The HiFST System for the EuroParl Spanish-to-English Task

Gonzalo Iglesias1 Adrià de Gispert2
Eduardo R. Banga1 William Byrne2

1Department of Signal Processing and Communications
University of Vigo, Spain

2Department of Engineering.
University of Cambridge, U.K.

SEPLN 2009, Donostia
Outline

Hierarchical Translation with WFSTs
 Introducing HiFST
 Example
 Delayed Translation
 Pruning
 Null Words

Translation Experiments
 Experimental Setup
 Full versus Shallow
 Filtering by Number of Translations
 Contrastive Experiments with Patterns
 Rescoring
Outline

Hierarchical Translation with WFSTs
 Introducing HiFST
 Example
 Delayed Translation
 Pruning
 Null Words

Translation Experiments
 Experimental Setup
 Full versus Shallow
 Filtering by Number of Translations
 Contrastive Experiments with Patterns
 Rescoring
Introducing HiFST I

- HiFST: New hierarchical decoder that uses lattices (WFSTs) rather than k-best lists
- Why use Lattices instead of k-best lists?
 - Compactness and Efficiency
 - Semiring Operations
 - $rmepsilon$, determinize, minimize, compose, prune shortestpath, ...
- WFSTs: OpenFST, available at openfst.org (Allauzen et al. 2007)
Introducing HiFST II

- variant of CYK algorithm on SCFG: source side, hypotheses recombination, no pruning
 - Given a sentence $s_1 \ldots s_J$, find out every derivation starting at cell $(S, 1, J)$
- Lattices $\mathcal{L}(N, x, y)$ are built for each cell following back-pointers of the grid
 - Objective is lattice $\mathcal{L}(S, 1, J)$, at the top of the grid
Outline

Hierarchical Translation with WFSTs
 Introducing HiFST
 Example
 Delayed Translation
 Pruning
 Null Words

Translation Experiments
 Experimental Setup
 Full versus Shallow
 Filtering by Number of Translations
 Contrastive Experiments with Patterns
 Rescoring

Iglesias, de Gispert, R. Banga, Byrne
The HiFST System for the EuroParl Spanish-to-English Task
Example 1

- Consider sentence $s_1 s_2 s_3$
- We are looking for $\mathcal{L}(S, 1, 3)$
 - Represents all the translations generated by derivations covering span $s_1 s_2 s_3$
- Toy grammar:

\[
\begin{align*}
R^1: & \quad X \to \langle s_1 s_2 s_3, t_1 t_2 \rangle \\
R^2: & \quad X \to \langle s_1 s_2, t_7 t_8 \rangle \\
R^3: & \quad X \to \langle s_3, t_9 \rangle \\
R^4: & \quad S \to \langle X, X \rangle \\
R^5: & \quad S \to \langle S X, S X \rangle \\
R^6: & \quad X \to \langle s_1, t_{20} \rangle \\
R^7: & \quad X \to \langle X_1 s_2 X_2, X_1 t_{10} X_2 \rangle \\
R^8: & \quad X \to \langle X_1 s_2 X_2, X_2 t_{10} X_1 \rangle
\end{align*}
\]
Example II
Phrase-based Scenario

\[R^1: X \rightarrow \langle s_1 s_2 s_3, t_1 t_2 \rangle \]
\[R^2: X \rightarrow \langle s_1 s_2, t_7 t_8 \rangle \]
\[R^3: X \rightarrow \langle s_3, t_9 \rangle \]
\[R^4: S \rightarrow \langle X, X \rangle \]
\[R^5: S \rightarrow \langle S X, S X \rangle \]
Example III
Hierarchical Scenario

\[R^3: \, X \rightarrow \langle s_3, t_9 \rangle \]
\[R^4: \, S \rightarrow \langle X, X \rangle \]
\[R^6: \, X \rightarrow \langle s_1, t_{20} \rangle \]
\[R^7: \, X \rightarrow \langle X_1, s_2, X_2, t_{10}, X_2 \rangle \]
\[R^8: \, X \rightarrow \langle X_1, s_2, X_2, t_{10}, X_1 \rangle \]
Example IV

Cell Lattice

Rule lattices are merged (i.e. with union) into one single (top) cell lattice
Outline

Hierarchical Translation with WFSTs
 Introducing HiFST
 Example
 Delayed Translation
 Pruning
 Null Words

Translation Experiments
 Experimental Setup
 Full versus Shallow
 Filtering by Number of Translations
 Contrastive Experiments with Patterns
 Rescoring

Iglesias, de Gispert, R. Banga, Byrne
The HiFST System for the EuroParl Spanish-to-English Task
Delayed Translation I

- As the algorithm goes up the grid, lattices grow in complexity
 - Severe memory and speed problems
- Solution: Delay translation using unique pointers to sublattices → skeleton lattices
- Once the building procedure has finished, i.e. \(\mathcal{L}(S, 1, J) \) has been built, just expand it...
 - Substituting recursively each special unique pointer by appropriate sublattice
Delayed Translation II

- Lattices with translated text and pointers to lower lattices produced by hierarchical rules.
- Pointers to lattices at lower cells.
- Lattices with translated text.

