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lems with more variables than equations. Globally metrically regular
HLCPs have nonempty solution sets that are stable with respect to
“right-hand-side perturbations” of the data, hence are numerically at-
tractive. The main purpose of the paper is to show how the stability or
conditioning properties of globally metrically regular HLCPs are pre-
served by a homotopy framework for solving the HLCP that finds a
“stable” direction at each iteration as a local minimizer of a strongly
convex quadratic program with linear complementarity constraints,
QPCC. Apart from intrinsic interest in numerical solution of HLCPs,
this investigation has application in solving horizontal nonlinear com-
plementarity problems and more broadly in the area of mathematical
programs with complementarity constraints, MPCCs.
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1 Introduction

We investigate solving the Horizontal Linear Complementarity Problem, HLCP:

0 = L(x, y) = Mx + Ny + q
0 ≤ x ⊥ y ≥ 0

(1)

where x and y are vectors of variables in IRn, M and N are given matrices in
IRm×n, q ∈ IRm is also given, and ⊥ denotes orthogonality (xT y = 0 above).

We are interested in n ≥ m, i.e. feasibility problems. The solution set
of (1), denoted F , will be polyhedral and generally nonconvex, i.e. the union
of finitely many closed, convex polyhedra. As such we will approach its
solution via piecewise affine (PA) or pivotal linear algebra techniques.

The focus of this paper is globally metrically regular HLCPs, a concept
which says that if the equation L(x, y) = 0 is perturbed to L(x, y) = p for
any p ∈ IRm, then the solution sets of the original HLCP and the perturbed
HLCP will be nonempty and separated (in terms of Hausdorff distance) by
at most a constant factor of ‖p‖. That is, the solution set of the HLCP is
stable with respect to arbitrary right-hand-side perturbations. It turns out
that stability with respect to right-hand-side perturbations implies stability
with respect to much more general (functional) perturbations [7, 18], a fact
we will not use however. Section 2 provides formal definitions.

While global metric regularity is our topic, the approach we consider
can very well be applied to investigate local metric regularity since, for in-
stance, local metric regularity about a solution x̄ of a piecewise affine system
Π(x) = 0 can be characterised by global regularity of the directional deriva-
tive Π′(x̄; ·). (We use a kind of converse of this idea in Lemma 4.1 where it
is shown that the global condition number is inherited locally.)

There are several motivations for this investigation. First, consideration
of F is a step towards handling general nonconvex polyhedral sets. Us-
ing the concrete problem class of HLCPs makes the development a little
more direct, however; for example we have the advantage the set of com-
plementary nonnegative pairs (x, y) is a piecewise affine manifold [8, 26] in
IR2n which has a convenient and explicit structure. Second, consider Hori-
zontal Nonlinear Complementarity Problems, HNCPs, which have the same
format as (1) except that L(x, y) is replaced by a smooth nonlinear func-
tion F : IR2n → IRm. The papers [5, 18] give convergence theory for a
general type of Newton method that can be applied to solving HNCPs by
solving a sequence of HLCPs in a stable way. The newly published book
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[17] is recommended for this and other material on solvability and solu-
tion stability of nonsmooth mappings relating to complementarity problems.
Third, apart from intrinsic interest, horizontal linear and nonlinear comple-
mentarity problems are important in Mathematical Programs with Equilib-
rium Constraints, MPECs, and in particular Mathematical Programs with
Complementarity Constraints, MPCCs, where they appear as constraints in
what would otherwise be standard nonlinear programs. See the monographs
[19, 23] for an introduction to this area, as well as the more recent publica-
tions [10, 11, 12, 14, 15, 16, 20, 24, 28, 29, 30, 31] that will be referred to
later.

With regard to nonlinear programming formulations, note that if we
rewrite the orthogonality condition in (1) as a bilinear equation xT y = 0
then the entire system, though smooth, violates classical nonlinear program-
ming constraint qualifications [2], i.e. is susceptible to numerical instability.
Therefore we prefer to treat the HLCP by taking explicit account of its piece-
wise affine structure. Nevertheless standard nonlinear programming methods
applied to problems with such constraints can be very successful, as shown
in [10].

The “most stable” solution of the HLCP with respect to a given point
(x0, y0) is simply the globally nearest solution, i.e. a global minimizer of
‖(x, y) − (x0, y0)‖ subject to (x, y) ∈ F . When using the Euclidean norm,
this is equivalent to finding a global minimum of the problem with a strongly
convex quadratic objective function:

min 1
2
‖(x, y)− (x0, y0)‖2 subject to (x, y) ∈ F . (2)

This is called a quadratic program with complementarity constraints, QPCC.
Given the polyhedral nature of F , global optimization can be carried out by
an enumerative procedure: for each of the finitely many convex polyhedra
whose union is F , find the nearest point of this set to (x0, y0) by solving a
strongly convex quadratic program, QP. A more sophisticated global opti-
mization method might attempt to use the problem structure, namely com-
plementarity, to set up a branch and bound framework. However, the heavy
hammer of global optimization is unnecessary as we explain next.

The main purpose of this paper is to show that the stability property of
globally metrically regular HLCPs can be readily transferred to a numerical
solution method, namely a PA homotopy method. The basic homotopy or
path following or continuation idea is, of course, rather standard for “square”
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systems like linear complementarity problems, as demonstrated by the classic
paper [3] that employs Lemke’s method for this purpose. (For square sys-
tems, see [4] for a full treatment of linear complementarity problems, [8] for a
general homotopy approach to more general PA systems and, for homotopy
methods in the nonlinear case, [1].) Homotopy approaches to feasibility prob-
lems are rare although some feasibility problems can be written as projection
problems whose stationary conditions admit a homotopy approach.

The proposed homotopy approach is greedy in that it attempts to locally
optimize progress at each iteration by finding a suitable direction along which
to generate the path. The direction-finding subproblem at iteration k is a
QPCC that is formed by a kind of “localisation” of (2) about the iterate zk

on the homotopy path, for which we seek a local minimizer. It turns out that
the direction-finding subproblem is always feasible and, almost always, every
feasible point satisfies a linear-independence condition called the MPCC-
LICQ, c.f. [28]. This means that finding a local minimizer is computationally
practical; indeed we may use any of the growing family of methods [10, 11,
12, 14, 15, 16, 20, 24, 29, 30, 31] that are known to be successful under the
MPCC-LICQ, and possibly other conditions. We will demonstrate that any
local minimizer of the direction-finding subproblem satisfies two stability
properties necessary to show that the homotopy path reaches the feasible
set of the HLCP after a finite number of iterations, while preserving the
numerical conditioning of the HLCP. For concreteness, we show how an active
set method [30] for QPCC can be applied to the direction-finding subproblem.
In short, we propose a framework for stable solution of (1) that is readily
implementable.

