
Acceleration of a 2D Euler Solver
using graphics hardware

T. Brandvik1, G. Pullan2

CUED/A-TURBO/TR.132 2007

1 - Research assistant, CUED.
2 - Research fellow, CUED.

Report based on fourth year undergraduate
project 2006/7 by T. Brandvik.

Summary

This report details work undertaken to implement a 2D Euler

solver for Graphics Processing Units (GPUs). The starting point for

this effort is a reference implementation written in Fortran that runs

on the Central Processing Unit (CPU).

The motivation for using the GPU is that it offers significantly

more computational power than the CPU. Several methods for pro-

gramming the GPU are presented, and the abstraction of the GPU as

a stream computer is explained. The approach chosen for this work,

the BrookGPU C extension and the accompanying source-to-source

compiler, is given particular focus.

The increase in computational power of the GPU comes at the

expense of less flexible control logic, a restriction that requires sev-

eral changes to eliminate the use of conditional branching to detect

boundaries. The solver presented in this work uses a procedure called

dependent texturing to overcome this problem. This method allows

the indices used in the solver’s finite areas scheme to be pre-computed

on the CPU.

The GPU solver achieves a 40x speed-up compared to the CPU

implementation for large grids. An analysis of the GPU assembly code

indicates that the speed of the GPU solver is limited by the memory

system, and that only 30% of the computational power is used.

CONTENTS CONTENTS

Contents

1 Introduction 4

2 Background 4

2.1 Stream computing . 4

2.2 GPUs as Stream Processors 7

2.2.1 Motivation for using GPUs 7

2.2.2 The Graphics Pipeline 8

2.2.3 Changes in the latest generation 12

2.3 Programming the GPU . 12

2.3.1 Direct use of Graphics APIs 13

2.3.2 Low-level GPGPU APIs 13

2.3.3 High-level libraries and languages 14

2.4 Previous work on CFD codes for GPUs 15

3 Implementation 16

3.1 Solving the Euler equations 16

3.2 The Brook solver . 17

4 Discussion and Results 24

4.1 Test cases . 24

4.1.1 A simple sub-sonic nozzle 24

4.1.2 Turbine blade . 25

4.1.3 Supersonic wedge . 25

4.2 Performance . 25

4.2.1 Speed . 25

4.2.2 Memory . 30

5 Future directions 31

5.1 Solver improvements . 31

5.2 GPU Clusters . 31

6 Conclusions 32

2

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 The stream computing model. 5

2 Floating point operations per second for the CPU and GPU. . 7

3 The use of transistors in CPUs and GPUs. An ALU (Arith-

metic Logic Unit) is the basic computing unit of processors.

Adapted from NVidia. 9

4 The graphics pipeline. 10

5 Cell and vertex numbering. 17

6 The BRCC source-to-source compiler and Brook Runtime.

Adapted from the Brook website. 23

7 A flow diagram for the GPU solver, showing pre-computation

on the CPU and the GPU kernels. 23

8 Mach contours for subsonic nozzle predicted by CPU solver. . 24

9 Mach contours for subsonic nozzle predicted by GPU solver. . 25

10 Mach contours predicted by GPU for a blade cascade. The

grid used is 60x60, with smaller point separation near the lead-

ing edge. 26

11 Mach contours predicted by GPU for a supersonic wedge. The

grid is 100x100 and uses uniform spacing in both directions. . 27

12 Run time vs. Grid nodes for different CPUs and GPUs. 28

3

2 BACKGROUND

1 Introduction

The stagnation in the clock-speed of central processing units (CPUs) has led

to significant interest in parallel architectures that offer increasing computa-

tional power by using many separate processing units[8]. Modern commodity

graphics hardware contains such an architecture in the form of the graphics

processing unit (GPU).

Given the computational requirements of simulating fluid flows, the GPU

is an interesting target platform for CFD codes. This report details the work

carried out to port an existing Fortran implementation of a 2D Euler solver

to the GPU. The structure of the report is outlined below.

Section 2 gives the background for the project. The motivation for using

the GPU and the approach taken to implement the Euler solver is explained,

with particular focus on the abstraction of the GPU as a stream computer.

