Publications

Papers on Google Scholar can be found here. Preprints of recent papers are available on arxiv.org.

Preprints

  1. Rhebergen, S. and Wells G. N. A hybridizable discontinuous Galerkin method for the Navier–Stokes equations with pointwise divergence-free velocity field. [arXiv:1704.07569] [BibTeX]

Journal papers

  1. Hale J. S., Li, L., Richardson, C. N. and Wells G. N. (2017). Containers for portable, productive and performant scientific computing. Computing in Science and Engineering. To appear. [doi:10.1109/MCSE.2017.2421459] [arXiv:1608.07573] [BibTeX]
  2. Rhebergen, S. and Wells G. N. (2017). Analysis of a hybridized/interface stabilized finite element method for the Stokes equations. SIAM Journal on Numerical Analysis. 55(4):1982-2003. [doi:10.1137/16M1083839] [arXiv:1607.02118] [BibTeX]
  3. Alisic, L., Rhebergen, S., Rudge, J. F., Katz, R. F. and Wells, G. N. (2016). Torsion of a cylinder of partially molten rock with a spherical inclusion: theory and simulation, Geochemistry, Geophysics, Geosystems 17(1):1525–2027. [doi:10.1002/2015GC006061] [arXiv:1508.03137] [BibTeX]
  4. Unwin, H. J. T., Wells, G. N. and Woods, A. W. (2016). CO2 dissolution in a background hydrological flow, Journal of Fluid Mechanics 789:768-784. [doi:10.1017/jfm.2015.752] [arXiv:1506.04433] [BibTeX]
  5. Gramacy, R. B., Gray, G. A., Le Digabel, S., Lee, H. K. H., Ranjan, P., Wells, G. N. and Wild, S. M. (2016). Discussion rejoinder: Modeling an augmented Lagrangian for improved blackbox constrained optimization, Technometrics 58(1):26–29. [doi:10.1080/00401706.2015.1106979] [BibTeX]
  6. Gramacy, R. B., Gray, G. A., Le Digabel, S., Lee, H. K. H., Ranjan, P., Wells, G. N. and Wild, S. M. (2016). Modeling an augmented Lagrangian for improved blackbox constrained optimization, Technometrics 58(1):1–11 (with discussion). [doi:10.1080/00401706.2015.1014065] [arXiv:1403.4890] [BibTeX]
  7. Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet B., Logg, A., Richardson C., Ring, J., Rognes, M. E. and Wells, G. N. (2015). The FEniCS Project Version 1.5, Archive of Numerical Software 3(100):9–23. [doi:10.11588/ans.2015.100.20553] [BibTeX]
  8. Rhebergen, S., Wells, G. N., Wathen, A. J. and Katz, R. F. (2015) Three-field block-preconditioners for models of coupled magma/mantle dynamics. SIAM Journal on Scientific Computing 37(5):A2270–A2294. [doi:10.1137/14099718X] [arXiv:1411.5235] [BibTeX]
  9. Rhebergen, S., Wells, G. N., Katz, R. F. and Wathen, A. J. (2014). Analysis of block preconditioners for models of coupled magma/mantle dynamics. SIAM Journal on Scientific Computing 36(4):A1960–1977. [doi:10.1137/130946678] [arXiv:1311.6372] [BibTeX]
  10. Alisic, L., Rudge, J. F., Katz, R. F., Wells, G. N. and Rhebergen, S. (2014). Compaction around a rigid, circular inclusion in partially molten rock. Journal of Geophysical Research: Solid Earth 119(7):5903–5920. [doi:10.1002/2013JB010906] [http://www.repository.cam.ac.uk/handle/1810/245083] [BibTeX]
  11. Alnæs, M. S., Logg A., Ølgaard, K. B., Rognes, M. E. and Wells, G. N. (2014). Unified Form Language: A domain-specific language for weak formulations of partial differential equations. ACM Transactions on Mathematical Software 40(2), Article 9, 37 pages. [doi:10.1145/2566630] [arXiv:1211.4047] [BibTeX]
  12. Labeur, R. J. and Wells, G. N. (2012). Energy stable and momentum conserving hybrid finite element method for the incompressible Navier–Stokes equations. SIAM Journal on Scientific Computing 34(2):A889–A913. [doi:10.1137/100818583] [arXiv:1012.3722] [BibTeX]
  13. Rosseel, E. and Wells, G. N. (2012). Optimal control with stochastic PDE constraints and uncertain controls. Computer Methods in Applied Mechanics and Engineering 213–216:152–167. [doi:10.1016/j.cma.2011.11.026] [arXiv:1107.3944] [BibTeX]
