always
convex polyhedral. For a detailed treatment of optimality conditions of the MPEC, see [19].

4 QPECgen: A Random Generator of QPEC

4.1 Overview

Once the user has specified the problem type, the problem dimensions, and a number of other
problem characteristics mentioned below, QPECgen randomly generates the problem matrix data

9

and the “solution” vector wgen = (xgen, ygen, λgen) (for the AVI-constrained case), and then
chooses the vector data in such a way that wgen is both feasible for the QPEC and stationary
for the corresponding relaxed NLP (3.7) at w∗ = wgen; hence wgen is stationary for the QPEC
by Proposition 3.1(iv). The choice of the vector data must also satisfy degeneracy requirements,
after which the various multipliers associated with first- and second-level constraints are deter-
mined in order to satisfy (3.6) with w = wgen. We remark that QPECgen does not distinguish
between the formulations as an AVI-QP in the form of (2.1) and the KKT-constrained QP in
the form of (2.3). Strictly speaking, (xgen, ygen) is the “solution” (stationary point) of the AVI-
QP while wgen = (xgen, ygen, λgen) is the “solution”) (statioanry point) of the KKT-constrained
problem (2.3), where λgen may not be uniquely determined by (xgen, ygen). However, we always
print wgen in the output file.

We mention several aspects of interest regarding application of algorithms. See Table 1 for
more details of the parameters involved.

• Problem types include AVI-QP, Box-QP, LCP-QP, possibly in implicit form; or one of Exam-
ples 3 or 4. Parameters: qpec type, implicit.

• Degeneracy, particularly in the second-level, and the degree of degeneracy of the MPEC at a
solution point can have a significant impact on the behavior of certain algorithms such as
PSQP, see Section 5. Parameters: first deg, second deg, mixed deg, tol deg.

• Ill-conditioning of the Hessian of the objective function is likely to create difficulties such
as slow convergence behaviour for most MPEC algorithms. Similarly, ill-conditioning of
the matrix M in the second-level function F also affects the nature of the MPEC in
terms of stability of its constraints, hence the performance of some algorithms. Different
scalings of the objective and constraint data also affects performance. Well-scaled problems
can be generated by choosing these parameters of moderate size and similar magnitude.
Parameters: cond P, cond M, scale P, scale M.

• Convexity of the objective function is also considered. Though this is useful for instance for
methods like PSQP that tend to find stationary points (which then must be local mini-
mizers), the MPEC may still have local minima which are not global minima. Parameter:
conv f.

• Symmetry and monotonicity properties of the matrix M in the second-level function F are
very useful but not always present. Certain monotonicity properties are used to prove
convergence of some algorithms for solving complementarity problems [6] and variational
inequalities, and monotonicity is also very helpful in finding feasible points when the first-
level constraints reduce to constraints on the first-level variables only, i.e. Z = X×<m for
some X ⊂ <n. Therefore, positive semidefiniteness (monotonicity) of M is likely to im-
prove the performance of the MPEC algorithms. Symmetry and positive semidefiniteness
of M mean that the QPEC is equivalent to a bilevel programming problem. Parameters:
symm M, mono M.

10

The random seed in MATLAB can be redefined by specifying the option rand seed if the user
wishes. By choosing different random seed numbers, the user can generate different QPEC
examples without changing other problem parameters. Also, the output format is determined
by the parameter output.

4.2 Input Data File and Data Consistency

The user needs to initialize, in MATLAB, the parameters used by the generator. We generally
do this by writing or modifying a MATLAB M-file called parameter (we omit the .m suffix)
which contains data necessary for the main program QPECgen to run. The variables used in
parameter are listed in Table 1.

The parameter settings must satisfy certain rules are explained in Table 1; let us see some
examples. The parameter cond P represents the condition number of the matrix P and should
be a real number not less than 1. The parameters conv f, symm M, mono M and implicit are
binary variables with values 1 or 0 only. The parameters first deg and second deg should
not exceed the number of first-level and second-level constraints respectively. The parameter
mix deg denotes the cardinality of the mixed degenerate index set and should not be greater
than second deg since every mixed degenerate index should be a second-level degenerate index.
If the data supplied by the user are inconsistent, QPECgen will print a warning message like

Warning: Wrong data for qpec type.

In this case the generator will attempt to choose a correct default value for this parameter,
allowing the generator to run successfully.

4.3 The Generator QPECgen

We now present an outline of the method for generating quadratic programs with affine varia-
tional inequality constraints (2.1) or (2.3), as implemented in MATLAB.

Algorithm: QPECgen

Step 1. Retrieve input parameters from parameter.

Step 2. Check consistency of input parameters; redefine inconsistent values if necessary.

Step 3. Set the random seed in MATLAB environment as specified in parameter; zero is the
default value.

Step 4. Generate the symmetric matrix P in the objective function f randomly as P =
rand(n + m) − rand(n + m) and P = P + P ′. If convex f = 1, do Schur decomposi-
tion [15] for P and form a new positive definite matrix P by shifting the eigenvalues such
that its minimum eigenvalue is uniformly distributed in [0, 1]. Next a new matrix is formed
with the required condition number cond P by retaining its minimum eigenvalue and re-
distributing other eigenvalues. Finally, scale the matrix by scale P

cond P
so that the magnitude

of maximum singular value is roughly equal to scale P. If convex f = 0, the required

11

qpec type Indicate special types of QPEC problems. qpec type = 100, 200, 300, 800, 900
means the AVI-QP, Box-QP, LCP-QP, Examples 4 and 3 respectively.

n The dimension of the first-level variable x.
m The dimension of the second-level variable y.
l The number of the first-level inequality constraints.
p The number of the second-level inequality constraints for the AVI-QP.
cond P The condition number of the matrix P .
scale P Approximate magnitude of maximum singular value of P .
conv f This is a binary element. conv f = 1 means that

f is convex, and conv f = 0 means it is not necessarily convex.
symm M This is a binary element. If symm M = 1, the matrix

M is symmetric. If symm M = 0, the matrix M is asymmetric.
mono M This is a binary element. mono M =1 indicates that

M is monotone, and mono M =0 not necessarily monotone.
cond M The condition number of the matrix M .
scale M Approximate magnitude of maximum singular value of M .
second deg The cardinality of the second-level degenerate index set.
first deg The cardinality of the first-level degenerate index set.
mix deg The cardinality of the mixed degenerate index set.
tol deg A small positive scalar used to determine approximate degeneracy, e.g. 10−6 (see §5.2.1).
implicit A binary variable. implicit = 1 or 0 denotes that the first-level constraints

involve the variable x only, or both variables x and y, respectively.
rand seed A nonnegative integer setting the seed for the random no. generator.
output The number to control data output formats.

output = 1 for MAT-file called QPECgen data, 2 for ASCII-file called QPECgen ascii,
and 3 for both.

Table 1: Input Data

matrix can be constructed by doing singular value decomposition [15] and using the similar
techniques above. Exit: P .

Step 5. If implicit = 2, generate the matrix A = [G;H] of the first-level constraints by A =
rand(l,m+n)−rand(l,m+n). If implicit = 1, generate A by A = [rand(l, n) zeros(l,m)].
Exit: A.

Step 6. Generate the matrices M and N in the second-level objective function. For the matrix
M , the properties of symmetry and monotonicity and also its condition number and scaling
of M such that its magnitude of maximum singular value is roughly equal to scale M can
be determined similar to Step 4, though a little more care has to be taken in the asymmetric
case. Exit: M , N .

Step 7. Generate an “optimal solution” randomly by (xgen, ygen) = rand(n+m, 1)− rand(n+
m, 1). In the case of the Box-QP and LCP-QP, ygen should be feasible to the second-level
constraints. For example, ygen is nonnegative for the LCP-QP. Exit: (xgen, ygen).

12

Step 8. Randomly generate the matrices D and E used for the constrained region of the
(second-level) AVI. Let the indices 1, . . . , second deg be degenerate, the next p nonactive
indices be nonactive, where p nonactive is a random nonnegative integer not greater than
p−second deg, and the remaining indices be active but nondegenerate for the second-level
constraints (i.e., their corresponding second-level multipliers are strictly positive). Gener-
ate the the second-level multipliers λgen and the vector b in the second-level constraints
satisfying the KKT conditions of the second-level problem AVI at (xgen, ygen) with the
required degeneracy conditions just specified. By the KKT conditions of the second-level
problem, determine the vector q in the second-level function. Exit: D,E, b, q, λgen.