A short overview of previous work on running CFD algorithms on GPUs is

also given.

Section 3 discusses the implementation of the GPU solver, explaining the

changes to the reference implementation made necessary by the restrictions

of GPU architecture.

Section 4 presents the test cases used for validation. The speed and

memory performance of the solver is also given. The performance of the

solver is investigated in detail by performing an analysis of the underlying

assembly code.

Finally, some interesting directions for future work are described in sec-

tion 5.

2 Background

2.1 Stream computing

The current state of semiconductor technology is one where computation is

cheap but bandwidth expensive. This is the basic motivation for the interest

in stream computing, a programming model that aims to reduce bandwidth

4

2.1 Stream computing 2 BACKGROUND

requirements by exploiting the data parallelism inherent in many computing

problems.

The stream programming model is based on two elements, streams and

kernels. A stream is a collection of records, much like a normal array in tradi-

tional programming languages such as C or Fortran. A kernel is a functional

element that is implicitly called for each record in an input stream to produce

a new record that is put in an output stream. In addition to input and out-

put streams, a kernel also has access to so-called gather streams - read-only

memory that can be freely indexed into. Depending on the constraints of the

target hardware, it is possible to have multiple input and output streams.

Kernel Input stream

Input stream Output stream

Input stream

Gather stream

Figure 1: The stream computing model.

The result of a kernel operation can only depend on the current record in

the input stream, no dependency on neighbouring records is allowed. This

has two benefits:

1. The overall task of computing an output stream from an input stream

can be split into many smaller tasks that can each be executed inde-

pendently on different processing units. In theory, stream architectures

can therefore scale to an arbitrary number of processors.

2. The lack of inter-dependancy allows for memory latency hiding. When-

ever a memory fetch from a gather stream is required to compute the

output from a stream record, the computation can be put into a queue

and the processing unit can begin operating on another record while it

waits for the fetch result.

5

2.1 Stream computing 2 BACKGROUND

It is important to note that benefits of memory latency hiding are only

achieved if there are enough computational operations in between memory

fetches to keep the processing units busy. The ratio between computational

instructions and memory fetches is discussed by Dally et al.[4], who give it

the name arithmetic intensity. Programs with high arithmetic intensity tend

to be bound by the computational speed of the system, while those with a

low arithmetic intensity tend to be bound by the memory access speed.

Several general-purpose stream architectures have been proposed, each

with its own chip design and programming language. Recent efforts in-

clude the MIT Raw architecture and the StreaMIT language[16], the Stanford

Imagine system and StreamC language[16], as well as the the the Merrimac

streaming supercomputer and the Brook language[4].

The Merrimac design is particularly relevant to the work presented in this

report. This architecture consists of a series of nodes, each containing sev-

eral custom stream processors, interconnected with off-the-shelf components.

Although no actual hardware implementation exists yet, a cycle-accurate

simulator has been developed and targeted by several applications, includ-

ing a two-dimensional multi-grid solver for the Euler equations[10] and parts

of the Gromacs algorithm for protein folding prediction[7]. The Brook lan-

guage used to implement these applications is essentially ANSI C with a few

keyword extensions relevant to stream processors.

Recognising the potential of modern graphics processing units (GPUs)

as an alternative target platform to custom-built supercomputers for stream

applications, the Stanford graphics group has also developed a subset of

Brook called BrookGPU[2]. BrookGPU contains many of the same features

as Brook itself, but is limited in some regards by the restrictions of the

underlying graphics hardware. Nevertheless, promising results have been

achieved by the same group using this combination for image segmentation

and linear algebra.

6

2.2 GPUs as Stream Processors 2 BACKGROUND

2.2 GPUs as Stream Processors

2.2.1 Motivation for using GPUs

Modern GPUs are designed to accelerate the drawing of three-dimensional

graphics. The majority of applications that make use of them are computer

games, but CAD applications also make up a significant market. Tradition-

ally, the set of operations supported by the GPU have been fixed by the

hardware and limited to simple transformations and lighting instructions.