From the standpoint of practicality, there may be other methods for find-
ing feasible points of the HLCP that are easier to describe or are attractive
due to fast or robust implementations. For example, any of the methods
mentioned can be applied directly to the QPCC (2), though the stability
properties of a solution obtained in this way would have to be investigated.

The paper is laid out in the following way. Basic definitions relating to
metric regularity are given in Section 2. A formal homotopy approach is
presented in Section 3 including a finite convergence result, based on “face-
stable” directions, that appears to be new. Section 4 gives the direction-
finding QPCC and shows that any of its local minimizers satisfies the stability
properties required. An active set method which is a specialisation of [30] is
applied to this QPCC under an MPCC-LICQ. In §5, the main result is that
for almost all starting points z0 = (x0, y0), and every iterate zk = (xk, yk)
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on the homotopy path, the direction-finding QPCC is feasible such that the
MPCC-LICQ holds at all feasible points. We conclude by summarising the
properties of the hybrid Homotopy-Active-Set method.

Before proceeding, we give a simple example as motivation.

Example 1.1 Let ε be a small positive number, and consider the line in the
(x1, x2)-plane, x2 = −εx1. We form a closely related HLCP by taking m = 1,
n = 2, M = [ε 1] ∈ IR2×1, N = −M and q = 0.

This reason for choosing such a trivial example, apart from simplicity, is
that its stability properties are clear: Take x0 = (0, 0), y0 = (0, 0). If the
right-hand-side is perturbed away from zero to p ≥ 0, then x = (0, p), y =
(0, 0) is a solution of the perturbed HLCP: Mx + Ny = p, 0 ≤ x ⊥ y ≥ 0.
This solution is at distance p from the origin (x0, y0). If p ≤ 0, we may
take x = (0, 0) and y = (0,−p). In fact the Hausdorff distance between
solution sets associated with different right-hand-sides p and p′ is is exactly
|p−p′|/

√
1 + ε2, hence less than |p−p′| no matter how small ε becomes. (In §2,

the quantity 1/
√

1 + ε2 will be called the modulus of metric regularity of the
HLCP.)

Now consider an intuitive pivotal approach to solve the perturbed HLCP
where the right-hand-side is p > 0, given (x0, y0) at the origin as above. We
identify a complementary basis [3], that is a set of m variables that would
not violate complementarity if all were positive, for which the corresponding
submatrix of [MN ] is invertible. Here m = 1 and we are free to choose any
single variable. For instance, take the basis as x1 with all other (nonbasic)
variables equal to zero. This reduces the HLCP to the square linear system
εx1 = p, hence produces the solution (x, y) = ((p/ε, 0), (0, 0)) which is at a
large distance p/ε from (x0, y0).

The difficulty is that we cannot be sure which basis is stable in the sense of
producing a solution that is near to our starting point. We are only repeating
what has been long known in linear algebra: the condition number [13] of a
full rank rectangular matrix A ∈ IR`×n, ` < n, cannot be approximated by
the condition number of an arbitrary basis matrix.

The above idea of using invertible complementary bases was the subject
of a previous investigation by the author [25]. While this has a certain con-
sistency in the history of pivotal methods for mathematical programming,
the example warns it can lead to unnecessary numerical difficulties if ap-
plied naively. We modify this idea later to allow submatrices of complemen-
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tary columns of [M N ] that have full rank but are not necessarily invertible
(square).

2 The modulus of metric regularity

We assume the HLCP is globally metrically regular, as defined below. Let

P = {(x, y) ∈ IR2n : 0 ≤ x ⊥ y ≥ 0}.

This is a polyhedral (nonconvex) set, i.e. the union of finitely many convex
polyhedra. The perturbed feasible set, for p ∈ IRm, is

F(p) = {z ∈ P : L(z) = p} = P ∩ L−1(p)

where z denotes (x, y). The distance of any point z to F(p) is

dist(z | F(p)) = inf{‖z − z′‖ : z′ ∈ F(p)}

which is taken to be ∞ if F(p) = ∅.
Let U and V be nonempty subsets of IR2n and IRm respectively. The

modulus of (metric) regularity of (1) with respect to U, V , denoted γL(U, V ),
is the infimum of γ ≥ 0 such that

dist(z | F(p)) ≤ γ‖L(z)− p‖, ∀z ∈ U ∩ P , p ∈ V.

Note we require z ∈ P in the above definition since we are only interested in
complementary solutions of L(z) = p.

If γL(IR2n, IRm) < ∞ then we say F is globally metrically regular. Also,
we write γL for γL(U, V ) when U and V are clear from the context.

The study of metric regularity and related concepts is long and deep. Hav-
ing γL < ∞ is variously referred to as pseudo-Lipschitz continuity, Lipschitz-
like behaviour, Aubin continuity, or openness at linear rate of the multifunc-
tion F : P → IR2n. It is the same as metric or pseudo regularity of the
system z ∈ P , L(z) = 0. See [6, 7, 18] for further discussion and references.

Remarks

1. If the HLCP (1) is globally metrically regular, then L(P) = IRm, hence
[M N ] is surjective and of course has full rank. A partial converse is
that γL(IRn, IRm) = ∞ if [M N ] does not have full rank, because then
L(P) 6= IRm, hence F(p) = ∅ for some p ∈ IRm.
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2. Suppose P = IR2n (drop the complementarity requirement), U = IRn

and V = IRm (global metric regularity). Write A = [M N ] ∈ IRm×2n.
Then

(a) γL = ‖A−1‖ if A is an invertible square (2n = m) matrix. Note the
classical condition number of an invertible matrix ‖A‖‖A−1‖, [13].

(b) γL = ‖AT (AAT )−1‖ if rank(A) = m (⇒ 2n ≥ m), and we are
using the 2-norm.

(c) γL = ∞ if 2n < m since [M N ] does not have full rank.

3. Consider a subclass of HLCPs for which M = [A B] and N = [−I Θ],
where A, I ∈ IRm×m, I is the identity, B, Θ ∈ IR(n−m)×m and Θ is the
zero matrix. Partitioning the variable vectors x = (t, u), y = (v, w)
where t, v ∈ IRm and u, w ∈ IRn−m, we see that (1) takes the form of a
parametric linear complementarity problem in t whose complementary
vector is v,

0 ≤ t ⊥ v = At + Bu + q ≥ 0
0 ≤ u

where u can be thought of as a parameter, and w, which is supposed
to be nonnegative and orthogonal to u, plays no role and can be fixed
as the zero vector. Suppose there is a unique solution (t, v) for any
fixed u and q, e.g. A is positive definite or, more generally, a P -matrix
[4]. In this case the solution (t, v) is a piecewise affine, hence globally
Lipschitz function of (u, q) and global metric regularity follows easily,
in the style of [19, Section 4.4].