Step 9. Consider the first-level constraints. The indices 1, . . . , first deg correspond to degen-
erate constraints, the next l nonactive constraints are nonactive, where l nonactive is
a nonnegative integer with l nonactive ≤ l − first deg, and the remaining first-level
constraints are active but nondegenerate. Generate the first-level multipliers ξ associated
with the first-level constraints and the vector a in the first-level constraints satisfying the
above degeneracy conditions and the KKT conditions of the relaxed NLP. Exit: a.

Step 10. Calculate the index sets α(w∗), β(w∗) and γ(w∗) with w∗ = (xgen, ygen, λgen). At the
same time, let the first mix deg indices in the set β(w∗) be degenerate in the KKT condi-
tions of the relaxed NLP. Generate η, π and ζ satisfying the above degeneracy conditions
and the KKT conditions of the relaxed NLP.

Step 11. Determine the vectors c and d in the objective function f by the KKT conditions of
the relaxed NLP. Exit: c, d.

Step 12. Store the generated data: P , c, d, A, a, N , M , q, D, E, b, xgen, ygen, λgen.

Remarks.
(i) The methods for generating Box-QP and LCP-QP are similar to the above.
(ii) The data generated by QPECgen is stored in a MAT-file (internal MATLAB format) called
QPECgen data and/or an ASCII file QPECgen ascii. Advantages of ASCII output are that the
user can view or edit the generated data outside MATLAB and, more importantly, these data
can be easily used to test MPEC codes written in other languages rather than MATLAB.
(iii) As already mentioned, the generated solution vector wgen, which is included in the output
data file, is a stationary point of the QPEC but may not be a local minimizer. Thus the
corresponding objective function value can only be used as a guide to the quality of the solution of
an MPEC algorithm; indeed there may be other stationary points and multiple local minimizers
as shown in the examples of Section 2.
(iv) Examples 3 and 4 in Section 2 are generated by QPECgen by choosing qpec type = 900 and
800 respectively. We remark for these two examples that only the two parameters n and m play
a role in QPECgen because all other parameters are fixed in accordance with these examples.

13

5 Testing Algorithms on Medium-Small Problems

This section is devoted to testing some existing MPEC algorithms on problems produced by
the generator QPECgen. We first describe the algorithms to be tested, confining discussion to
MPEC with linear constraints, that is polyhedral convex first-level constraints and affine VI
equilibrium or LCP-constraints, aimed of course at QPEC, see (2.3). (However, each of these
algorithms can be extended to MPEC with nonlinear first- and second-level constraints.) Then
the implementation details are addressed. Lastly, numerical results are reported.

Our largest problem in the AVI-QP format has n+m = 70 variables (x, y) and l+m+2p = 106
constraints excluding the complementarity conditions λigi(x, y) = 0. Our largest problem in the
LCP-QP format has n + m = 208 variables (x, y) and l + 2m = 404 constraints excluding the
complementarity conditions yiFi(x, y) = 0.

We stress that the purpose of this section is to stimulate further algorithmic and computa-
tional improvements in the field, rather than to provide definitive data on algorithm behaviour.
Specifically, our problems are randomly generated QPEC of small to medium size, our implemen-
tations and application of codes are preliminary, and the parameter settings for these methods
are subject to further testing. For instance, a possible advantage of PIPA that is not seen in
the results below but that we have observed in preliminary computation on an electricity grid
application [17] is its tendency to avoid local solutions more readily than PSQP. Collation of re-
sults on this and other real-world problems is work in progress. Large sparse QPEC and MPEC
with nonlinear objective or constraint functions also require investigation.

One word for notation used in the sequel. We reserve α, β and γ for index sets when the
decomposition is carried out, and λ for the Lagrange multiplier of the second-level problem in
the AVI-MP (2.3).

5.1 Description of Algorithms to be Tested

5.1.1 Nonlinear Programming Methods

As discussed in Section 2, the AVI-MP can be reformulated as the nonlinear programming
problem (2.3) if the second-level problem of the AVI-MP is written in the KKT form. So it is
quite natural to apply standard and well-developed nonlinear programming approaches to (2.3).
Unfortunately such approaches often prove to be somewhat naive and even theoretically and
numerically inappropriate. The reason is that the usual constraint qualifications are not satisfied
for (2.3) even under some very strong assumptions [5, 29], for example, the objective function is
strictly convex in (x, y) and the second-level problem AVI is also strongly monotone with respect
to y. Some examples are presented in [9, 19]. Therefore, standard nonlinear programming
approaches are not necessarily reliable; see the problem below for example. Further work will no
doubt improve this situation. In any case, we include the naive nonlinear programming approach
for comparison.

Consider the following LCP-QP problem

minimize 0.5(x2 + y2) + x− y
subject to 0 ≤ y ⊥ (−x+ y) ≥ 0.

14

It is easy to see that the above problem has only one local (global) solution (−1, 0). We have
tested this example using a MATLAB nonlinear programming solver constr, and MINOS linked
to MATLAB. Both codes converge to the nonstationary point (0, 0) when the starting point is
chosen to be in <2

+ and close to (0,0), say within the Euclidean ball of radius 10−4.

5.1.2 A Piecewise Sequential Quadratic Programming (PSQP) Method

Sequential Quadratic Programming, SQP, and its variants are amongst the most important and
most popular methods for general nonlinear programs. This is a consequence of their fast local
convergence, amenability to application of quasi-Newton techniques, and globally convergent
extensions; see [11].

Piecewise sequential quadratic programming, PSQP, [19, 20, 28], is an extension of SQP
methods to MPEC via disjunctive decomposition; for example, Proposition 3.1 (ii) shows that
solving (2.3) is equivalent to solving a finitely many linearly constrained nonlinear programs.
See [19] for application of PSQP to nonlinearly constrained MPEC.

It seems natural when solving AVI-MP (2.3) to require feasibility of each iteration point,
similar to solving linearly constrained NLP. A “phase I” method attempts to find a feasible
solution of (2.3); “phase II” then attempts to solve the AVI-MP by generating a sequence
of feasible iterates whose corresponding objective function values decrease monotonically to a
stationary point or local minimizer. The phase I method we use attempts to solve the following
quadratic program:

minimize(z,λ) −λT g(z)
subject to z ∈ Z

F (z) + ETλ = 0
g(z) ≤ 0, λ ≥ 0.

(5.1)

If the objective function value of (5.1) corresponding to a solution (z, λ) is zero, then this point is
global minimum of (5.1) and is feasible for (2.3). See also [13] for a sufficient condition for success
of the phase I method in the sense that every stationary point of (5.1) is a global minimizer
with optimal value 0.

The algorithm proposed in [19, 28] is restated below. Each iteration depends on the current,
feasible iterate wk = (zk, λk), and the solution of a quadratic programming subproblem

minimize(d,λ) ∇f(zk)Td+ 1
2d

T∇2f(zk)d
subject to (zk + d, λ) ∈ Fαk

(5.2)

where Fαk is the set defined in (3.2) with α = αk and w∗ = wk, and αk is a member of A(wk).
Since wk is feasible, it follows that Fαk is nonempty, i.e. (5.2) is feasible. Furthermore if f is
quadratic as in the QPECgen problems tested later, then we can use f(zk + d) instead of the
objective of (5.2).

By the relaxed quadratic program at wk we mean the problem derived from (5.2) by replacing
the feasible region Fαk with the relaxed feasible region Rwk defined as in (3.7) with w∗ = wk:

minimize(d,λ) ∇f(zk)Td+ 1
2d

T∇2f(zk)d
subject to (zk + d, λ) ∈ Rwk

. (5.3)

15

The idea of approximate stationarity is used in the stopping criteria of the method. We say
that (z, λh, λg) is an ε-KKT point of the nonlinear programming problem

minimize f(z)
subject to h(z) = 0

g(z) ≥ 0,

for suitable smooth functions f , g and h if

‖∇f(z) +∇h(z)Tλh +∇g(z)Tλg‖+ ‖h(z)‖+ ‖min(−g(z), λg)‖ ≤ ε.

It can be easily seen that an ε-KKT point with ε = 0 is a KKT point of this NLP and vice versa.
We also say that z is ε-stationary for this NLP if there exist λh and λg such that (z, λh, λg) is
an ε-KKT point; likewise, a feasible point w∗ of (2.3) is ε-stationary for (2.3) if it is ε-stationary
for each NLP (3.4) where α ∈ A(w∗).

Note for Step 1 below that (0, λk, ξ, η, π, ζ) is an ε-KKT point of (5.2) if and only if
(wk, ξ, η, π, ζ) is an ε-KKT point of (3.4) with α = αk.

Algorithm: PSQP

Step 0. Let t ∈ (0, 1), κ ∈ (0, 1/2) and ε ≥ 0 be constants.