  14. Mortensen. M., Langtangen, H. P. and Wells, G. N. (2011). A FEniCS-based programming framework for modeling turbulent flow by the Reynolds-averaged Navier–Stokes equations, Advances in Water Resources 34(9):1082–1101. [doi:10.1016/j.advwatres.2011.02.013] [arXiv:1102.2933] [BibTeX]
  15. Maraldi, M., Wells, G. N. and Molari, L. (2011). Phase field model for coupled displacive and diffusive microstructural processes under thermal loading, Journal of the Mechanics and Physics of Solids 59(8):1596–1612. [doi:10.1016/j.jmps.2011.04.017] [arXiv:1010.1871] [BibTeX]
  16. Wells, G. N. (2011). Analysis of an interface stabilised finite element method: The advection-diffusion-reaction equation, SIAM Journal on Numerical Analysis 49(1):87–109. [doi:10.1137/090775464] [arXiv:1010.1873] [BibTeX]
  17. Logg, A. and Wells, G. N. (2010). DOLFIN: Automated finite element computing, ACM Transactions on Mathematical Software 37(2), Article 20, 28 pages. [doi:10.1145/1731022.1731030] [arXiv:1103.6248] [BibTeX]
  18. Ølgaard, K. B. and Wells, G. N. (2010). Optimisations for quadrature representations of finite element tensors through automated code generation, ACM Transactions on Mathematical Software 37(1), Article 8, 23 pages. [doi:10.1145/1644001.1644009] [arXiv:1104.0199] [BibTeX]
  19. Nikbakht, M. and Wells, G. N. (2009). Automated modelling of evolving discontinuities, Algorithms 2(3):1008-1030. [doi:10.3390/a2031008] [BibTeX]
  20. Labeur, R. J. and Wells, G. N. (2009). Interface stabilised finite element method for moving domains and free surface flows, Computer Methods in Applied Mechanics and Engineering 198(5-8):615-630. [doi:10.1016/j.cma.2008.09.014] [BibTeX]
  21. Wells, G. N., Hooijkaas, T. and Shan, X. (2008). Modelling temperature effects on multiphase flow through porous media, Philosophical Magazine 88(28-29):3265-3279. [doi:10.1080/14786430802566364] [BibTeX]
  22. Ølgaard, K. B., Logg, A., and Wells, G. N. (2008). Automated code generation for discontinuous Galerkin methods, SIAM Journal on Scientific Computing 31(2):849-864. [doi:10.1137/070710032] [arXiv:1104.0628] [BibTeX]
  23. Dung, N. T. and Wells, G. N. (2008). Geometrically nonlinear formulation for thin shells without rotation degrees-of-freedom, Computer Methods in Applied Mechanics and Engineering 197(33-40):2778-2788. [doi:10.1016/j.cma.2008.01.001] [BibTeX]
  24. Labeur, R. J. and Wells, G. N. (2007). A Galerkin interface stabilisation method for the advection-diffusion and incompressible Navier–Stokes equations, Computer Methods in Applied Mechanics and Engineering 196(49-52):4985-5000. [doi:10.1016/j.cma.2007.06.025] [BibTeX]
  25. Wells, G. N. and Dung, N. T. (2007), A \(C^{0}\) discontinuous Galerkin formulation for Kirchhoff plates, Computer Methods in Applied Mechanics and Engineering 196(35-36):3370-3380. [doi:10.1016/j.cma.2007.03.008] [BibTeX]
  26. Wells, G. N., Kuhl, E. and Garikipati, K. (2006). A discontinuous Galerkin formulation for the Cahn-Hilliard equation, Journal of Computational Physics 218(2):860-877. [doi:10.1016/j.jcp.2006.03.010] [BibTeX]
  27. Molari, L., Wells, G. N., Garikipati, K. and Ubertini, F. (2006). A discontinuous Galerkin method for strain gradient-dependent damage: Study of interpolations and convergence, Computer Methods in Applied Mechanics and Engineering 195(13-16):1480-1498. [doi:10.1016/j.cma.2005.05.026] [BibTeX]
  28. Hughes, T. J. R. and Wells, G. N. (2005). Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier–Stokes equations, Computer Methods in Applied Mechanics and Engineering 194(9-11):1141-1159. [doi:10.1016/j.cma.2004.06.034] [BibTeX]
  29. Wells, G. N., Garikipati, K. and Molari, L. (2004). A discontinuous Galerkin formulation for a strain gradient-dependent damage model, Computer Methods in Applied Mechanics and Engineering 193(33-35):3633-3645. [doi:10.1016/j.cma.2004.01.020] [BibTeX]
  30. De Borst, R., Gutiérrez, M. A., Wells, G. N., Remmers, J. J. C. and Askes, H. (2004). Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis, International Journal for Numerical Methods in Engineering 60(1):289-315. [doi:10.1002/nme.963]