4. Mordukhovich’s coderivative calculus is a general tool that is useful in
characterising and investigating necessary and sufficient conditions for
local (and, by extension, global) regularity of systems of equations, and
even systems posed using set-valued mappings. See [21] for an intro-
duction to coderivatives and applications, and [22] for the particular
case of stability of solution maps to parametric variational inequalities,
of which HLCPs are a special case.
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3 A homotopy framework for globally metri-

cally regular H-LCPs

Henceforth we use the Euclidean or 2-norm, ‖ · ‖ = ‖ · ‖2.
Assume (1) is globally metrically regular with modulus of regularity γ.

We apply a homotopy framework for solving this HLCP given a starting
point z0 = (x0, y0) ∈ P :

• Let p0 = L(z0), the initial residual.
• Derive a path z(t) = (x(t), y(t)) such that

z(0) = z0, z(t) ∈ P , L(z(t)) = (1− t)p0 for t > 0. (3)

• If the path extends to t = 1, then (x, y) = z(1) solves (1).

The size of the initial residual, ‖p0‖, is a measure of the distance from z0 to
the solution set of the HLCP.

Our goal is to give a method that generates a path of points z(t) ∈
F((1−t)p0) as above, such that the global “condition number” γ is preserved
at each point on the path,

dist[z0 | F((1− t)p0)] ≤ ‖z0 − z(t)‖
≤ tγ‖p0‖.

That is, computationally, we want to replace “dist” term by ‖z0 − z(t)‖. In
this case, when we reach a solution of the problem at t = 1, we will have
‖z0 − z(1)‖ ≤ γ‖p0‖, which does indeed preserve the conditioning of the
HLCP. Such a vector z(1) might be called a stable solution of the HLCP
relative to z0.

In fact, we will show that a continuous stability property holds all along
the path: for any s, t ∈ [0, 1],

‖z(s) − z(t)‖ ≤ |s− t|γ‖p0‖. (4)

We’ll do this by generating z(·) as a PA path in P with breakpoints {zk =
(xk, yk)}K

k=0, where K is to be determined, and with corresponding scalars
0 = t0 < t1 < . . . < tK = 1 such that for k = 0, . . . , K − 1,

L(zk+1) = (1− tk+1)p
0 (5)

‖zk+1 − zk‖ ≤ γ(tk+1 − tk)‖p0‖ (6)

zk + s(zk+1 − zk) ∈ P for s ∈ [0, 1]. (7)
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Thus the major work at each iteration of the homotopy method will be to
find a suitable direction d that can be scaled by a stepsize s > 0 in order to
generate the next iterate, zk+1 = zk + sd.

3.1 A formal homotopy method

Given z = (x, y) ∈ P , let T (z|P) be the tangent (contingent) cone of P at z:

T ((x, y)|P) = {(u, v) ∈ IRn × IRn : ui = 0 if xi = 0 < yi,
vi = 0 if xi > 0 = yi,
0 ≤ ui ⊥ vi ≥ 0 if xi = 0 = yi }.

Since P is polyhedral, then d ∈ T (z|P) if and only if z + sd ∈ P for all
sufficiently small s > 0. (Actually, since P is conical, the characterisation
holds for all s > 0.)

At iteration k, suppose we have zk ∈ P and tk ∈ [0, 1) with L(zk) =
(1− tk)p

0. Consider the subproblem of finding a direction d = (u, v) ∈ IR2n

such that L(zk + sd) = L(zk)− sL(zk) and zk + sd ∈ P for all small s > 0,
or equivalently,

[M N ]d = −L(zk) where d ∈ T (zk|P). (8)

Any solution d of (8) and scalar s satisfy

L(zk + s d) = (1− s)L(zk) = (1− s)(1− tk)p
0.

Also, zk + sd ∈ P for small s > 0. Observing that s ∈ (0, 1] implies (1 −
s)(1− tk) = 1− t where t = tk + s(1− tk) ∈ (tk, 1], it follows that d extends
“the” path for all small s > 0. So let dk be a solution of (8).

Next let sk be the maximum value of s ∈ (0, 1] such that zk + sdk ∈ P ,
the latter condition being equivalent to nonnegativity of zk + sdk because
zk ∈ P and dk = (u, v) ∈ T (zk|P) implies xk + su ⊥ yk + sv for all scalars
s. Let tk+1 = tk + sk(1− tk), hence tk+1 > tk since sk > 0. If sk = 1, that is
zk+1 = zk + dk ≥ 0, then tk+1 = 1 and zk+1 solves the HLCP.

We are now in a position to state a formal homotopy method for HLCP.

Homotopy Method

0. Initial conditions. We are given z0 ∈ P . Let t0 = 0, k = 0.

1. Direction. Find a solution d = dk of the subproblem (8).
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2. Stepsize. Let sk = max{s ∈ (0, 1] : zk + sdk ≥ 0}.
3. Update. Let zk+1 = zk+skd

k+1, tk+1 = tk+sk(1−tk), and k = k+1.

4. Stopping test. If tk = 1 then STOP; zk solves HLCP.

5. Next iteration. Go to step 1.

This algorithm is still formal rather than computational in that we have not
discussed existence or calculation of directions required in step 1. Never-
theless the above discussion shows that it is well defined provided that a
solution d of (8) can be found (in step 1) at each iteration, in which case
the path relations (5) and (7) are immediate. Moreover if each dk satisfies
‖dk‖ ≤ γ‖L(zk)‖, i.e. dk is “stable” solution of (8), then the promised stable
path property (6) (and hence (4)) also follows. Existence and computation
such stable directions are discussed in Section 4.

Our next step in this section is to show finite termination of the Homotopy
Method, assuming it is well defined, at a solution of the HLCP. To achieve
this we’ll need a further condition on the direction generated at each iteration
that is based on a natural decomposition of the polyhedral nonconvex set P
(and its tangent cones) into finitely many closed, convex, polyhedra (cones).

3.2 Branches of P and face-stable directions

By I(zk) we denote the family of (possibly empty) subsets I of the index set
{1, . . . , n} that, together with their complementary sets Ic = {1, . . . , n} \ I,
satisfy

I ⊃ {i : xk
i > 0}, Ic ⊃ {i : yk

i > 0}.

Define
PI = {(x, y) : xi ≥ 0 = yi if i ∈ I,

xi = 0 ≤ yi if i ∈ Ic}.

Each set PI corresponding to I ∈ I(zk) is called a branch of P at zk. (The
total number of branches of P at all feasible points can be as large as 2n,
i.e. exponential in the dimension of x and y, which helps to explain why
optimization over such a feasible set is an NP-hard problem.) It can easily
be seen [19] for small neighborhoods U of zk, that U ∩ P is contained in
∪I∈I(zk)PI , hence that

T (zk | P) =
⋃

I∈I(zk)

T (zk | PI).
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By a face of P we mean a face of one of its branches. By a face of T (zk | P) we
mean a face of one of the convex polyhedral cones T (zk | PI) with I ∈ I(zk).