Find a feasible point w0 = (z0, λ0) ∈ <n+m ×<p of (2.3) by solving (5.1).

Let k = 0 and A0 = A(w0).

Step 1. (Direction finding.) Choose an index set αk ∈ Ak and let Ak = Ak \ {αk}.
If the quadratic program (5.2) is unbounded below, then STOP; otherwise find
a solution (dk, λ+) of (5.2), with multipliers ξ, η, π, ζ.

If (0, λk, ξ, η, π, ζ) is an ε-KKT point of (5.2) then go to Step 3.

Step 2. (Serious step.) Do a line search, i.e., let τk be the largest member of
{1, t, t2, t3, . . .} such that

f(zk + τkd
k)− f(zk) < κτk∇f(zk)Tdk.

Let wk+1 = (xk+1, yk+1, λk+1) = wk + τk(dk, λ+ − λk), and Ak+1 = A(wk+1).

Let k = k + 1 and go to Step 1.

Step 3. (Stopping rule.) If the stopping condition is satisfied then STOP.

Step 4. (Null step.) Let wk+1 = wk, Ak+1 = Ak, k = k + 1, and go to Step 1.

The line search in Step 2 is an attempt to globalize the original version of PSQP [28, 19],
where local convergence of the algorithm is established. It can be justified theoretically when
∇2f(zk) is positive definite or is replaced in (5.2) by a positive definite matrix. The line search
is not strictly necessary when f is quadratic and possibly nonconvex; see the remark following
Proposition 5.1 to follow. However it can help stabilize PSQP if the QP solver is having numerical
difficulties, such as occasionally occur for the QP solver in the MATLAB 4.2 Optimization
Toolbox.

16

We present three straightforward stopping rules for Step 3. Each guarantees that the al-
gorithm will only terminate if the current point zk is approximately stationary for each NLP
branch (3.4) at zk, or if the QPEC is unbounded below.

Stopping rule A terminates the algorithm if all branches of the feasible region at the current
point wk have been checked and wk is ε-stationary for each of them.

Stopping condition A. Ak = ∅.

Stopping rule B, from [20], is slightly more sophisticated. It uses the knowledge from Propo-
sition 3.1 that since wk ∈ F , then wk is an (approximate) stationary point of the MPEC if it is
an (approximate) stationary point of (3.7). This last condition is also equivalent to (d, λk) with
d = 0 being an (approximate) stationary point of (5.3).

Stopping condition B. Either Ak = ∅ or (0, λk, ξ, η, π, ζ) is an ε-KKT point of (5.3).

Stopping rule B is a heuristic to improve on the exhaustive approach of stopping rule A. While
it is not guaranteed to reduce the number of QP solves per serious step, it costs almost no more
to use than stopping rule A and appears to be quite effective [20]; see later results also.

For completeness we mention a third alternative that will not be implemented because it
takes too much advantage of QPECgen, as explained below. Note that wk is a stationary point
of (3.7) if and only if (0, λk) is a stationary point of (5.3). These equivalent statements can
be checked by solving a linear programming feasibility problem, namely checking whether there
exist multipliers (ξ, η, π, ζ) satisfying (3.6) when w∗ = wk. An ε-approximate version based on
linear programming can also be developed.

Stopping condition C. Ak = ∅, or (0, λk) is a stationary point of (5.3).

Unlike stopping conditions A and B, stopping condition C is guaranteed to hold for any
feasible stationary point wk of the MPEC that is stationary for the relaxed NLP. Hence stopping
rule C is guaranteed to immediately identify the generated “solution” vector wgen of any QPECgen

problem if wk = wgen. So we have not implemented it because this would prevent us from
observing the effect of second-level degeneracy at solution points on PSQP for all QPECgen

problems. Instead we compare the effect of second-level degeneracy via stopping rules A and B.

Proposition 5.1 Consider an MPEC in the form (2.3) where the objective function f is strictly
convex and quadratic. Assuming w0 is feasible for this problem, then PSQP terminates after
finitely many steps at an ε-stationary point. If ε = 0, termination occurs at a local minimizer
of the QPEC.

Proof. Since f is strictly convex and quadratic, for each k we have wk ∈ Fαk , τk = 1 and
wk+1 ∈ Fαk . Furthermore wk+1 is a global minimizer of f on the branch Fαk . The result is
then clear because we cannot visit any branch (3.2) of the feasible region more than once, since
f(wk+1) < f(wk), and there are only finitely many branches.

17

Remark: In fact, the above PSQP method can be adapted to solving any QPEC, even if f
is nonconvex, as follows. First, omit the line search (i.e., by taking τk = 1 at each iteration).
Second, assume in Step 1 that if the QP solver returns (dk, λ+) 6= (0, λk), then (dk, λ+) is
a stationary point of (5.2) with a strictly lower objective value than at (0, λk). Then PSQP
terminates finitely if each QP (5.2) has only finitely many stationary points1.

We note an alternative phase I for implicit QPEC, i.e. when H is a zero matrix so that the
first-level constraints reduce to Gx+a ≤ 0. First select x satisfying the first-level constraints, an
easy application of linear programming for instance, and then attempt to solve the lower-level
AVI problem in y. In the special case of implicit programs with LCP constraints, a standard
algorithm such as Lemke’s method [6] can be applied to (attempt to) solve the lower-level
problem. See Subsubsection 5.2.3.

5.1.3 A Penalty Interior-Point Algorithm (PIPA)

Interior-point methods have become extremely popular for linear programming since the 1980’s,
and subsequently also proved to be powerful for linear and nonlinear complementarity, and
related variational inequalities too. As the second-level problem of MPEC is a variational
inequality problem or one of its special cases, interior-point ideas can be beneficial in MPEC
methods.

PIPA is the most extensively treated algorithm proposed in the monograph [19]; it is an
infeasible interior-point method for the implicit MPEC with mixed nonlinear complementarity
constraints. See Subsubsection 5.2.3 for an implementation of this method for implicit LCP-QP
which we call i-PIPA.

Here we describe a feasible-point variant that allows for first-level constraints jointly on
(x, y).

Assume (x, y, λ, v) ∈ <n+m+2p is a strictly feasible point in the sense that

Gx+Hy + a ≤ 0
Nx+My + q + ETλ = 0
Dx+ Ey + b+ v = 0

and
λ ◦ v > ρµe,

where µ = λT v/p, ρ is a positive constant, e ∈ <p is the vector consisting of ones, and a ◦ b =
(a1b1, . . . , apbp) is the Hadamard product of vectors a, b ∈ <p.

1Actually we believe finite termination occurs for any AVI-QP. The proof relies on a claim we will not prove

here to conserve space, that the objective function of a quadratic program takes only finitely many values on the

set of all KKT points of the QP, even if there are infinitely many KKT points.

18

The central part of PIPA is to solve the following quadratic program:

minimized∈<r ∇f(x, y)T (dx, dy) + 1
2d

TQd

subject to Gdx+Hdy ≤ −a−Gx−Hy
Ndx+Mdy + ETdλ = 0
Ddx+ Edy + dv = 0
diag(v)dλ+ diag(λ)dv = −λ ◦ v + σµe,

(5.4)

where d = (dx, dy, dλ, dv) ∈ <r, Q ∈ <r×r with r = n + m + 2p; <p++ denotes the positive
orthant of <p; and diag(v) is a diagonal matrix with the diagonal elements v1, . . . , vp.

Under suitable conditions, the quadratic program (5.4) has a (unique) solution. See [19] for
the case of implicit programs and [13] for the general case. Let d be a solution of (5.4). Following
the spirit of some interior-point methods, the iteration sequence has to be in a neighbourhood
of the so-called central path along with other properties. To this end, each step size is strictly
bounded above by the largest τ ∈ (0, 1] such that

λ+ τdλ ≥ 0
v + τdv ≥ 0
(λ+ τdλ) ◦ (v + τdv) ≥ ρµe
µ(τ) = (λ+ τdλ)T (v + τdv)/p ≥ (1− τ)µ

(5.5)

where ρ > 0 is a constant associated with the neighborhood of the central path. Taken strictly,
the roles of each inequality in (5.5) are explained as follows. The first two inequalities ensure that
the new iterate is still in the interior of <2p

++. The third inequality implies that each component
(λi + τ dλi)(vi + τ dvi) of the vector at left has the same order of magnitude as µ. The fourth
one guarantees that the complementarity gap goes to zero as the algorithm progresses.

The step size, in addition to satisfying the interiority and centrality conditions (5.5), must
be chosen with the objective function in mind, hence uses the penalized objective function of
the MPEC which is defined as follows: for w = (x, y, λ, v) ∈ <r++,

Pθ(w) = f(x, y) + θφ(w), (5.6)

where θ > 0 is a penalty parameter, and

φ(w) = vTλ.