  31. Hughes, T. J. R., Wells, G. N., and Wray, A. A. (2004). Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations, Physics of Fluids 16(11):4044-4052. [doi:10.1063/1.1789157]
  32. Holmen, J., Hughes, T. J. R., Oberai, A. A. and Wells, G. N. (2004). Sensitivity of the scale partition for variational multiscale LES of channel flow, Physics of Fluids 16(3):824-827. [doi:10.1063/1.1644573] [BibTeX]
  33. De Proft, K. Wells, G. N., Sluys, L. J. and De Wilde, W. P. (2004). An experimental-computational investigation of fracture in brittle materials, Computers and Concrete 1(3):227-248.
  34. Remmers, J. J. C., Wells, G. N. and De Borst, R. (2003). A solid-like shell element allowing for arbitrary delaminations, International Journal for Numerical Methods in Engineering 58(13):2013-2040. [doi:10.1002/nme.907]
  35. Simone, A., Wells, G. N. and Sluys, L. J. (2003). From continuous to discontinuous failure in a gradient-enhanced continuum model, Computer Methods in Applied Mechanics and Engineering 192(41-42):4581-4607. [doi:10.1016/S0045-7825(03)00428-6]
  36. Wells, G. N., De Borst, R. and Sluys, L. J. (2002). A consistent geometrically non-linear approach for delamination, International Journal for Numerical Methods in Engineering 54(9):1333-1355. [doi:10.1002/nme.462]
  37. Wells, G. N., Sluys, L. J. and De Borst, R. (2002). A p-adaptive scheme for overcoming volumetric locking during plastic flow, Computer Methods in Applied Mechanics and Engineering 191(29-30):3153-3164. [doi:10.1016/S0045-7825(02)00252-9]
  38. Wells, G. N., Sluys, L. J. and De Borst, R. (2002). Simulating the propagation of displacement discontinuities in a regularised strain-softening medium, International Journal for Numerical Methods in Engineering 53(5):1235-1256. [doi:10.1002/nme.375]
  39. Alfaiate, J. and Wells, G. N. and Sluys, L. J. (2002). On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture, Engineering Fracture Mechanics 69(6):661-686. [doi:10.1016/S0013-7944(01)00108-4]
  40. De Proft, K., Wells, G. N., Sluys, L. J. and De Wilde, W. P. (2002). Combined experimental-computational study to discrete fracture of brittle materials. Heron 47(4):223–241. [http://heron.tudelft.nl/]
  41. Wells, G. N. and Sluys, L. J. (2001). Discontinuous analysis of softening solids under impact loading, International Journal for Numerical and Analytical Methods in Geomechanics 25(7):691-709. [doi:10.1002/nag.148]
  42. Wells, G. N. and Sluys, L. J. (2001). A new method for modelling cohesive cracks using finite elements, International Journal for Numerical Methods in Engineering 50(12):2667-2682. [doi:10.1002/nme.143]
  43. Wells, G. N. and Sluys, L. J. (2001). Analysis of slip planes in three-dimensional solids, Computer Methods in Applied Mechanics and Engineering 190(28):3591–3606. [doi:10.1016/S0045-7825(00)00288-7]
  44. Wells, G. N. and Sluys, L. J. (2001). Three-dimensional embedded discontinuity model for brittle fracture, International Journal of Solids and Structures 38(5):897–913. [doi:10.1016/S0020-7683(00)00029-9]
  45. Wells, G. N. and Sluys, L. J. (2001). On the conceptual equivalence of embedded strong discontinuity and smeared crack formulations, Heron 46(3):181–189. [http://heron.tudelft.nl/]
  46. De Borst, R., Wells, G. N. and Sluys, L. J. (2001). Some observations on embedded discontinuity models, Engineering Computations 18(1–2):241–254, [doi:10.1108/02644400110365897]
  47. Wells, G. N. and Sluys, L. J. (2000). Embedded discontinuities for 3D mode-I and mode-II failure modelling, Computer Assisted Mechanics and Engineering Sciences 7:767–780. [http://cames.ippt.gov.pl/]
  48. Wells, G. N. and Sluys, L. J. (2000). Application of embedded discontinuities for softening solids, Engineering Fracture Mechanics 65(2–3):263–281. [doi:10.1016/S0013-7944(99)00120-4]