It is well known [27] that the relative interiors of the faces of a polyhedral
convex set C partition that set. In other words, every member of C lies in
the relative interior of a unique face of C. Also, if C is convex polyhedral
cone, then the faces of C are also convex polyhedral cones. We state a minor
extension of this to piecewise affine manifolds such as P .

Lemma 3.1 Let z ∈ P and d ∈ T (z | P). There is a unique face F of P
such that z ∈ rintF ; moreover any face of P containing z also contains F .
Likewise there is a unique face K of T (z | P) such that d ∈ rintK; moreover
any face of T (z | P) containing d also contains K.

Proof. It can be verified by inspection that the intersection of two or more
faces of P is also a (possibly) empty face of P , and that this property is
inherited by it tangent cones. Hence the first statement follows the above
property of closed convex polyhedral sets C, by taking C to be any branch
PI with I ∈ I(z). Likewise, the second statement follows by taking C =
T (z | PI) for any I ∈ I(z) such that d ∈ T (z | PI).

Definition 3.2 Let zk ∈ P and d be a solution of (8). If there is a face K
of T (zk | P) such that d solves

min 1
2
‖d‖2

subject to [M N ]d = −L(zk)
d ∈ K

(9)

then we say zk is a face-stable solution of (8), with respect to K, or simply
face-stable.

There is no restriction placed on a direction d ∈ T (zk | P) by requiring it to
lie in a face T (zk | P). However for d to be face-stable it must be the shortest
solution of (8) associated with some face of T (zk | P). In fact (9) is a strongly
convex quadratic program because we are using the 2-norm. The existence
of a unique solution (depending on K) therefore follows if the problem is
feasible, as it is assumed to be the above definition.

Example 3.3 Returning to Example 1.1, recall the 2×1 matrices M = [ε 1],
N = −M , where ε is small and positive, and let q = 0 ∈ IR. We have already
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seen that this HLCP is globally metrically regular with γ = 1/
√

1 + ε2. Let
zk = (xk, yk), with xk = (1, 0), yk = (0, 0), which has a residual of L(zk) =
Mxk + Nyk + q = ε.

There are three faces of P containing zk: F1, given by x1, x2 ≥ 0 = y1 =
y2; F2, given by x1, y2 ≥ 0 = x2 = y1; and F3, given by x1 ≥ 0 = x2 = y1 = y2.
F1 and F2 are two-dimensional faces that share F3 as a common facet, where
F3 contains z0 in its relative interior. The faces of the tangent cone T (zk | P)
are tangent cones of these faces at zk:

K1 = {(u, v) ∈ IR2×2 : u2 ≥ 0, v = 0}
K2 = {(u, v) ∈ IR2×2 : v2 ≥ 0, u2 = v1 = 0}
K3 = {(u, v) ∈ IR2×2 : u2 = v1 = v2 = 0}.

We list the face-stable solutions of the system (8), i.e. minimizers d = di of
the quadratic program (9) with K = Ki. This QP is infeasible for K1 and
yields solutions d2 = ((−ε2, 0), (0, ε))/(1+ε2) for K2 and d3 = ((−1, 0), (0, 0))
for K3. The solution d2 has length εγ, whereas the solution d3 is less stable,
having length 1.

The following statement is an immediate consequence of Lemma 3.1.

Corollary 3.4 Let d ∈ T (zk|P) and K̂ be the face of T (zk|P) containing d
in its relative interior. Then d is a face-stable solution of (9) if and only if
it is face-stable with respect to K̂.

Another corollary is that if the constraints (8) are feasible then any global
minimizer of 1

2
‖d‖2 subject to these constraints is face-stable, because it must

be face-stable with respect to any face that contains it. This idea will be
further developed in the next section.

The main result of this section is that if the homotopy method uses face-
stable directions at each iteration then it finds a solution of the HLCP after
finitely many iterations. The proof shows that certain kinds of cycles are
impossible, namely that the “worst” face containing a direction dk in its
relative interior — where worst means dk has the largest norm relative to the
right-hand-side −L(zk) (corresponding to the maximum value of γk in the
notation of the proof) — contains no other direction in its relative interior.
For subsequent iterations, the same argument shows that the relative interior
of the second-worst face can only visited once etc.
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Theorem 3.5 Let z0 ∈ P. Suppose, for each iteration k, that there exists
a face-stable solution dk of (8). Then the Homotopy Method is well defined
and it terminates after finitely many iterations with a solution of (1).

Proof. The only claim that has not been verified in previous discussion is
finite termination of the method (note finite termination implies that the last
iterate calculated solves the HLCP).

Suppose the method generates the sequence {(zk, tk)}kmax

k=0 where kmax is
either the iteration number at termination, or ∞ if the sequence does not
terminate. For each k, let Fk be the face of P with zk ∈ rintFk and Kk be
the face of T (zk|P) with dk ∈ rintKk. From above, {tk} is strictly increasing.
For each k < kmax, define

γk =
‖zk+1 − zk‖

(tk+1 − tk)‖p0‖
=

‖dk‖
(1− tk)‖p0‖

. (10)

Now dk̂ = (zk+1 − zk)/sk is face-stable which means, by Corollary 3.4, that
it is the shortest vector in Kk to satisfy [M N ]dk = −L(zk) = −(1 − tk)p

0.
It follows by a scaling argument that γk = γj if Kk = Kj, and therefore that
γk takes on only finitely many values even if kmax = ∞.

Suppose the maximum value of γk occurs in iteration k̂ (and possibly in

other iterations), and let F̂ = F k̂, K̂ = Kk̂ and Ĝ = F k̂+1. We will show that
no subsequent iteration zk can have (Fk,Kk,Fk+1) = (F̂ , K̂, Ĝ). The same
argument can be applied recursively by considering the subsequent iterates
{zk}k≥k̂ in order to eliminate another triple (F ,K,G) from appearing more
than once, and so on. Polyhedrality of P implies that there are only finitely
many distinct triples (F ,K,G) where F and G are faces of P and K is the
face of the tangent cone to P at some point. Hence the recursive argument
implies that the algorithm must terminate after a finite number of iterations.

Assume, to get a contradiction, that at some iteration K ∈ (k̂, kmax)

we have (FK ,KK ,FK+1) = (F̂ , K̂, Ĝ). Since K̂ is a face F̂ of T (zk̂|P) then

(zk̂ +K̂)∩P is a face of P , denoted F∗. This face contains zk̂+1 since dk̂ ∈ K̂.

Also zk̂+1 is a relative interior point of the face Ĝ; thus F∗ ⊃ Ĝ. As a result,
our assumption FK+1 = Ĝ yields that zK+1 ∈ zk̂ + K̂.