We are now ready to state a penalty interior-point algorithm that has a simpler form than
the algorithm of [19], though in contrast to [19] we offer no convergence proof at this point.
However, the feasibility issue of the following algorithm has been studied in [13], and its global
convergence is under investigation.

Algorithm: PIPA

Step 0. Let σ0 ∈ [0, 1), ρ ∈ (0, 1), κ ∈ (0, 1), t ∈ (0, 1), θ̄ > 1 and θ0 > 1. Let
w0 = (x0, y0, λ0, v0) ∈ <r be a strictly feasible starting point in the sense
described above. Let ε1 > 0 and ε2 > 0 are two small constants. Let Q0 ∈ <r×r

be a positive definite matrix. Let k = 0.

19

Step 1. (Direction finding.) Solve (5.4) with w = wk = (xk, yk, λk, vk), Q = Qk,
µ = µk and σ = σk. Let dk = (dxk, dyk, dλk, dvk) be the unique solution of
(5.4).

Step 2. (Stopping rule.) If 0 ∈ <r is an ε1-stationary point of (5.4), and µk < ε2
then STOP.

Step 3. (Penalty update.) Let θk+1 be the largest number in {θk, θkθ̄, θkθ̄2, . . .}
such that

∇f(xk, yk)T (dxk, dyk) + θk+1∇φ(wk)Tdk < −φ(wk).

Step 4. (Line search.) Let τ be the largest number in {t, t2, t3, . . .} strictly satisfying
(5.5). Let χk be the largest number in {τ, τt, τ t2, . . .} satisfying

Pθk+1
(wk+χkdk)−Pθk+1

(wk) ≤ κχk[∇f(xk, yk)T (dxk, dyk)+θk+1∇φ(wk)Tdk].

Step 5. Let wk+1 = wk + χkd
k. Let µk+1 = (λk+1)T vk+1/p, and Qk+1 ∈ <r×r be a

positive definite matrix. Choose σk+1 ∈ [0, 1). Let k = k+ 1, and go to Step 1.

Remarks:
(i) The PIPA above starts with a strictly feasible starting point which can be found by solving
a quadratic program similar to (5.1) but with some modifications. For example, include small
strictly positive lower bounds as constraints on each component of y and λ. More precisely, one
may obtain such a strictly feasible starting point by solving the following quadratic program

minimize(z,λ) −λT g(z) + 10−3(z, λ)T (z, λ)
subject to z ∈ Z

F (z) + ETλ = 0
g(z) ≤ −10−3e, λ ≥ 10−3e.

(5.7)

If the second-level variable y is not involved in the first-level constraints, QPEC becomes an im-
plicit program. Similar to PSQP, we may use Lemke’s method to find a strictly feasible starting
point in the case of implicit programs LCP-MP. See Subsubsection 5.2.3.
(iii) Global convergence of PIPA has been established in [19] under suitable assumptions includ-
ing a kind of generalised P-matrix property for the second-level problem and the requirement
that Z = X ×<m for some polyhedral set X ⊂ <n.
(iv) If the QPEC is an implicit program and M is monotone, then dv and dλ in the quadratic
program (5.4) can be uniquely determined as linear functions of dx and dy. In this case, suitable
implementations of the quadratic program (5.4) can save computational costs, see Subsubsec-
tion 5.2.3 for implementation details.

5.2 Some Details of Implementation and Numerical Results

In this subsection, we describe some more details about the methods we are going to test. All
computation is carried out on a SPARC 10 by using MATLAB version 4.2c. This subsection
involves some standard MATLAB terminology which will not be explained here; see [22] for
more details.

20

5.2.1 Implementation of QPEC with joint upper-level constraints: AVI-QP

The Nonlinear Programming Approach

We use two nonlinear programming codes: constr from the MATLAB optimization toolbox,
and a version of MINOS which is connected via the MEX interface to MATLAB. By NLP/constr
we mean the application of constr to the KKT-constrained MP (2.3). NLP/MINOS means the
application of MINOS to (2.3).

The M-file constr solves constrained nonlinear programs based on the sequential quadratic
programming method. To support constr, the user is required to create a main M-file (say
nlpavi) which initializes the testing example and invokes constr, an M-file (fun nlpavi) which
defines the objective function and the constraints, and an M-file (grad nlpavi) which defines
gradients of the objective function and constraints if the user wishes to do so. The default
parameter values in constr are used.

MINOS is a widely used nonlinear programming code [24], which we apply to test the
naive nonlinear programming method. Unlike constr, MINOS uses a projected augmented La-
grangean method in which a linearly constrained nonlinear program is formed at each iteration
and then solved by a reduced-gradient algorithm in conjunction with quasi-Newton techniques.
MINOS is originally written in Fortran. We use a version linked to MATLAB.

To support MINOS, we need to create a main M-file (say minosavi) which initializes the test
example and invokes MINOS, an M-file (obj minosavi) which defines the objective function and
its gradient, and an M-file (con minosavi) which defines the constraints and the corresponding
Jacobian mapping. One may observe that constr and MINOS access the functions and their
derivatives in different ways: constr requires the objective function and constraint functions to
reside in one file, and all their derivatives to reside in another file; while MINOS extracts the
objective function and its derivative from one file, and has the constraints and their derivatives
in another file.

Piecewise Sequential Quadratic Programming Method

The parameters used are κ = 0.1 and t = 0.5 in the line search, step 2, and ε = 10−6

in the stopping criteria. The degeneracy tolerance is tol deg = δ = 10−6. Here we offer an
explanation of approximate degeneracy or approximate decomposition. Given a small positive
tolerance tol deg = δ and a feasible point w∗ = (x∗, y∗, λ∗), define approximate index sets

α(w∗, δ) = {1 ≤ i ≤ p : −λ∗i − (Dx∗ + Ey∗ + b)i > δ}
β(w∗, δ) = {1 ≤ i ≤ p : |λ∗i + (Dx∗ + Ey∗ + b)i| ≤ δ}
γ(w∗, δ) = {1 ≤ i ≤ p : λ∗i + (Dx∗ + Ey∗ + b)i > δ}

and the family of index sets

A(w∗, δ) = {α ⊆ {1, . . . , p} : α ⊇ α(w∗, δ), αc ⊇ γ(w∗, δ)},

where αc is the complement set of α with respect to {1, . . . , p}. When δ = 0, these approximate
index sets reduce to the exact index sets defined in Section 3. The family of index sets A(w)
is replaced by the approximate family of index sets A(w, δ) when choosing which subproblem
(5.2) to solve in PSQP.

21

A feasible starting point is generated by solving (5.1) with any starting point supplied by
the user.

The quadratic programming routine used is the M-file qp from the MATLAB optimization
toolbox. Note that qp does not have a maximum inner iteration number. We impose a maximum
inner iteration number as 2000, which means that the solution provided by qp is unreliable if
the routine terminates after 2000 inner iterations.

The main M-file to implement PSQP for the AVI-QP is psqpavi, which requires three M-
files, f, df and d2f for evaluating the objective function, the gradient of objective function and
the Hessian of the objective function, respectively. This breakdown of M-files for the objective
function and its derivatives is overkill in the case of QPEC since f is then quadratic; however
the code is designed for more general problems when f is nonlinear.

Two different versions of PSQP are implemented. The only difference of these two ver-
sions is that we use different stopping conditions, i.e., Stopping condition A and Stopping
condition B.
Penalty Interior-Point Algorithm

The parameters used are κ = 0.1, ε1 = 10−6, ε2 = 10−8, t = 0.95, ρ = 0.02, σk ≡ 0.3,
θ̄ = 1.2, θ0 = 1.2, Qk is chosen as follows,

Qk =

(
∇2f(zk) 0

0 µkI

)

where I is the identity matrix of dimension 2p.
A strictly feasible starting point is generated by solving (5.7) from any starting point supplied

by the user. This QP and the QP in Step 1 of the method are solved by the MATLAB solver
qp.

The main M-file, which we call pipaavi, uses the M-files f, df, d2f and pipapenavi, the first
three of which play the same roles as for PSQP. The last file provides the penalty function Pθ.

5.2.2 Numerical results for QPEC with joint upper-level constraints: AVI-QP

We present numerical results on four test sets each consisting of four randomly generated AVI-
QP problems, a total of sixteen problems. For each set of four problems, the same parameter
settings are passed to QPECgen.