Books and book chapters

  1. Logg, A., Mardal, K.-A. and Wells, G. N. (eds). (2012) Automated Solution of Differential Equations by the Finite Element Method, volume 84 of Lecture Notes in Computational Science and Engineering, Springer. [doi:10.1007/978-3-642-23099-8] [BibTeX]
  2. Logg, A., Mardal, K.-A. and Wells, G. N. (2012) Finite element assembly. In Logg, A., Mardal, K.-A. and Wells, G. N. (eds), Automated Solution of Differential Equations by the Finite Element Method, volume 84 of Lecture Notes in Computational Science and Engineering, Chapter 6, pages 141–146, Springer. [doi:10.1007/978-3-642-23099-8_6] [BibTeX]
  3. Ølgaard, K. B. and Wells, G. N. (2012) Quadrature representation of finite element variational forms. In Logg, A., Mardal, K.-A. and Wells, G. N. (eds), Automated Solution of Differential Equations by the Finite Element Method, volume 84 of Lecture Notes in Computational Science and Engineering, Chapter 7, pages 147–158, Springer. [doi:10.1007/978-3-642-23099-8_7] [BibTeX]
  4. Logg, A., Wells, G. N. and Hake, J. (2012) DOLFIN: a C++/Python finite element library. In Logg, A., Mardal, K.-A. and Wells, G. N. (eds), Automated Solution of Differential Equations by the Finite Element Method, volume 84 of Lecture Notes in Computational Science and Engineering, Chapter 10, pages 173–225, Springer. [doi:10.1007/978-3-642-23099-8_10] [BibTeX]
  5. Logg, A., Ølgaard, K. B., Rognes, M. E. and Wells, G. N. (2012) FFC: The FEniCS form compiler. In Logg, A., Mardal, K.-A. and Wells, G. N. (eds), Automated Solution of Differential Equations by the Finite Element Method, volume 84 of Lecture Notes in Computational Science and Engineering, Chapter 11, pages 227–238, Springer. [doi:10.1007/978-3-642-23099-8_11] [BibTeX]
  6. Terrel A. R., Scott, L. R., Knepley, M.G., Kirby, R. C. and Wells, G. N. (2012) Finite elements for incompressible fluids. In Logg, A., Mardal, K.-A. and Wells, G. N. (eds), Automated Solution of Differential Equations by the Finite Element Method, volume 84 of Lecture Notes in Computational Science and Engineering, Chapter 20, pages 385–397, Springer. [doi:10.1007/978-3-642-23099-8_20] [BibTeX]
  7. Ølgaard, K. B. and Wells, G. N. (2012) Applications in solid mechanics. In Logg, A., Mardal, K.-A. and Wells, G. N. (eds), Automated Solution of Differential Equations by the Finite Element Method, volume 84 of Lecture Notes in Computational Science and Engineering, Chapter 26, pages 505–524, Springer. [doi:10.1007/978-3-642-23099-8_26] [BibTeX]
  8. Nikbakht, M. and Wells, G. N. (2012) Modeling evolving discontinuities. In Logg, A., Mardal, K.-A. and Wells, G. N. (eds), Automated Solution of Differential Equations by the Finite Element Method, volume 84 of Lecture Notes in Computational Science and Engineering, Chapter 30, pages 571–583, Springer. [doi:10.1007/978-3-642-23099-8_30] [BibTeX]
  9. Wells, G. N. (2010). Extended finite element methods. In Blockley, R. and Shyy, W., editors, Encyclopedia of Aerospace Engineering, volume 3, chapter 143, John Wiley & Sons, Ltd. [doi:10.1002/9780470686652.eae163]
  10. Ølgaard, K. B., Wells, G. N. and Logg, A. (2008). Automated computational modelling for solid mechanics. In Reddy, B. D., editor, IUTAM Symposium on Theoretical, Modelling and Computational Aspects of Inelastic Media. volume 11 of IUTAM Bookseries, pages 192-204, Springer. [doi:10.1007/978-1-4020-9090-5_18]
  11. Wells, G. N. and Garikipati, K. (2007). Analysis of a finite element formulation for modelling phase separation. In Combescure, A., De Borst, R., and Belytschko, T., editors, IUTAM Symposium on Discretization Methods for Evolving Discontinuities, volume 5 of IUTAM Bookseries, pages 89–102, Springer. [doi:10.1007/978-1-4020-6530-9_5] [http://www.dspace.cam.ac.uk/handle/1810/221727]
  12. Askes, H., Wells, G. N., and De Borst, R. (2003). Novel discretization concepts. In Comprehensive Structural Integrity Volume 3: Numerical and Computational Methods, chapter 7, pages 377–425. Elsevier Science Ltd, Oxford. [doi:10.1016/B0-08-043749-4/03008-1]
  13. Wells, G. N., Remmers, J. J. C., De Borst, R. and Sluys, L. J. (2003). A large strain discontinuous finite element approach to laminated composites. In Miehe, C., editor, IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, pages 355–364, Dordrecht. Kluwer Academic Publishers.