Next, the triangle inequality gives

‖zK+1 − zk̂‖ ≤
K∑

k=k̂

‖zk+1 − zk‖.
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By squaring both sides and applying Cauchy-Schwartz, we observe that the
above inequality is satisfied as an equality only if the directions dk/‖dk‖ are
identical for k = k̂, . . . , K; in fact for some positive scalars τk̂+1, . . . , τK we
have dk = τkdk̂. Recalling that zk+1 = zk + skd

k for each k, this leads to

zK+1 = zk̂ +
K∑
k̂

skdk = zk̂ +

sk̂ +
K∑

k̂+1

skτk

 dk̂

which is not possible since, from Step 2 of the Homotopy Method, if s > sk̂

then zk̂ + sdk̂ 6≥ 0 hence zk̂ + sdk̂ 6∈ P . We conclude that strict inequality
holds, namely

‖zK+1 − zk̂‖ <
K∑

k=k̂

‖zk+1 − zk‖

=
K∑

k=k̂

γk(tk+1 − tk)‖p0‖

≤ γk̂(tK+1 − tk̂)‖p
0‖. (11)

Now
[M N ](zK+1 − zk̂) = L(zK+1)− L(zk̂) = (tk̂ − tK+1)p

0.

Thus for

d̃ =
1− tk̂

tK+1 − tk̂
(zK+1 − zk̂)

we have
[M N ]d̃ = −(1− tk̂)p

0 = −L(zk̂),

i.e. d̃ solves (8). We also have zK+1 − zk̂ ∈ K̂ from above, hence d̃ ∈ K̂.
Finally, using (11) and then (10) gives

‖d̃‖ < (1− tk̂)‖p
0‖ = ‖dk̂‖.

The desired contradiction arises because dk̂ is face-stable which means, by
Corollary 3.4, that it must be the shortest vector in K̂ satisfying (8).

The usual convergence technique [1, 8] for homotopy methods applied to
square systems is quite different to the above proof, since the former relies on
the path being locally uniquely defined at least generically (for infinitesimal
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perturbations of the right-hand-side vector −L(z0)). This means that that
there is no need to require global metric regularity, which has the advantage
that the method may be well defined even if regularity fails — the t-parameter
may stay at a fixed value or even decrease (the path may double back on
itself) along a continuous piece of the path without jeopardising existence of
the path.

We mention further that homotopy approaches to square piecewise affine
systems, explored extensively in [8], and used for solving one-parameter LCPs
in Lemke’s method [3, 4], have the nice property in the (generic) nondegen-
erate case, that at each iteration there is a unique pivot that determines the
next line segment on the path. Looking ahead to the next section, we see for
homotopy methods applied to general HLCP, that there are possibly many
pivot choices, some of which are more stable than others.

4 Finding stable directions

By a γ-stable solution of (8) we mean a vector d that satisfies both this
system and the bound ‖d‖ ≤ γ‖L(zk)‖. Here γ is the the modulus of global
metric regularity of the HLCP (1). In Example 3.3 there are two face-stable
directions d2 and d3 identified at the point zk, of which only d2 is γ-stable.

If there exists a γ-stable solution then, obviously, any global minimizer
of the following problem must also be γ-stable:

min 1
2
‖d‖2

subject to [M N ]d = −L(zk)
d ∈ T (zk | P).

(12)

This is the direction-finding subproblem, which can be written as a QPCC by
formulating the constraints as in (13) below.

§4.1 contains the main result of the section, Proposition 4.3, which says
that each local minimizer d of the direction-finding subproblem is both γ-
stable and face-stable. This yields a considerable reduction of computational
effort compared to global optimization with regard to γ-stability. Neverthe-
less, even verifying stationarity of a feasible point may require examination
of an exponential number of branches (of the tangent cone), another combi-
natorial optimization problem.

To make the local minimization idea more concrete, in §4.2 we apply
an active set method, that can be derived from [30], to (12). (We could
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have instead applied the piecewise sequential quadratic programming, PSQP,
method of [19], see also [24], as described for the case of QPCC in the Remark
following Proposition 2 of [16].) Then we discuss a regularity condition,
called the MPCC-LICQ, which is sufficient for the Active Set Method to
find a local minimizer of (12). Initialisation of the Active Set Method is the
subject of §4.3.

Looking ahead to §5, we see that the MPCC-LICQ almost always holds
as needed, hence the Active Set Method produces directions that are both
face-stable and γ-stable, which in turn is enough for the Homotopy Method
to generate a stable path that reaches the HLCP solution set after finitely
many iterations. Note that we are not limited to the Active Set Method, since
there are many other methods that also produce local minimizers under the
MPCC-LICQ, and perhaps other assumptions, at limit points of the iteration
sequence, see [10, 11, 12, 14, 15, 20, 29, 31].

4.1 Local minima of the direction-finding subproblem

Recall our assumption, throughout, that the HLCP (1) is globally metrically
regular of modulus γ. We will show stability of local solutions of (12) using
two minor results. The first, Lemma 4.1, says that localised systems like (8)
are at least as stable as the whole system (1). This is to be expected since the
global modulus of regularity is necessarily more conservative than the local
modulus. The second, Lemma 4.2, is a general result about projections.

Lemma 4.1 Write A = [M N ]. For any z ∈ P, d̂ ∈ IR2n and q̂ ∈ IRm,

dist
(
d̂
∣∣∣ A−1(q̂) ∩ T (z|P)

)
≤ γ‖Ad̂− q̂‖.

Proof. Write p = L(z) and observe for any d ∈ IR2n and nonzero scalar t
that

Ad = q̂ ⇔ L(z + td)− L(z) = tq̂

⇔ L(z + td) = p + tq̂.

Also, d ∈ T (z|P) if and only if z + td ∈ P for all small enough t > 0. These
observations imply that there exists a scalar t > 0 for which

d ∈ A−1(q̂) ∩ T (z|P) ⇔ z + td ∈ L−1(p + tq̂) ∩ P = F(p + tq̂).
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Thus

t dist
(
d̂
∣∣∣ A−1(q̂) ∩ T (z|P)

)
= dist(z + td̂ | F(p + tq̂))

≤ γ‖L(z + td̂)− p− tq̂‖
= γ‖L(z + td̂)− L(z)− tq̂‖
= tγ‖Ad̂− q̂‖

and we are done.

Next, we have a general fact about“local projections”.

Lemma 4.2 Let x̂ be a local solution of the problem minx∈S ‖x‖, where S is
a subset of a normed space. Then for some t ∈ [0, 1), x̂ is a global solution
of minx∈S ‖x− tx̂‖.

Proof. For any t ∈ [0, 1], the triangle inequality yields

IB(tx̂, (1− t)‖x̂‖) ⊂ IB(0, ‖x̂‖),

where IB(x, r) is the closed ball of centre x and radius r ≥ 0. By hypothesis
there is a neighbourhood U of x̂ such that ‖x‖ ≥ ‖x̂‖ for x ∈ U ∩ S. Choose
t ∈ [0, 1) large enough such that IB(tx̂, (1− t)‖x̂‖) is contained in U . On one
hand, if x ∈ U ∩ S then

‖x− tx̂‖ ≥ ‖x‖ − t‖x̂‖ ≥ (1− t)‖x̂‖.