Set 1, Problems 1–4. The parameters for our first test set are set up as in Table 2. For this
set of parameters, the QPEC has very nice properties in the sense that the objective function is
strictly convex with respect to both variables x and y, the Hessian of the objective function is
well-conditioned, the second-level problem is symmetric, strongly monotone and well-conditioned
with respect to the second-level variable y, and the second level degeneracy does not exist at
the generated solution. The starting point is chosen as (100(z1 − z2), 1, . . . , 1) ∈ <n+m+p where
z1 ∈ <n+m and z2 ∈ <n+m are two randomly generated vectors with each component of z1 and
z2 being uniformly distributed in [0, 1].

22

qpec type cond P convex f symm M mono M cond M second deg first deg mix deg tol deg implicit rand seed output

(scale P) (scale M)

100 100 (100) 1 1 1 200 (200) 0 2 0 1.e-6 0 0 3

Table 2: Parameters for Set 1

Set 2, Problems 5–8. The parameters for these QPEC are the same as in Set 1 except for
second deg = 4 and mix deg = 2. The same starting points are used as in Set 1.

Set 3, Problems 9–12. The parameters for these QPEC are the same as in Set 2 except
for mono M = 0 and symm M = 0, i.e. the lower-level M matrix is not necessarily monotone or
symmetric. We aim to check how monotonicity of the lower-level problem affects the numerical
performance of different algorithms. The same starting points are used as in Set 1.

Set 4, Problems 13–16. The parameters for these QPEC are the same as in Set 2 except
for second deg = 8. The same starting points are used as in Set 1. Higher degeneracy of the
lower-level problem makes PSQP harder from the viewpoint of optimality conditions and the
decomposition theory, since the cardinality of the index set A(w∗) at a solution w∗ increases
exponentially in the degree of second-level degeneracy. It is certainly of interest to see how this
property affects numerical performance of other algorithms.

Results for the methods NLP/constr, NLP/MINOS, PSQP and PIPA on the generated test
problems using the first four sets of parameters are shown in Tables 4, 5, 6 and 7. The notation
used in these tables is explained in Table 3. There are several failures in these tables. Among
them “F1” and “F2” indicate that the final point is infeasible due to inability of the phase I
procedure to find a feasible starting point for PSQP and PIPA respectively.

We do not report in Table 5 that PIPA suffers from a kind of failure on problems 3, 4, 9, 11,
13, 14, 16; that is, termination occurs because of a linesearch failure in Step 4 (the stepsize τ or
χk becomes unacceptably small) rather than according to the stopping criteria in Step 2. This
affects the accuracy of the solution found by PIPA.

We make some comments for MINOS results in Table 7. A major iteration consists of
solving a quadratic program (linearly constrained nonlinear program in general) by a sequence
of fast minor iterations which involve a quasi-Newton approximation of the Hessian matrix and
a generalization of the simplex method from linear programming to find a search direction. Also,
we are not able to report flops in Table 7 because we used a MEX-file version of MINOS, which
links the original Fortran code [24] to MATLAB.

5.2.3 Implementation of implicit QPEC: LCP-QP

Recall that an MPEC is called an implicit program if its upper-level constraints are determined
by the first-level variables. Implicit QPEC are an important class of MPEC. Unlike the last
two subsections, we consider LCP-QP instead of AVI-QP in this and the next subsections. We
are interested both in seeing how different methods perform for implicit LCP-QP problems, and

23

(m,n, l, p) Dimensions of the problem.
second deg # of degenerate lower-level indices at the generated solution (xgen, ygen).
Iter # of iterations required by either PSQP, PIPA, or NLP via constr.
Iter major # of linearly-constrained NLPs solved by MINOS.
Iter minor # of pivots performed by MINOS.
QPs to sol. # of quadratic programs used after reaching the found solution in PSQP.
QPs total # of quadratic programs used after the termination of PSQP.
Flops Phase I # of flops used in the Phase I in either PSQP or PIPA.
Flops to sol. # of flops used after reaching the found solution in PSQP.
Flops total # of flops used after the termination of either PSQP or PIPA or NLP.
f The objective function value at the found solution.
fgen The objective function value at the generated solution (xgen, ygen).
Norm 1 The infinity norm of the difference vector between the starting point

and the generated solution (xgen, ygen).
Norm 2 The infinity norm of the difference vector between the found solution

and the generated solution (xgen, ygen).

Table 3: Notation used to describe numerical performance

particularly to compare PIPA with the implicit version i-PIPA, our implementation of the PIPA
given in the monograph [19] described below.

From our experiments, we found that neither constr nor MINOS performed well for our
relatively large fifth set of QPEC, namely implicit LCP-QP problems. These nonlinear pro-
gramming methods are not only very slow but often terminate at either a worse solution than
the generated solution or at an infeasible point. Therefore, we do not report numerical behavior
of constr and MINOS for our implicit LCP-QP problems.

Piecewise Sequential Quadratic Programming Method

The parameters used are set as in Subsubsection 5.2.1. Since LCP-constrained implicit
programs are considered in this subsection, we give the following approximate decomposition:
given a point z∗ = (x∗, y∗), define

α(z∗, δ) = {1 ≤ i ≤ m : y∗i − (Nx∗ +My∗ + q)i > δ}
β(z∗, δ) = {1 ≤ i ≤ m : |y∗i − (Nx∗ +My∗ + q)i| ≤ δ}
γ(z∗, δ) = {1 ≤ i ≤ m : (Nx∗ +My∗ + q)i − y∗i > δ}

and the family of index sets

A(z∗, δ) = {α ⊆ {1, . . . ,m} : α ⊇ α(z∗, δ), αc ⊇ γ(z∗, δ)},

where αc is the complement set of α with respect to {1, . . . ,m}.
In phase I, after choosing a point x0 satisfying the upper level constraints Gx + a ≤ 0,

Lemke’s method is used to find y0 such that (x0, y0) is feasible, by solving the lower-level LCP
for this fixed x0.