Conference proceedings

  1. Logg, A. and Wells, G. N. (2010). Symposium: Automated computing. AIP Conference Proceedings, 1281(1): 769-769. [doi:10.1063/1.3498596]
  2. Logg, A. and Wells, G. N. (2010). Building flexible user interfaces for solving PDEs. In T. E. Simos, G. Psihoyios, and Ch. Tsitouras, editors, AIP Conference Proceedings, volume 1281, pages 1643-1646. AIP. [doi:10.1063/1.3498146]
  3. Maraldi, M., Wells, G. N., Molari, L. and Molari, P. G. (2010). A model for diffusive and displacive phase transitions: thermo-chemo-mechanical coupling effects. In Y. M. Haddad, editor, AES-ATEMA 2010 Fifth International Conference on Advances and Trends in Engineering Materials and their Applications, Quebec, Canada.
  4. Dung, N. T. and Wells, G. N. (2007). A \(C^{0}\) discontinuous Galerkin formulation for thin shells. In International Conference on Computational Methods (ICCM 2007), Hiroshima, Japan. [http://www.dspace.cam.ac.uk/handle/1810/236569]
  5. Molari, L. and Wells, G. N. (2006). Automated modelling of viscoelastic flow using FEniCS. In Ubertini, F., Viola, E., de Miranda, S., and Castellazzi, G., editors, XVI Convegno Italiano di Meccanica Computazionale, Bologna, Italy. [http://www.dspace.cam.ac.uk/handle/1810/236591]
  6. Dung, N. T. and Wells, G. N. (2006). A study of discontinuous Galerkin methods for thin bending problems. In Soares, C. A. M., Martins, J. A. C., Rodrigues, H. C., Ambrosio, J. A. C. and Pina, C. A. B., editors, III European Conference on Computational Mechanics, Lisbon, Portugal. [http://www.dspace.cam.ac.uk/handle/1810/236592]
  7. Molari, L., Garikipati, K., and Wells, G. N. (2005). Formulation of continuous/discontinuous Galerkin methods for strain gradient-dependent damage. In 11th International Conference on Fracture, Turin, Italy. [http://www.dspace.cam.ac.uk/handle/1810/236593]
  8. Wells, G. N., Garikipati, K., and Molari, L. (2004). A continuous/discontinuous Galerkin formulation for a strain gradient-dependent damage model: 2D results. In Yao, Z. H., Yuan, M. W., and Zhong, W. X., editors, Computational Mechanics, Proceedings CDROM of the Sixth World Congress on Computational Mechanics in conjunction with the Second Asian-Pacific Congress on Computational Mechanics, Beijing, China. Tsinghua University Press & Springer-Verlag. [http://www.dspace.cam.ac.uk/handle/1810/236594]
  9. Wells, G. N., Garikipati, K., and Molari, L. (2004). A continuous/discontinuous Galerkin formulation for a strain gradient-dependent damage model. In Neittaanmäki, P., Rossi, T., Korotov, S., Oñate, E., Périaux, J., and Knörzer, D., editors, European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), Jyväskylä, Finland. [http://www.dspace.cam.ac.uk/handle/1810/236595]
  10. De Proft, K., De Wilde, W. P., Wells, G. N., and Sluys, L. J. (2003). Discontinuous models for modelling fracture of quasi-brittle materials. In Topping, B. H. V., editor, Ninth International Conference on Civil and Structural Engineering Computing, Egmond-aan-Zee. Civil-Comp Press. Paper 64 (CDROM).
  11. De Proft, K., Wells, G. N., Sluys, L. J., and De Wilde, W. P. (2003). Combined damage-plasticity models for discontinuous fracture. In Bicanic, N., De Borst, R., Mang, H., and Meschke, G., editors, Computational Modelling of Concrete Structures (EURO-C 2003), pages 127–132, Lisse. Swets & Zeitlinger.
  12. De Proft, K., Wells, G. N., Sluys, L. J., and De Wilde, W. P. (2003). A combined experimental-numerical study to cyclic behaviour of limestone. In Oñate, E. and Owen, D. R. J., editors, VII International Conference on Computational Plasticity (COMPLAS 2003), Barcelona, Spain. [http://www.dspace.cam.ac.uk/handle/1810/236801]