On the other hand, if x ∈ S \U then x 6∈ IB(tx̂, (1− t)‖x̂‖), hence ‖x− tx̂‖ ≥
(1 − t)‖x̂‖. Finally, x̂ lies in S ∩ IB(tx̂, (1 − t)‖x̂‖), so it must be a global
solution of minx∈S ‖x− tx̂‖.

We present the main result of this section. A consequence is that if
Step 1 of the Homotopy Method is defined by taking d as a local minimizer
of (12), then the Homotopy Method is well defined, terminates finitely by
Theorem 3.5, and the iterates (zk, tk) satisfy the desired properties (5)–(7).

Proposition 4.3 The direction-finding subproblem (12) is feasible and bounded
below, such that every local minimizer is a γ-stable and face-stable solution
of (8).
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Proof. Feasibility of (12) is implicit in the statement and proof of Lemma 4.1,
and of course the objective function is bounded below by zero.

Let d̂ be a local minimizer of (12). The face-stable property is straight-
forward. For suppose K is a face of T (zk | P) containing d̂, hence d̂ is a local
minimizer of the convex QP (9). Then d̂ is also a global minimizer of the
same QP, and by definition is face-stable.

To show γ-stability requires more effort. Write A = [M N ] and pk =
−L(zk). From Lemma 4.2, there exists t̂ ∈ [0, 1) such that d̂ is a global
solution of the problem

min 1
2
‖d− t̂d̂‖2

subject to Ad = pk

d ∈ T (zk | P).

Thus

(1− t̂)‖d̂‖ = dist
(
t̂d̂ | A−1(pk) ∩ T (zk|P)

)
≤ γ‖L(t̂d̂)− pk‖ by Lemma 4.1

= γ(1− t̂)‖pk‖ = γ(1− t̂)‖L(zk)‖.

Since t̂ < 1, ‖d̂‖ ≤ γ‖L(zk)‖ as claimed.

4.2 An active set method

We leave it to the reader to check, by examining the tangent cone T (zk | P),
that the feasible set of (12) can be written with d = (u, v) ∈ IRn × IRn as

[M N ] d = −L(zk)
ui = 0 for i ∈ I+(yk)

0 ≤ ui ⊥ vi ≥ 0 for i ∈ B0(z
k)

vj = 0 for j ∈ I+(xk)

(13)

where for x, y ∈ IRn,

I+(x) = {i : xi > 0}
I0(x) = {i : xi = 0}

B0(x, y) = I0(x) ∩ I0(y).

The letter B in B0(x, y) refers to the description of “bi-active” indices that
form this set. If orthogonality was omitted from these constraints, we could
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apply a standard active set method [9] to solve the resulting strictly con-
vex QP. It will be a simple matter to adapt the standard approach to (12)
by adding conditions (on the “entering candidates” in Step 5 below) that
preserve complementarity of iterates. The resulting Active Set Method will
retain the advantage of relatively cheap iterates, by rank-1 updates of matrix
factorizations, and the possible disadvantages of cycling and of the number
of iterations being exponential in the problem dimension.

The following algorithm is actually a specialisation of the active set
method for quadratic programs with complementarity constraints given by
[30].

Each iteration of the method requires a feasible point d̂ = (û, v̂) and a
corresponding pair I, J of index sets such that

I ∪ J ⊂ {1, . . . , n}, I ∩ J = ∅,
I ⊃ I+(xk) ∪ I+(û), J ⊃ I+(yk) ∪ I+(v̂),

A = [MI NJ ] has full rank m,

(14)

where MI and NJ are the respective submatrices of M and N corresponding
to columns indexed by i ∈ I and j ∈ J . (The condition I ∩ J = ∅ is required
for complementarity.) By a slight abuse of terminology from complementary
pivoting methods for linear complementarity problems, e.g. [3], we refer to
the triple d, I, J as a complementary basis, though the matrix A is not
necessarily square, and d̂ itself as a complementary basic feasible solution of
(13).

The iteration requires the solution of a strictly convex QP,

min 1
2
‖w‖2 subject to Aw = −L(zk)

by solving the linear Lagrangean system[
Id AT

A 0

](
w
µ

)
=

(
0

−L(zk)

)
(15)

where Id is the n × n identity matrix and µ ∈ IRm is a standard Lagrange
multiplier.

Active Set Method

0. Initial conditions. We are given a complementary basic feasible
point d of (13) and associated index sets I, J such that (14) holds.
Our initial iterate d̂ = (û, v̂) is d.
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1. Solve Lagrangean system. Let (w, µ) solve (15).

2. Stepsize. Let ŵ = (ûI , v̂J) and K be set of indices of w such that
wK does not correspond to any ui, i ∈ I+(xk), or vj, j ∈ I+(yk).
Let s = max{s ∈ [0, 1] : (1− s)ŵK + swK ≥ 0}.

3. Update iterate. Let (ûI , v̂J) = (1− s)ŵ + sw and d̂ = (û, v̂).

4. Leaving index. If s < 1 choose a leaving variable, either ui for
some i ∈ I \ I+(xk) such that ûi = 0, or vj for some j ∈ J \ I+(yk)
with v̂j = 0.

Update basis: If ui (or vj) is leaving, let I = I \ i (or J = J \ j,
respectively) and delete the corresponding column from A.

Go to Step 1.

5. Entering candidate list. Let the list of entering candidates be ui

for i ∈ Ic ∩B0(z
k) ∩B0(d̂) and vj for j ∈ J c ∩B0(z

k) ∩B0(d̂).
Let E be the corresponding submatrix of columns of [M N ].

6. Stopping test. If the list of entering candidates is empty, or µT E ≥
0 then STOP and return d̂ = (û, v̂).

7. Entering index. Let c be a column of E with µT c < 0, and the
corresponding entering candidate be ui or vj.

Update basis: If ui (or vj) is entering let I = I ∪ i, J = J \ i (or
J = J ∪ j, I = I \ j, resp.) and insert the column c into the basis
matrix A.

Go to Step 1.

The list of entering candidates in Step 5 has to allow for any variable ui

that is not already basic, and whose complement vi neither has a positive
current value v̂i nor is associated with the free index set I+(yk). Entering
candidates vj satisfy similar conditions.

By a basic linear algebraic argument that is familiar in standard active
set methods, a column can only be deleted (Step 4) from the basis matrix A if
the new basis matrix still has full rank. Of course, adding a column (Step 7)
to the basis matrix cannot affect the rank since the rank of A is already
at its maximum value m. Therefore, like convergence proofs of active set
methods for QPs, an inductive argument using the representation (13) easily
establishes that the vector d̂ = (û, v̂) and the index sets I, J satisfy (14) at
every iteration. This means that Step 1, and hence the entire method, is well
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defined and moreover that each iterate (û, v̂) is a feasible point of (8). We
have just sketched a proof of the next result:

Proposition 4.4 The Active Set Method is well defined and generates a
sequence of feasible points (û, v̂) of (8).