CYK grid
Delayed Translation III

- Usual operations (rmepsilon, determinize, minimize, etc) still work!
- Reduction of lattice size
Outline

Hierarchical Translation with WFSTs
- Introducing HiFST
- Example
- Delayed Translation
- Pruning
- Null Words

Translation Experiments
- Experimental Setup
- Full versus Shallow
- Filtering by Number of Translations
- Contrastive Experiments with Patterns
- Rescoring
Pruning

- Final translation lattice $L(S, 1, J)$ typically requires pruning
 - Compose with Language Model of target words
 - Perform likelihood-based pruning (Allauzen et al 2007)
- Pruning in Search:
 - If number of states, non-terminal category and source span meet certain conditions, then:
 - Expand Pointers in translation Lattice and Compose with Language Model
 - Perform likelihood-based pruning of the lattice
 - Remove Language Model
Outline

Hierarchical Translation with WFSTs
- Introducing HiFST
- Example
- Delayed Translation
- Pruning
- Null Words

Translation Experiments
- Experimental Setup
- Full versus Shallow
- Filtering by Number of Translations
- Contrastive Experiments with Patterns
- Rescoring
Null Words

- SMT systems tend to benefit from allowing small number of deletions
- One deletion rule for each source-language word
- Huge increase in the search-space
- Limited by composition with following FST:

![Diagram of consecutive null filtering]

Figure: Consecutive Null filtering.
Outline

Hierarchical Translation with WFSTs
 Introducing HiFST
 Example
 Delayed Translation
 Pruning
 Null Words

Translation Experiments
 Experimental Setup
 Full versus Shallow
 Filtering by Number of Translations
 Contrastive Experiments with Patterns
 Rescoring
Experimental Setup I

- Spanish-to-English translation shared task of the ACL 2008 Workshop on Statistical Machine Translation, WMT
- MET optimization done in the usual way with n-best lists.
- Features:
 - target language model
 - translation models, lexical models
 - word and rule penalties, glue rule
 - three rule count features (Bender et al. 2007)
- English LM: 4-gram over 965 million word subset English Gigaword Third Edition
Experimental Setup II

<table>
<thead>
<tr>
<th>Excluded Rules</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle X_1w,X_1w \rangle, \langle wX_1,wX_1 \rangle)</td>
<td>1530797</td>
</tr>
<tr>
<td>(\langle X_1wX_2,\ast \rangle)</td>
<td>737024</td>
</tr>
<tr>
<td>(\langle X_1wX_2w,X_1wX_2w \rangle, \langle wX_1wX_2,wX_1wX_2 \rangle)</td>
<td>41600246</td>
</tr>
<tr>
<td>(\langle wX_1wX_2w,\ast \rangle)</td>
<td>45162093</td>
</tr>
<tr>
<td>(N_{nt}.N_e= 1.3 \text{ mincount}=5)</td>
<td>39013887</td>
</tr>
<tr>
<td>(N_{nt}.N_e= 2.4 \text{ mincount}=10)</td>
<td>6836855</td>
</tr>
</tbody>
</table>

Table: Rules excluded from initial grammar extraction.

- Rule pattern: replacing every sequence of terminals by ‘w’
- Patterns classified by number of non-terminals \(N_{nt}\) and elements \(N_e\) (non-terminals and substrings of terminals). 5 classes: \(N_{nt}.N_e= 1.2, 1.3, 2.3, 2.4, 2.5\).
Outline

Hierarchical Translation with WFSTs
 Introducing HiFST
 Example
 Delayed Translation
 Pruning
 Null Words

Translation Experiments
 Experimental Setup
 Full versus Shallow
 Filtering by Number of Translations
 Contrastive Experiments with Patterns
 Rescoring
Full versus Shallow

- Full grammar: $X \rightarrow \langle \gamma, \alpha \rangle$, $\gamma, \alpha \in (\{X\} \cup T)^+$
- Shallow grammar: $X \rightarrow \langle \gamma_s, \alpha_s \rangle$, $X \rightarrow \langle V, V \rangle$, $V \rightarrow \langle s, t \rangle$

<table>
<thead>
<tr>
<th>Hiero Model</th>
<th>dev2006</th>
<th>test2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow</td>
<td>33.65/7.852</td>
<td>33.65/7.877</td>
</tr>
<tr>
<td>Full</td>
<td>33.63/7.849</td>
<td>33.66/7.880</td>
</tr>
</tbody>
</table>

Table: Performance of Hiero Full versus Hiero Shallow Grammars.