  13. De Proft, K., Wells, G. N., Sluys, L. J., and De Wilde, W. P. (2003). A combined experimental-numerical study to tensile behaviour of limestone. In van Hemelrijck, D., Anastasopoulos, A., and Melanitis, N. E., editors, Emerging Technologies in NDT, Thessaloniki, Greece. Balkema.
  14. Simone, A., Wells, G. N., and Sluys, L. J. (2003). Discontinuities in regularised media. In Oñate, E. and Owen, D. R. J., editors, VII International Conference on Computational Plasticity (COMPLAS 2003), Barcelona, Spain. [http://www.dspace.cam.ac.uk/handle/1810/236802]
  15. Wells, G. N., De Borst, R., and Sluys, L. J. (2002). Analysis of cohesive cracks under quasi-static and dynamic loading. In Karihaloo, B.L., editor, Analytical and Computational Fracture Mechanics of Non-Homogeneous Materials, pages 293–302, Dordrecht. Kluwer Academic Publishers.
  16. De Borst, R., Askes, H., Gutiérrez, M. A., and Wells, G. N. (2002). A unified numerical approach to plastic e strain localization and discrete failure. In Khan, A. S. and Lopez-Pamies, O., editors, Ninth International Symposium on Plasticity and its Current Applications, pages 561–563, Fulton. Neat Press.
  17. De Borst, R., Askes, H., Gutiérrez, M. A., Remmers, J. C. C., and Wells, G. N. (2002). A précis of some some recent developments in computational failure mechanics. In Mang, H.A., Rammerstorfer, F.G., and Eberhardsteiner, J., editors, Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), Austria. Vienna University of Technology. [http://www.dspace.cam.ac.uk/handle/1810/236804]
  18. Remmers, J. J. C., De Borst, R., and Wells, G. N. (2002). Analysis of delamination growth with discontinuous solid-like shell elements. In Mang, H. A., Rammerstorfer, F. G., and Eberhardsteiner, J., editors, Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), Austria. Vienna University of Technology. [http://www.dspace.cam.ac.uk/handle/1810/236805]
  19. Simone, A., Wells, G. N., and Sluys, L. J. (2002). Discontinuous modelling of crack propagation in a gradient-enhanced continuum. In Mang, H. A., Rammerstorfer, F. G., and Eberhardsteiner, J., editors, Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), Austria. Vienna University of Technology. [http://www.dspace.cam.ac.uk/handle/1810/236806]
  20. Simone, A., Wells, G. N., and Sluys, L. J. (2002). Simulating discontinuities in a gradient-enhanced continuum. In Dyskin, A. V., Hu, X., and Sahouryeh, E., editors, Proceeding of the International Conference on Structural Integrity and Fracture, pages 115–118, Swets & Zeitlinger. [http://www.dspace.cam.ac.uk/handle/1810/236807]
  21. Wells, G. N. and Sluys, L. J. (2001). Partition-of-unity for fracture in brittle materials. In Mülhaus, H.-B., Dyskin, A. V., and Pasternak, A., editors, Bifurcation and Localisation Theory in Geomechanics, pages 169–175, Swets and Zeitlinger.
  22. Wells, G. N., Sluys, L. J., and De Borst, R. (2001). Computational modelling of cracks in viscoplastic media. In Ravi-Chandar, K., Karihaloo, B. L., Kishi, T., Ritchie, R. O., Yokobori, Jr, A. T., and Yokobori, T., editors, Advances in Fracture Research - Proceedings of ICF10 (CDROM), Honolulu, Hawaii. Pergamon. [http://www.dspace.cam.ac.uk/handle/1810/236904]
  23. Wells, G. N. and Sluys, L. J. (2001). A p-adaptive scheme for overcoming volumetric locking during isochoric plastic deformation. In 2nd European Conference on Computational Mechanics (CDROM), Cracow, Poland. [http://www.dspace.cam.ac.uk/handle/1810/236905]
  24. Wells, G. N., De Borst, R., and Sluys, L. J. (2001). A new method for simulating discontinuities using finite elements. In Bicanic, N., editor, Fourth International Conference on Analysis of Discontinuous Deformation, pages 451–460, Glasgow, Scotland. University of Glasgow.