Having a well defined method, however, does not preclude the possibility
of cycling, i.e. taking a sequence of steps in which (û, v̂) remains constant
and in which some complementary basis is eventually repeated. Cycling may
only occur if there is more than one candidate for the leaving index at some
iteration, as can be shown easily by induction. These comments apply equally
to active set methods applied to QPs.

The meaning of the stopping condition is not clear at first glance, given
the definition of the entering candidate list. We next look at a linear inde-
pendence (full rank) condition that provides some justification for the active
set approach.

We have already identified the direction-finding subproblem (12) as a
QPCC. We say the MPCC linear independence constraint qualification, MPCC-
LICQ, holds at a feasible point d of this problem if the active constraint
gradients of the formulation (13), ignoring the orthogonality conditions, are
linearly independent. See [19, 20, 28] for details and more general discussion.
To be explicit, let (u, v) = d be a feasible point of (13), I = I+(xk) ∪ I+(u),
and J = I+(yk)∪I+(v). Then the MPCC-LICQ at d is equivalent to requiring
full rank of [MI NJ ]. Comparing this with the definition of a complementary
basis (14), we see that the MPCC-LICQ requires that the first two lines of
(14) imply the third line.

The beauty of the MPCC-LICQ is that it relieves the combinatorial diffi-
culty of checking stationarity of a feasible point, see [20, 28]. The next result
is more or less well known in the study of MPCC; it is a corollary of the
results of [20, 28] and is used in the general active set approach of [30]. A
proof will not be given for this reason.

Proposition 4.5 Let d̂ = (û, v̂) be one of the iterates generated by the Active
Set method. Suppose the MPCC-LICQ holds for (13) at d̂. Then either d̂
is a local minimizer of (12) and the algorithm stops (in Step 6), or d̂ is not
a local minimizer of (12) and the algorithm takes a nonzero step (to strictly
decrease the value of ‖d̂‖) in the next iteration.

An implication of this result is that cycling cannot occur at an iterate
satisfying the MPCC-LICQ; the analogous result is well known in standard
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active set methods for QP. If, by luck, every iterate (û, v̂) generated by the
Active Set Method satisfies the MPCC-LICQ, then the method is bound to
stop, after a finite number of iterations, at a local minimizer of (12). Actually,
it has been shown [31] that the MPCC-LICQ is a generic property of MPCCs,
a result that we will be able to use in §5 to show that the MPCC-LICQ holds
at all feasible points of (12) for almost all z0.

4.3 Initialising the Active Set Method under another
linear independence condition

Consider the homotopy path described by (3) which we restate here for con-
venience:

L(z) = (1− t)L(z0)
0 ≤ x ⊥ y ≥ 0.

As previously, let (zk, tk) be a point on the path with zk = (xk, yk). We
now show how to find a starting complementary basic feasible solution of the
feasible set (13), which is required in Step 0 of the Active Set Method.

We’ll see shortly in Proposition 5.1, for almost all z0, that the MPCC-
LICQ holds at all feasible points (z, t) of the path system (3) where t is
considered to be a variable, i.e. [MI NJ L(z0)] has full rank for I = I+(xk)
and J = I+(yk). For now, we take this MPCC-LICQ condition at (zk, tk) for
granted.

The easy case for defining an initial complementary basic feasible solu-
tion of (13) is when [MI NJ ] has full rank, in which case we determine a
vector d = (u, v) with [MI NJ ](uI , vJ) = −L(zk) and uIc = 0, vJc = 0.
The hard case is when [MI NJ ] is rank deficient, in which case full rank of
[MI NJ L(z0)] implies rank [MI NJ ] = m − 1. The latter case can still be
dealt with efficiently as we next show.

Lemma 4.6 Let (zk, tk) be a point on the homotopy path (3) at which MPCC-
LICQ holds, zk = (xk, yk) and I = I+(xk), J = I+(yk). Either [MI NJ ] has
full rank, or there exists a variable, one of ui or vi for some i ∈ B0(z

k), and a
corresponding column c, equal to Mi or Nj respectively, such that [MI NJ c]
has full rank and for some (uI , vJ) ≥ 0 and scalar δ ≥ 0,

MIuI + NJvJ + δc = −L(zk). (16)

Proof. The result derives from the investigation [25]. We sketch the proof.

22



We may assume without loss of generality that rank [MI NJ ] = m − 1.
Let A = [MI NJ ] and B represent the family of matrices B = [A c] for which
c is either Mi or Ni for some i ∈ B0(z

k). Assume, to contradict global metric
regularity of (1), that none of the matrices B ∈ B has the required property.
Consider the halfspace H of vectors (uI , vI , δ) where uI and vJ are arbitrary,
while δ ≥ 0. Observe that each B ∈ B maps H either to a half space or a
hyperplane ((m− 1)-dimensional subspace) in IRm. If B(H) is a hyperplane
then c is necessarily in the range space (i.e. column space) of A, denoted G′,
hence B(H) = G′. If B maps H to a halfspace then the latter is defined by

H ′ = G′ + {δL(zk) : δ ≥ 0},

where nonnegativity of δ reflects the assumption that −L(zk) 6∈ B(H).
A separate argument shows that [M N ](T (zk|P)) is the convex hull of

the sets B(H), for B ∈ B. It follows that [M N ](T (zk|P)) is contained in
H ′, i.e. [M N ](T (zk|P)) is not equal to IRm. The equivalent systems (8) and
(13) are therefore not metrically regular, contradicting Lemma 4.1.

Clearly any solution uI , vJ , δ described above corresponds to a com-
plementary basic feasible solution of (13). Such a solution can be found by
checking (16) for each of the columns c equal to Mi or Ni for i ∈ B0(z

k) in the
following straightforward way. Given c, factorize [M N c] (or its transpose,
e.g. using the QR factorization [13]) in order to determine first a solution of
(ûI , v̂J , δ̂) of (16), and second a basis for the nullspace or kernel of [M N c]. If
δ̂ < 0 then existence of a solution of (16) with δ ≥ 0 is equivalent to the basis
having at least one column whose last component is nonzero. If a particular
column c does not provide satisfaction then rank-1 updates can be used to
replace c by another valid column. The rank-1 updating procedure will also
detect any column c for which [M N c] has rank m− 1; these columns are to
be discarded. The first factorization could be carried out on [M N L(zk)],
which has full rank because L(zk) is a nonzero multiple of L(z0) = p0, after
which the rank-1 updating occurs as described.