24

Prob./ (m,n,l,p) second deg Iter QPs Flops Phase I/ f/ Norm 1 /

stop. to sol./ Flops to sol./ fgen Norm 2

rule total Flops total

1/A (20,8,4,8) 0 2 2/3 3.1e+06/3.7e06/4.9e+06 -64.3065/-65.0099 82/0.110555

1/B (20,8,4,8) 0 2 2/3 3.1e+06/3.7e06/4.9e+06 -64.3065/-65.0099 82/0.110555

2/A (30,12,8,12) 0 4 4/5 1.5e+07/2.4e+07/2.7e+07 -118.887/-118.886 88/0.00428526

2/B (30,12,8,12) 0 4 4/5 1.5e+07/2.4e+07/2.7e+07 -118.887/-118.886 88/0.00428526

3/A (40,16,12,16) 0 5 5/6 4.0e+07/6.8e+07/7.4e+07 -74.1346/-74.1346 92/1.7e-15

3/B (40,16,12,16) 0 5 5/6 4.0e+07/6.8e+07/7.4e+07 -74.1346/-74.1346 92/1.7e-15

4/A (50,20,16,20) 0 5 5/6 9.7e+07/1.7e+08/2.0e+08 -133.579/-133.567 82/0.0164943

4/B (50,20,16,20) 0 5 5/6 9.7e+07/1.7e+08/2.0e+08 -133.579/-133.567 82/0.0164943

5/A (20,8,4,8) 4 3 3/19 3.5e+06/5.2e+06/1.7e+07 -71.4787/-71.4787 81/3.1e-15

5/B (20,8,4,8) 4 3 3/4 3.5e+06/5.2e+06/5.9e+06 -71.4787/-71.4787 81/3.1e-15

6/A (30,12,8,12) 4 3 3/19 1.9e+07/2.4e+07/6.0e+07 -115.8/-115.8 88/1.4e-15

6/B (30,12,8,12) 4 3 3/7 1.9e+07/2.4e+07/3.2e+07 -115.8/-115.8 88/1.4e-15

7/A (40,16,12,16) 4 4 4/20 4.3e+07/6.9e+07/2.8e+08 -50.5499/-50.5499 92/1.4e-14

7/B (40,16,12,16) 4 4 4/7 4.3e+07/6.9e+07/1.1e+08 -50.5499/-50.5499 92/1.4e-14

8/A (50,20,16,20) 4 4 4/20 8.7e+07/2.3e+08/1.9e+09 -73.1951/-73.1951 82/1.8e-15

8/B (50,20,16,20) 4 4 4/5 8.7e+07/2.3e+08/2.5e+08 -73.1951/-73.1951 82/1.8e-15

9/A (20,8,4,8) 4 3 3/7 3.6e+06/4.9e+06/9.9e+06 -82.6728/-83.9831 88/0.149311

9/B (20,8,4,8) 4 3 3/7 3.6e+06/4.9e+06/9.9e+06 -82.6728/-83.9831 88/0.149311

10/A (30,12,8,12) 4 2 2/10 1.9e+07/2.5e+07/6.2e+07 4133.13/-179.695 85/6.93468

10/B (30,12,8,12) 4 2 2/5 1.9e+07/2.5e+07/3.8e+07 4133.13/-179.695 85/6.93468

11/A (40,16,12,16) 4 2 F1 F1 F1 F1

11/B (40,16,12,16) 4 2 F1 F1 F1 F1

12/A (50,20,16,20) 4 4 4/20 1.4e+09/1.5e+09/1.9e+09 -110.073/-110.073 87/1.8e-15

12/B (50,20,16,20) 4 4 4/6 1.4e+09/1.5e+09/1.5e+09 -110.073/-110.073 87/1.8e-15

13/A (20,8,4,8) 8 2 2/258 1.3e+08/1.3e+08/4.9e+08 -87.0353/-87.0353 80/2.1e-15

13/B (20,8,4,8) 8 2 2/19 1.3e+08/1.3e+08/1.5e+08 -87.0353/-87.0353 80/2.1e-15

14/A (30,12,8,12) 8 2 2/258 1.4e+07/1.7e+07/6.8e+08 -128.801/-128.801 88/1.8e-15

14/B (30,12,8,12) 8 2 2/4 1.4e+07/1.7e+07/2.2e+07 -128.801/-128.801 88/1.8e-15

15/A (40,16,12,16) 8 3 3/259 4.4e+07/6.3e+07/3.2e+09 -86.3114/-86.3114 91/4.6e-15

15/B (40,16,12,16) 8 3 3/54 4.4e+07/6.3e+07/6.9e+08 -86.3114/-86.3114 91/4.6e-15

16/A (50,20,16,20) 8 4 4/260 8.5e+07/1.6e+08/6.7e+09 -47.3336/-47.3336 83/1.0e-14

16/B (50,20,16,20) 8 4 4/7 8.5e+07/1.6e+08/2.3e+08 -47.3336/-47.3336 83/1.0e-14

Table 4: Numerical results for PSQP on AVI-QP

25

Problem (m,n,l,p) second deg Iter Flops Phase I/ f/ Norm 1 /
Flops total fgen Norm 2

1 (20,8,4,8) 0 9 3.1e+06/3.3e+07 -65.0099/-65.0099 82/7.4e-09
2 (30,12,8,12) 0 13 1.5e+07/1.5e+08 -118.887/-118.886 88/0.00428526
3 (40,16,12,16) 0 30 4.0e+07/5.3e+08 -74.1198/-74.1346 92/0.0230878
4 (50,20,16,20) 0 20 1.0e+08/9.8e+08 -133.558/-133.567 82/0.0236974

5 (20,8,4,8) 4 23 3.5e+06/7.3e+07 -71.4787/-71.4787 81/8.6e-09
6 (30,12,8,12) 4 25 1.9e+07/2.9e+08 -115.8/-115.8 88/6.2e-09
7 (40,16,12,16) 4 22 4.3e+07/6.4e+08 -50.5499/-50.5499 92/6.0e-09
8 (50,20,16,20) 4 22 8.5e+07/7.9e+08 -73.1951/-73.1951 82/6.2e-09

9 (20,8,4,8) 4 11 3.6e+06/4.3e+07 -82.6727/-83.9831 88/0.149313
10 (30,12,8,12) 4 27 3.9e+07/3.2e+08 4133.13/-179.695 85/6.93468
11 (40,16,12,16) 4 18 7.7e+08/1.2e+09 -71.7339/-71.7339 92/3.5e-05
12 (50,20,16,20) 4 F2 F2 F2 F2

13 (20,8,4,8) 8 28 4.8e+06/1.0e+08 -87.0353/-87.0353 80/2.3e-08
14 (30,12,8,12) 8 9 1.4e+07/1.2e+08 -128.801/-128.801 88/5.1e-05
15 (40,16,12,16) 8 28 4.0e+07/7.3e+08 -86.3114/-86.3114 91/3.3e-09
16 (50,20,16,20) 8 20 8.5e+07/1.2e+09 -47.3336/-47.3336 83/2.2e-07

Table 5: Numerical results for PIPA on AVI-QP

Problem (m,n,l,p) second deg Iter Flops total f/ Norm 1 /
fgen Norm 2

1 (20,8,4,8) 0 5 1.0e+07 2.72707e+06/-65.0099 82/236.57
2 (30,12,8,12) 0 9 8.9e+07 2.18626e+06/-118.886 88/167.237
3 (40,16,12,16) 0 72 1.7e+09 -74.1346/-74.1346 92/2.5e-05
4 (50,20,16,20) 0 36 2.1e+09 -132.356/-133.567 88/0.175634

5 (20,8,4,8) 4 12 2.8e+07 969283/-71.4787 81/154.543
6 (30,12,8,12) 4 11 1.2e+08 27914.7/-115.8 88/25.9409
7 (40,16,12,16) 4 51 1.3e+09 -50.4763/-50.5499 92/0.063909
8 (50,20,16,20) 4 52 3.3e+09 -68.5143/-73.1951 82/0.313929

9 (20,8,4,8) 4 11 2.8e+07 3182.52/-83.9831 88/7.5299
10 (30,12,8,12) 4 35 3.7e+08 -159.28/-179.695 85/0.50267
11 (40,16,12,16) 4 31 1.0e+09 -69.3414/-71.7339 92/0.287154
12 (50,20,16,20) 4 29 1.9e+09 165.839/-110.073 87/1.28856

13 (20,8,4,8) 8 11 2.7e+07 6.8e+06/-87.0353 80/335.317
14 (30,12,8,12) 8 56 5.2e+08 -128.751/-128.801 88/0.0156657
15 (40,16,12,16) 8 36 9.3e+08 -86.3114/-86.3114 91/0.000158901
16 (50,20,16,20) 8 34 2.1e+09 -38.595/-47.3336 83/0.320972

Table 6: Numerical results for NLP using constr on AVI-QP

26

Problem (m,n,l,p) second deg Iter major/ f/ Norm 1 /
Iter minor fgen Norm 2

1 (20,8,4,8) 0 12/165 -65.0099/-65.0099 82/1.2e-12
2 (30,12,8,12) 0 19/197 -118.887/-118.886 88/0.00428526
3 (40,16,12,16) 0 8/147 -73.4631/-74.1346 92/0.125276
4 (50,20,16,20) 0 17/292 -132.545/-133.567 82/0.147682

5 (20,8,4,8) 4 11/143 -71.4787/-71.4787 81/3.4e-12
6 (30,12,8,12) 4 9/136 -115.8/-115.8 88/1.5e-13
7 (40,16,12,16) 4 9/136 -50.0828/-50.5499 92/0.156281
8 (50,20,16,20) 4 31/281 -73.171/-73.1951 82/0.0211662

9 (20,8,4,8) 4 11/72 -80.161/-83.9831 88/0.166252
10 (30,12,8,12) 4 21/215 -179.695/-179.695 85/4.5e-11
11 (40,16,12,16) 4 10/209 -68.1702/-71.7339 92/0.342033
12 (50,20,16,20) 4 4/178 -61.7592/-110.073 87/0.603738

13 (20,8,4,8) 8 10/72 -87.0353/-87.0353 80/5.1e-13
14 (30,12,8,12) 8 17/130 -128.801/-128.801 88/3.8e-13
15 (40,16,12,16) 8 15/169 -86.3114/-86.3114 91/4.1e-10
16 (50,20,16,20) 8 15/309 -47.3336/-47.3336 83/8.7e-13

Table 7: Numerical results for NLP using MINOS on AVI-QP

The main M-file used to implement PSQP for the implicit LCP-QP is psqplcp, which also
requires three M-files f, df and d2f. The MATLAB QP solver qp is used in Step 1 of PSQP.
Only the version of PSQP with Stopping rule B is tested since this is clearly superior to using
Stopping rule A.

Penalty Interior-Point Algorithm

The parameters used are chosen as in Subsubsection 5.2.1. But, Qk is chosen as follows,

Qk =

(
∇2f(zk) 0

0 µkI

)

where I is the identity matrix of dimension m.
In phase I, Lemke’s method is used to find a strictly feasible starting point (x0, y0, w0) by

first choosing a point x0 that satisfies the upper-level constraints Gx+ a ≤ 0, then determining
a solution y of the following modified LCP

0 ≥ y ⊥ My + (Nx0 +Me+ q − e) ≥ 0,

and, finally, letting y0 = y + e and w0 = Nx0 +My0 + q.
The main M-file pipalcp needs the M-files f, df, d2f and pipapenlcp whose purposes should

be clear from previous discussion. The quadratic program in Step 1 is solved by the MATLAB
solver qp.