  25. Wells, G. N. and Sluys, L. J. (2001). A new methodology for the discrete analysis of concrete fracture under impact loading. In De Borst, R., Mazars, J., Pijaudier-Cabot, G., and van Mier, J. G. M., editors, Fourth International Conference on Fracture Mechanics of Concrete and Concrete Structures, pages 847–853, Rotterdam. Balkema.
  26. Alfaiate, J., Wells, G. N., and Sluys, L. J. (2001). Strong embedded discontinuities for simulating fracture in quasi-brittle materials. In De Borst, R., Mazars, J., Pijaudier-Cabot, G., and van Mier, J. G. M., editors, Fourth International Conference on Fracture Mechanics of Concrete and Concrete Structures, pages 749-756, Rotterdam. Balkema. [http://www.dspace.cam.ac.uk/handle/1810/236906]
  27. Wells, G. N., De Borst, R., and Sluys, L. J. (2001). An enhanced finite element method for analysing failure in elasto-plastic solids. In Wall, W. A., Bletzinger, K. U., and Schweizerhof, K., editors, Trends in Computational Structural Mechanics (CDROM), pages 397–406, Barcelona, Spain. CIMNE.
  28. De Borst, R., Askes, H., Gutiérrez, M. A., and Wells, G. N. (2001). Computational aspects of material e instabilities. In Aifantis, E. C. and Kounadis, A. N., editors, 6th Greek National Congress on Mechanics, pages 1–8, Thessaloniki. Aristotle University of Thessaloniki.
  29. Remmers, J. J. C., Wells, G. N., and De Borst, R. (2001). Analysis of delamination growth with discontinuous finite elements. In 2nd European Conference on Computational Mechanics (CDROM), Cracow, Poland. [http://www.dspace.cam.ac.uk/handle/1810/236907]
  30. Simone, A., Wells, G. N., and Sluys, L. J. (2001). A novel technique for modelling interfaces in reinforced brittle materials. In De Borst, R., Mazars, J., Pijaudier-Cabot, G., and van Mier, J. G. M., editors, Fourth International Conference on Fracture Mechanics of Concrete and Concrete Structures, pages 841–846, Rotterdam. Balkema. [http://www.dspace.cam.ac.uk/handle/1810/236908]
  31. Sluys, L. J., Estrin, Y., and Wells, G. N. (2001). Multi-level analysis of localisation problems. In 2nd European Conference on Computational Mechanics (CDROM), Cracow, Poland. [http://www.dspace.cam.ac.uk/handle/1810/236909]
  32. Van Zijl, G. P. A. and Wells, G. N. (2001). Time scale in concrete fracture: A model based in partitions of unity. In De Borst, R., Mazars, J., Pijaudier-Cabot, G., and van Mier, J. G. M., editors, Fourth International Conference on Fracture Mechanics of Concrete and Concrete Structures, pages 301–306, Rotterdam. Balkema. [http://www.dspace.cam.ac.uk/handle/1810/236910]
  33. Van Zijl, G. P. A. and Wells, G. N. (2001). A rate dependent model for analysing the interaction between creep and fracture. In Ulm, F.-J., Bažant, Z. P., and Wittmann, F. H., editors, 6th International Conference on Creep, Shrinkage and Durability Mechanics of Concrete and Other Quasi-brittle Materials, pages 229–237, Cambridge, Massachusetts. Elsevier Science Ltd.
  34. Wells, G. N. and Sluys, L. J. (2000). Discrete analysis of localisation in three-dimensional solids. In Oñate, E., Bugeda, G., and Suárez, B., editors, European Congress on Computational Methods in Applied Sciences and Engineering (CDROM), Barcelona, Spain. [http://www.dspace.cam.ac.uk/handle/1810/236911]
  35. Wells, G. N. and Sluys, L. J. (1999). Embedded discontinuities for softening solids. In Wang, C. M., Lee, K. H., and Ang, K. K., editors, Computational Mechanics for the Next Millennium, pages 393–398, Singapore. Elsevier Science Ltd. [http://www.dspace.cam.ac.uk/handle/1810/236912]
  36. Wells, G. N. and Sluys, L. J. (1999). Application of continuum laws in discontinuity analysis based on a regularised displacement jump. In Wunderlich, W., editor, Proceedings of the European Conference on Computational Mechanics (CDROM), Munich. [http://www.dspace.cam.ac.uk/handle/1810/236913]