5 Stability of the Homotopy-Active-Set

Method for almost all starting points

The aim of this section is to complete the task of showing that the Homo-
topy Method is practical. We already know, by using a local minimizer
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of the direction-finding subproblem (12) at each iteration, that the Ho-
motopy Method will terminate after finitely many steps at a stable solu-
tion of the HLCP. We know further that finding a local solution of (12) is
practical, by applying a method designed for QPCCs or possibly MPCCs
[10, 11, 12, 14, 15, 20, 29, 30, 31], provided a suitable MPCC-LICQ holds at
the iterates encountered by the method. It is left to §5.1 to prove, using [31],
that the MPCC-LICQ holds as required throughout the Homotopy Method,
for almost all initial points z0 = (x0, y0) of the method. §5.2 summarises the
convergence properties of the hybrid method which combines the Homotopy
and Active Set methods, and also briefly considers the degenerate case in
which some of the iterates (zk, tk) do not yield the required MPCC-LICQ
properties.

5.1 MPCC-regular systems of complementarity con-
straints

Given z = (x, y) ∈ P and p ∈ IRm, we have seen (c.f. (13)) that the conditions
d = (u, v) ∈ T (z | P) and [M N ]d = p are characterised by the constraints

[M N ] d = p
ui = 0 for i ∈ I+(y)

0 ≤ ui ⊥ vi ≥ 0 for i ∈ B0(z)
vj = 0 for j ∈ I+(x).

(17)

We say that this system is MPCC-regular if the MPCC-LICQ holds at every
feasible point of (17). (The term “regular” was used in [31] but we prefer
MPCC-regular to help distinguish it from the term metric regularity.)

By almost all or a.a. we mean all points but for those in a set of Lebesgue
measure zero. By a.a. z ∈ P we mean all points of P except for those in a set
whose intersection with each of the n-dimensional branches PI has Lebesgue
measure zero with respect to the affine hull (i.e. subspace PI − PI) of that
branch. (An alternative definition could use the fact that P is homeomorphic
to IRn [26], and define a.a. z ∈ P via zero measure sets in IRn.)

Proposition 5.1

1. For a.a. p ∈ IRm, and each z ∈ P, the system (17) is MPCC-regular.

2. For a.a. z0 ∈ P, the following statements both hold:
(a) The homotopy path system (3) is MPCC-regular.
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(b) For every (z, t) with t < 1 on the path (3), the local system (17)
with p = −(1− t)L(z0) is MPCC-regular.

Proof. 1. It is easy to show for fixed z = (x, y) (i.e. fixed index sets I+(x),
I+(y), B0(z)) and a.a. p, that the solutions of (17) satisfy the MPCC-LICQ.
The short proof of [31, Corollary 2], using Sard’s theorem, can be immediately
adapted for this purpose.

Part 1 of the result now follows because there are only finitely many
distinct triples (I+(y), B0(z), I+(x)) for all possible z.

2(a). Similar to the first paragraph of the proof, it is an easy corollary
of Sard’s theorem that the system in (z, t) given by L(z) = (1 − t)p, 0 ≤ x
⊥ y ≥ 0 is MPCC-regular for a.a. p ∈ IRm.

For 2(b), the fact that L maps neighborhoods in P to neighborhoods in
IRm, which is a corollary of Lemma 4.1, yields MPCC-regularity of (17) with
p = −L(z0) for a.a. z0 and every z, by Part 1. Let z0 be a point such that
(17) is MPCC-regular for p = −L(z0) and every z. Consider the scaling
p = −sL(z0) for any s > 0, and, given z, denote the corresponding feasible
set (17) by G(z, z0, s). Obviously G(z, z0, s) = sG(z, z0, 1), hence MPCC-
regularity of G(z, z0, 1) implies MPCC-regularity of G(z, z0, s). This holds
for any s > 0 and z, and we are done.

Metric regularity is not required for Part 1 of the Proposition (or for
Sard’s theorem). It is used in Part 2 because the statement involves the
domain space P rather than the range space IRm.

5.2 A summary of the Homotopy-Active-Set Method

As in §4, consider the Homotopy Method in which the direction-finding
subproblem is solved by the Active Set Method. We call this hybrid the
Homotopy-Active-Set or HAS Method.

Under the standing assumption that the HLCP (1) is globally metrically
regular of modulus γ, the following statements are valid for a.a. z0 ∈ IRm:

1. At iteration k of the HAS method, where tk < 1:

(a) the MPCC-LICQ holds for the homotopy path (3) at the point
(zk, tk), hence the Active Set Method for the direction-finding sub-
problem (12) can be initialised as described in §4.3.

[Proposition 5.1, Part 2(a); Lemma 4.6]
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(b) the feasible set (13) of (12) is MPCC-regular;
[Proposition 5.1, Part 2(b)]

(c) The Active Set Method terminates after finitely many iterations at
a local minimum of (12), hence a solution of (8) that is both γ-stable
and face-stable. [Proposition 4.5, Proposition 4.3]

2. (a) The HAS Method is well defined and terminates after finitely many
iterations, in iteration K, with a solution z = zK of the HLCP (1).

[Theorem 3.5]

(b) The iteration sequence {(zk, tk)}K
1 satisfies the stable path prop-

erty (6), in particular ‖zK − z0‖ ≤ γ‖L(z0)‖. In addition {tk}K
1 is

strictly increasing. [§3.1]

(c) The piecewise affine path defined on [0, 1] by

z(t) =
tk+1 − t

tk+1 − tk
zk +

t− tk
tk+1 − tk

zk+1

for t ∈ [tk, tk+1] and k = 0, . . . , K − 1, satisfies z(t) ∈ P, L(z(t)) =
(1− t)L(z0) and the continuous path stability property (4). [§3.1]

At this point it would be useful to mention that there is potential for an
anti-cycling strategy that would allow any starting point z0 ∈ P .

Consider an iterate zk such that the feasible set (13) is not MPCC-regular.
We know that arbitrarily small perturbations of z0 will mend this situation.
Therefore we can in principle refine the Active Set Method to use infinitesimal
perturbations so that it will not cycle, but will terminate in finitely many
iterations. The terminal iterate d̂ will not necessarily be a local minimizer
of (12), unless the MPCC-LICQ holds at d̂, but nevertheless it will still be
a point satisfying (13) that is both γ-stable and face-stable, by continuity
arguments. A similar infinitesimal anti-cycling strategy would be needed to
initialise the Active Set Method.

Lexicographic ordering is a well known anti-cycling procedure for pivotal
algorithms. For homotopy methods applied to square piecewise affine ho-
motopy systems, lexicographic ordering is used [8] to solve degenerate cases.
The paper [8] presents the lexicographic ordering precisely in terms of in-
finitesimal perturbations, where the perturbations restore regularity similar
to the above description.
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For HLCP and every starting point z0 ∈ P , such anti-pivoting strategies
would yield the same convergence results listed above, apart from 1(a) and
1(b), i.e. omitting statements involving MPCC-LICQ or MPCC-regularity.
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