27

Implicit Penalty Interior-Point Algorithm, i-PIPA

If the LCP-QP is an implicit program and M is monotone or of some similar property, then
in the corresponding quadratic program used to generate a search direction in the PIPA, other
variables can be uniquely determined by dx. This leads to solving a smaller dimension quadratic
program in the variables dx, which obviously saves time if m is large and the matrix data M ,
N in LCP-QP of the form (2.5) are dense. In fact, the version of PIPA implemented in [19]
takes full advantage of this idea. We have also coded a special version of PIPA called i-PIPA
for implicit LCP-constrained quadratic programs, which uses this dimension reduction strategy
and allows for infeasible but interior starting points, and tested it in Problem Set 5. The prefix
“i” in i-PIPA stands for “implicit”. The difference between i-PIPA and the version of PIPA
implemented in [19] lies in that i-PIPA does not use the simple bounds which are used in [19]
for controlling the magnitude of remaining components (dy, dλ, dv).

The parameters used in i-PIPA are set as in Subsubsection 5.2.1 with the one exception that
i-PIPA terminates if ‖(dx, dy, dw)‖∞ ≤ ε1 and µk ≤ ε2, where ε1 = 10−4. We use a bigger ε1
here than previously because this allows i-PIPA to terminate much more quickly with a relatively
small loss of accuracy.

5.2.4 Numerical results for implicit QPEC: LCP-QP

Set 5, Problems 17–24. This set of test problems is designed for testing implicit programs
LCP-QP rather than AVI-QP problems in the first three sets. The parameters for this set of
problems are the same as in Set 2 except for implicit=1 and qpec type = 300. The same
starting points are used for i-PIPA as in Set 1. However, in phase I of PSQP and i-PIPA, these
starting points are not used in the code. Instead, Lemke’s method is used to find a good starting
point for both PSQP and PIPA. Some details can be found in the previous subsection.

Results for the methods PSQP and i-PIPA on the fifth set implicit LCP-QP problems are
reported in Table 8. The meaning of notation used in this table is the same as in Table 3.

5.3 Discussion of Numerical Results

From the numerical results, we have the following impressions.

• The naive nonlinear programming approach has more difficulties than other methods as ex-
pected. Though MINOS performs respectably, it has more trouble locating the generated
solution wgen, or a better feasible point, than do PSQP and PIPA. The NLP approach
implemented using constr has considerable difficulty in finding wgen, or a better point,
and could not be recommended on this basis.

Also, a quirk of using MINOS in MATLAB is that consecutive runs on the same problem
in one MATLAB session can produce different solutions, though closing and restarting
MATLAB after each run of MINOS gives the same results. So we obtained the results in
Table 7 by closing and restarting MATLAB after each run of MINOS2.

2For Problem 4 of Set 1, to avoid crashing MATLAB we were obliged to run MINOS on another problem

before testing it on Problem 4.

28

Problem / (m,n,l) second deg Iter QPs Flops Phase I/ f/ Norm 1 /
Algorithm total Flops total / fgen Norm 2

17/PSQP/B (50,8,4) 0 4 4 716487/6.8e+06 -142.829/-142.829 2.2/1.1e-15
17/PIPA 24 24 23549/9.3e+08 -142.829/-142.829 2.2/1.6e-08
17/i-PIPA 27 27 (N/A)/1.1e+07 -142.829/-142.829 100/1.0e-07
18/PSQP/B (100,8,4) 0 5 5 1.3e+07/9.3e+07 -664.389/-664.389 1.9/3.9e-15
18/PIPA 23 23 113526/6.9e+09 -664.389/-664.389 1.9/1.2e-08
18/i-PIPA 26 26 (N/A)/5.9e+07 -664.389/-664.389 100/1.7e-07
19/PSQP/B (150,8,4) 0 7 7 7.6e+07/5.3e+08 -535.743/-535.743 2.6/9.0e-15
19/PIPA 25 25 266007/2.3e+10 -535.743/-535.743 2.6/2.4e-08
19/i-PIPA 26 26 (N/A)/1.7e+09 -535.743/-535.743 100/3.7e-06
20/PSQP/B (200,8,4) 0 31 31 2.4e+07/7.3e+08 -109.595/-109.595 3.0/4.5e-15
20/PIPA 27 27 432915/5.8e+10 -109.595/-109.595 3.0/1.7e-08
20/i-PIPA 28 28 (N/A)/4.0e+08 -109.595/-109.595 100/2.3e-06

21/PSQP/B (50,8,4) 4 4 4 468822/7.3e+06 41.8764/-41.8764 2.3/5.8e-15
21/PIPA 44 44 25351/1.7e+09 -41.8764/-41.8764 2.3/5.6e-09
21/i-PIPA 33 33 (N/A)/1.4e+07 -41.8764/-41.8764 100/1.0e-04
22/PSQP/B (100,8,4) 4 6 6 1.2e+07/1.2e+08 -599.936/-599.936 2.1004/2.9e-14
22/PIPA 45 45 106430/9.9e+09 -599.936/-599.936 2.1004/9.5e-09
22/i-PIPA 53 53 (N/A)/1.2e+08 -599.936/-599.936 100/8.4e-5
23/PSQP/B (150,8,4) 4 8 8 7.2e+07/5.7e+08 -536.444/-536.444 3.5146/3.5e-14
23/PIPA 43 43 281518/3.0e+10 -536.444/-536.444 3.5146/3.1e-08
23/i-PIPA 60 60 (N/A)/3.9+08 -536.444/-536.444 100/5.0e-05
24/PSQP/B (200,8,4) 4 28 28 1.9e+07/7.1e+08 -23.7817/-23.7817 2.38818/3.5e-15
24/PIPA 46 46 345537/9.5e+10 -23.7817/-23.7817 2.38818/4.8e-09
24/i-PIPA 73 73 (N/A)/1.0e+09 -23.7817/-23.7817 100/9.9e-05

Table 8: Numerical results for implicit LCP-QP problems

29

In addition, MINOS was associated with occasional crashes of MATLAB, a problem that
we believe is associated with the MEX interface to MATLAB rather than with MINOS
itself.

• PSQP/B, i.e. PSQP with stopping condition B, appears to be the most effective method in
terms of flops (compared to PSQP/A and PIPA) and accuracy (compared to all other
methods) for problems with monotone equilibrium constraints, Sets 2 and 4. However we
believe that the apparent advantage of PSQP/B, at least relative to PIPA, may not extend
to QPEC of large dimension or nonlinear problems. Moreover the accuracy measure — the
norm of the distance between the final (x, y) pair and the generated solution (xgen, ygen) —
is most useful when the best solution found coincides with (xgen, ygen), which is not always
the case, e.g. for Problems 2 and 4, some methods find better solutions than (xgen, ygen).
Further investigation is certainly required.

• Nondegenerate problems, Set 1, were generally a little easier for PIPA in terms of numbers
of iterations and flops than degenerate problems in later test sets. Naturally PSQP/A
performed identically to PSQP/B on nondegenerate problems, Set 1; however PSQP/A
was significantly disadvantaged by (second-level) degeneracy, though the implementation
using stopping rule B was only mildly affected, even for problems with a relatively high
degree of degeneracy, Set 4. It is unclear whether the degree of degeneracy had any effect
on the NLP solvers unconstr and MINOS.

• For problems with nonmonotone equilibrium constraints, Set 3, it is not clear from our results
if any algorithm dominates the others. For instance, both PSQP and PIPA fail to find a
feasible starting point on a problem in Set 3, though this may not truly constitute a dis-
advantage for PIPA given that an infeasible-point implementation is possible as indicated
previously. Also in Set 3, most algorithms experience more difficulty in locating wgen than
for problems with monotone equilibrium constraints.

• We did carry out several tests on problems generated by QPECgen for which the parameters
match Table 2 except that cond P and cond M are increased. These results are not reported
because until the condition number is very large, say 1018 or greater, the performance of
the above methods is similar to the results above. For very large condition numbers,
all methods experienced difficulties as expected. We suspect that more modest levels of
ill-conditioning will play a greater role for nonconvex and more particularly, large-scale
problems.

• We have not presented any results for the case when the objective function is not convex,
problems where the dimension is large, or ill-conditioning features. Larger problems proved
to be prohibitive in terms of memory requirements on the machine used for numerical tests.
This suggests that future work requires routines, specifically a QP solver, designed for large
and sparse problems.