Technical reports

  1. Vandekerckhove, S., Wells G. N., De Gersem, H. and Van Den Abeele, K. Automatic calibration of damping layers in finite element time domain simulations. [arXiv:1601.07941] [BibTeX]
  2. Richardson, C. N. and Wells, G. N. (2016). High performance multi-physics simulations with FEniCS/DOLFIN, Embedded Computational Science and Engineering (eCSE) Project Report. [https://dx.doi.org/10.6084/m9.figshare.3406582]
  3. Richardson, C. N. and Wells, G. N. (2013). Expressive and scalable finite element simulation beyond 1000 cores, Distributed Computational Science and Engineering (dCSE) Project Report. [https://www.repository.cam.ac.uk/handle/1810/245070] [http://www.hector.ac.uk/cse/distributedcse/reports/UniDOLFIN]
  4. Wells, G. N., Hughes, T. J. R., Calo, V. M., Scovazzi, G., and Bazilevs, Y. (2002). Multiscale large eddy simulation of bypass transition. Technical Report NASA Grant CC 2-5457, Stanford University.
  5. Simone, A., Remmers, J. C. C., and Wells, G. N. (2001). An interface element based on the partition of unity. TU Delft Report CM2001.007, Delft University of Technology. [http://www.dspace.cam.ac.uk/handle/1810/236314/]

Thesis

  1. Wells, G. N. (2001). Discontinuous modelling of strain localisation and failure, PhD Thesis, Delft University of Technology. [http://repository.tudelft.nl/view/ir/uuid:42df5286-9ac1-4bef-8a38-63c25ae89710/] [http://www.dspace.cam.ac.uk/handle/1810/236597]

Posters

  1. Alnæs, M, S., Blechta, J., Logg, A., Hale, J. S., Richardson, C., Ring, J., Rognes, M. E., Wells, G. N. (2017). FEniCS: Sustainable Software Development Practices. SIAM Conference of Computational Science and Engineering, Atlanta. [doi:10.6084/m9.figshare.4696318]
  2. Richardson, C., Hale, J. S., Wells, G. N. (2017). Containers for Scientific Computing: From Laptop to HPC. SIAM Conference of Computational Science and Engineering, Atlanta. [doi:10.6084/m9.figshare.4719016]
  3. Hale, J. S., Li, Lizao (Larry), Wells, G. N. (2015). FEniCS in Linux Containers. FEniCS ‘15 Workshop, London. [doi:10.6084/m9.figshare.1472955]
  4. Alnæs, M, S. et al. (2015). FEniCS Project. SIAM Conference of Computational Science and Engineering, Salt Lake City. [doi:10.6084/m9.figshare.4742869]

Open scientific software

  1. Logg, A., Wells, G. N., et al. DOLFIN: A general-purpose finite element library. Released under the GNU Lesser General Public License 3. [http://www.fenicsproject.org/]
  2. Logg, A., Ølgaard, K. B., Rognes, M. E., Wells, G. N., et al. FFC: FEniCS Form Compiler. Released under the GNU General Public License 3. [http://www.fenicsproject.org/]