- Shallow: more constrained search-space, but exact – much faster decoding times
Outline

Hierarchical Translation with WFSTs
 Introducing HiFST
 Example
 Delayed Translation
 Pruning
 Null Words

Translation Experiments
 Experimental Setup
 Full versus Shallow
 Filtering by Number of Translations
 Contrastive Experiments with Patterns
 Rescoring

Iglesias, de Gispert, R. Banga, Byrne
The HiFST System for the EuroParl Spanish-to-English Task
Filtering by Number of Translations

<table>
<thead>
<tr>
<th>NT</th>
<th>dev2006</th>
<th>test2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>33.65/7.852</td>
<td>33.65/7.877</td>
</tr>
<tr>
<td>30</td>
<td>33.61/7.849</td>
<td>33.75/7.896</td>
</tr>
<tr>
<td>40</td>
<td>33.63/7.853</td>
<td>33.73/7.883</td>
</tr>
</tbody>
</table>

Table: Performance of baseline grammar when varying the filter by number of translations per source-side.

Iglesias, de Gispert, R. Banga, Byrne

The HiFST System for the EuroParl Spanish-to-English Task
Outline

Hierarchical Translation with WFSTs
 Introducing HiFST
 Example
 Delayed Translation
 Pruning
 Null Words

Translation Experiments
 Experimental Setup
 Full versus Shallow
 Filtering by Number of Translations
 Contrastive Experiments with Patterns
 Rescoring

Iglesias, de Gispert, R. Banga, Byrne

The HiFST System for the EuroParl Spanish-to-English Task
Contrastive Experiments with Patterns

- **G1**: shallow grammar with $NT = 20$ (baseline).
- **G2**: (subset) mincount=5 for $N_{nt}N_e=2.3$ and $N_{nt}N_e=2.5$
- **G3**: (superset) add $\langle X_1w, X_1w \rangle$

<table>
<thead>
<tr>
<th></th>
<th>dev2006</th>
<th>test2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>33.65/7.852</td>
<td>33.65/7.877</td>
</tr>
<tr>
<td>G2</td>
<td>33.47/7.838</td>
<td>33.65/7.877</td>
</tr>
<tr>
<td>G3</td>
<td>33.09/7.787</td>
<td>33.14/7.808</td>
</tr>
</tbody>
</table>

Table: Contrastive performance with G1, G2, G3.
Outline

Hierarchical Translation with WFSTs
 Introducing HiFST
 Example
 Delayed Translation
 Pruning
 Null Words

Translation Experiments
 Experimental Setup
 Full versus Shallow
 Filtering by Number of Translations
 Contrastive Experiments with Patterns
 Rescoring
Rescoring I

- Shallow grammar with $NT = 30$
- *Large-LM rescoring* of 10000-best list with 5-gram zero cut-off stupid back-off language models (T. Brants et al. 2007)
 - \sim4.7B words of English nw, vocabulary used based on the phrases covered by the parallel text
 - Implemented with WFSTs (failure transitions)
- *Minimum Bayes Risk (MBR).* Rescore 1000-best hyps
Rescoring II

<table>
<thead>
<tr>
<th></th>
<th>dev2006</th>
<th>test2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>HiFST</td>
<td>33.61/7.849</td>
<td>33.75/7.896</td>
</tr>
<tr>
<td>+5gram</td>
<td>33.66/7.902</td>
<td>33.90/7.954</td>
</tr>
<tr>
<td>+MBR</td>
<td>33.87/7.901</td>
<td>34.24/7.962</td>
</tr>
</tbody>
</table>

Table: EuroParl Spanish-to-English translation results (lower-cased IBM BLEU / NIST) after MET and subsequent rescoring steps
Summary

- HiFST is a new hierarchical decoder based on WFSTs with state-of-the-art performance
 - Easy to implement, as complexity is hidden by OpenFST library
- Delayed translation effectively reduces complexity during lattice construction
- Pruning in search is completely avoided for $SP \rightarrow EN$, yielding a very fast translation
- HiFST will be available to download soon
Thank you!

Questions?