It is to be expected that in each of these cases, the above methods will experience more
difficulties than for the current test sets. However these issues will need to be explored in

30

Algorithm # reach (xgen, ygen) # reach best # success # QPs Wins in Flops
(accurately) solution

PSQP/A 10 (10) 13 15 1131 4
PSQP/B 10 (10) 13 15 145 14
PIPA 10 (6) 11 15 305 1
constr 2 (0) 2 16 491 2
MINOS 8 (8) 9 16 219 N/A

Table 9: Comparisons of algorithms for AVI-QP problems

future work.

• The implicit LCP-QP results in Table 8 show that i-PIPA is more efficient in terms of flops
than PIPA for these problems. In other respects, these results are similar to previous
results on Test Set 2.

To make some comparisons between the different algorithms for all four sets of AVI-QP test
problems, 16 problems in all, we give one more table, Table 9. In this table, five measurements
are presented. They are “# reach (xgen, ygen)” or the number of times each particular method
finds the generated solution, by which we mean the number of times that the (infinity-norm)
distance between the final point and (xgen, ygen) is not greater than 10−3; “# reach (xgen, ygen)
accurately”, the number of times that the distance is not greater than 10−8; “# reach best
solution” which is the the number of times each method converges to the best found solution,
which in these tests may actually be worse than the generated solution but not better; “#
success”, the number of AVI-QP test problems where the method concerned indicated successful
termination, not necessarily termination at the generated solution or the best solution found
(including runs of PIPA that terminated due to line search difficulties as previously mentioned);
“# QPs”, the total number of quadratic programs solved over all the successfully terminated
runs; and finally “Wins in Flops”, the number of times each method was better than all other
methods in terms of flops for the successfully terminated runs, irrespective of whether different
solutions were arrived at.

6 Final Remarks

In this paper, we have developed a technique for generating different QPEC problems with
certain important options under the control of the user. We have also implemented and tested
several algorithms for solving QPEC within MATLAB. Although the relative merits and demerits
of each method cannot be completely determined from our limited tests, the problems generated
by QPECgen do give rise to recognizably different algorithm behaviours.

It has been recognized that qp in MATLAB is not fully satisfactory when the quadratic
program is not positive definite. Therefore, one part of our future work to implement the

31

various methods using more robust quadratic programming solvers. We also believe that some
of most important computational issues to be faced involve nonlinear and large-scale problems.

Acknowledgements

We thank Michael Ferris for helping us to connect MINOS to MATLAB.

References

[1] E. Aiyoshi and K. Shimizu, Hierarchical decentralized systems and its new solution
by a barrier method, IEEE Transactions on Systems, Man, and Cybernetics SMC-11

(1981) 444-449.

[2] G. Anandalingam and T.L. Friesz, eds., Hierarchical Optimization, Annals of Oper-

ations Research, 1992.

[3] Z. Bi, P. Calamai and A. Conn, An exact penalty function approach for the nonlin-
ear bilevel programming problem, Technical Report #180-O-170591, Department of
Systems Design Engineering, University of Waterloo, 1991.

[4] P. Calamai and L.N. Vicente, Generating quadratic bilevel programming problems,
ACM Transactions on Mathematical Software 20 (1994) 103-122.

[5] Y. Chen and M. Florian, The nonlinear bilevel programming problem: formulations,
regularity and optimality conditions, Optimization (1994).

[6] R.W. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem, Aca-
demic Press, New York, 1992.

[7] S. Dempe, On generalized differentiability of optimal solutions and its application
to an algorithm for solving bilevel optimization problems, in: D. Du, L. Qi and
R. Womersley, eds., Recent Advances in Nonsmooth Optimization, World Scientific
Publishers, Singapore, 1995, pp. 36-56.

[8] S. Dirkse and M.C. Ferris, Modeling and solution environments for MPEC: GAMS
& MATLAB, technical report, Computer Sciences Department, University of
Wisconsin–Madison, Madison, 1997.

[9] F. Facchinei, H. Jiang and L. Qi, A smoothing method for mathematical programs
with equilibrium constraints, AMR 96/15, Applied Mathematics Report, The Uni-
versity of New South Wales, Sydney, 1996, also Technical Report, Università di Roma
“La Sapienza, Rome.

[10] J.E. Falk and J. Liu, On bilevel programming, Part I: general nonlinear cases. Math-

ematical Programming 70 (1995) 47-72.

32

[11] R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, New York, second
edition, 1987.

[12] T. Friesz, R. Tobin, H. Cho and N. Mehta, Sensitivity analysis based heuristic al-
gorithms for mathematical programs with variational inequality constraints, Mathe-

matical Programming 48 (1990) 265-284.

[13] M. Fukushima and J.S. Pang, Some feasibility issues in mathematical programs with
equilibrium constraints, SIAM Journal on Optimization, to appear.

[14] M. Fukushima, Z.-Q. Luo and J.S. Pang, A globally convergent sequential quadratic
programming algorithm for mathematical programs with linear complementarity con-
straints, Computational Optimization and Applications, to appear.

[15] G.H. Golub and C.F. Van Loan, Matrix Computations, The Johns Hopkins University
Press, Baltimore, 1983.

[16] J.Y. Han, G. Liu and S. Wang, A new descent algorithm for solving quadratic
bilevel programming problems, Manuscript, Institute of Applied Mathematics, Chi-
nese Academy of Science, Beijing, 1997.

[17] B. Hobbs, C. Metzler and J.S. Pang, Strategic gaming analysis for electric power
networks: an MPEC approach, Report, Department of Mathematical Sciences, The
Johns Hopkins University, forthcoming.

[18] M. Kočvara and J.V. Outrata, On the solution of optimum design problems with
variational inequalities, in: D.Z. Du, L. Qi and R.S. Womersley, eds., Recent Advances

in Nonsmooth Optimization, World Scientific Publishers, Singapore, pp. 172-192,
1995.

[19] Z.-Q. Luo, J.S. Pang and D. Ralph, Mathematical Programs with Equilibrium Con-

straints, Cambridge University Press, New York, 1997.

[20] Z.-Q. Luo, J.S. Pang and D. Ralph, Piecewise sequential quadratic programming for
mathematical Programs with nonlinear complementarity constraints, in: A. Migdalas
et al, eds., Multilevel Optimization: Algorithms, Complexity and Applications,
Kluwer Academic Publishers, to appear.

[21] Z.-Q. Luo, J.S. Pang, D. Ralph and S.-Q. Wu, Exact penalization and stationar-
ity conditions of mathematical programs with equilibrium constraints, Mathematical

Programming 75 (1996) 19-76.

[22] MATLAB 4.2, The MathWorks, Inc., 24 Prime Park Way, Natick MA, 1994.

[23] A. Migdalas and P.M. Pardalos, Nonlinear bilevel problems with convex second level
problem – Heuristics and descent methods, in: D.Z. Du, X.S. Zhang and K. Chuan,
Operations Research and Its Applications, World Publishing Corporation, Singapore,
1995, pp. 194-204.

33

[24] B.A. Murtagh and M.A. Saunders, MINOS 5.4 user’s guide, Technical Report SOL
83-20R, Systems Optimization Laboratory, Stanford University, CA, 1983.

[25] J.V. Outrata, On optimization problems with variational inequality constraints,
SIAM Journal on Optimization 4 (1994) 340-357.

[26] J.V. Outrata and J. Zowe, A numerical approach to optimization problems with
variational inequality constraints, Mathematical Programming 68 (1995) 105-130.

[27] J.S. Pang, Complementarity problems, in: R. Horst and P. Pardalos, eds., Handbook

of Global Optimization, Kluwer Academic Publishers, Boston, 1995, pp. 271-338.

[28] D. Ralph, Sequential quadratic programming for mathematical programs with linear
complementarity constraints, in: R.L. May and A.K. Easton eds., CTAC95 Compu-

tational Techniques and Applications, World Scientific, 1996.

[29] H. Scheel and S. Scholtes, Mathematical programs with equilibrium constraints: Sta-
tionarity, optimality, and sensitivity, manuscript, Department of Engineering, Uni-
versity of Cambridge, Cambridge CB2 1PZ, England, 1996.

[30] S. Scholtes and M. Stöhr, Exact penalization of mathematical programs with equilib-
rium constraints, Report 26, The Judge Institute of Management Studies, University
of Cambridge, England 1997.

[31] L.N. Vicente and P. Calamai, Bilevel and multilevel programming: A bibliography
review, Journal of Global Optimization 5 (1994) 291-306.

[32] L. Vicente, G. Savard and J. Júdice, Descent approaches for quadratic bilevel pro-
gramming, Journal of Optimization Theory and Applications 81 (1994) 379-399.

34