However, the increasing demand for realism in computer games has led to

GPUs offering more programmability to support arbitrary graphics opera-

tions. Together with the accelerating increase in the processing power of

GPUs compared CPUs, this has lead to much interest in using the GPU for

general computing purposes. This field is known under the name GPGPU,

an acronym for General Purpose Computing on the GPU.

2003 2004 2005 2006 2007

Time

0

100

200

300

400

G
F

lo
ps

ATI (GPU)
NVidia (GPU)
Intel (CPU)

Figure 2: Floating point operations per second for the CPU and GPU.

Figure 3 shows that a recent GPU is significantly more powerful than its

CPU contemporary, and that the computing power of GPUs are increasing

7

2.2 GPUs as Stream Processors 2 BACKGROUND

at a greater rate than that of CPUs. There are two main reasons for this:

1. The GPU is a special-purpose processor. As such, it is able to devote

more of its transistors to computation than a CPU which must be

capable of running any type of program. Given the similar transistor

counts for both chips, GPUs therefore offer more computing power per

chip.

2. The GPU employs a parallel architecture so each generation can im-

prove on the speed of previous ones by adding more cores, subject to

the limits of space, heat and cost. CPUs, on the other hand, have

traditionally used a serial design with a single core, relying instead on

greater clock speeds and shrinking transistors to drive more powerful

processors. While this approach has been reliable in the past, it is

now showing signs of stagnation as the limit of current manufacturing

technology is being reached. Recent CPUs therefore tend to feature

two or more cores, but GPUs still enjoy a significant advantage in this

area for the time being. Some convergence is expected in this area, as

indicated by AMD’s acquisition of ATI and Intel’s announced plans for

a many-core CPU/GPU hybrid chip.

Taking advantage of any multi-core architecture requires programs to be

written for parallel execution. For computational fluid dynamics, this has tra-

ditionally meant splitting the flow domain into several parts that are solved

independently on each processor node in a cluster, with the flow properties

at boundaries being communicated between the nodes after each time-step.

This is also the process adopted for GPUs, but the GPU introduces several

additional constraints that make the stream programming paradigm partic-

ularly useful. A consideration of the graphics pipeline will show why this

is.

2.2.2 The Graphics Pipeline

The graphics pipeline refers to the sequence of operations applied to trans-

form a polygon model of a three-dimensional scene to an image rendered on

8

2.2 GPUs as Stream Processors 2 BACKGROUND

DRAM

Cache

Control
ALU ALU

ALUALU

DRAM

CPU GPU

Figure 3: The use of transistors in CPUs and GPUs. An ALU (Arithmetic
Logic Unit) is the basic computing unit of processors. Adapted from NVidia.

the screen.

The first stage in the pipeline is the vertex processor which receives a list

of interconnected vertices from the CPU. It then applies transformation oper-

ations such as scaling and rotation, as well as lighting to determine the colour

of each vertex. These are then rasterised to give individual fragments whose

final colour is computed by the fragment processor. Rasterisation refers to

the process of taking a vector image and turning it into one approximated

by fragments (a fragment is the term used to describe a pixel before it is

actually rendered on screen). The colour of the fragment is determined by

interpolating between the colours of the vertices and possibly fetching values

from a texture in memory. In computer games, the texture normally contains

artwork that is applied to the surface of objects, but it can hold any 32-bit

floating point values.

Finally, the fragments visible from the camera position are selected and

displayed on the screen. Alternatively, the fragments can be written back to

texture memory for another pass through the pipeline. The overall process

is show in figure 4. Note that there are many vertex processors and fragment

processors, with the latter normally outnumbering the former.

Both the vertex processor and the fragment processor are programmable

9

2.2 GPUs as Stream Processors 2 BACKGROUND

Fragment ProcessorVertex Processor

Rasteriser

Texture memory

Vertices Coloured fragments

Figure 4: The graphics pipeline.

10

2.2 GPUs as Stream Processors 2 BACKGROUND

by the developer. Both also have access to temporary registers for storing

the intermediate values of a computation and looking up constants, but only

the fragment processor has the ability to look up values in texture mem-

ory. In other words, the fragment processor supports gather operations (b

= a[i]), but does not support scatter operations (a[i] = b) since only the

output location corresponding to the current input location can be written

to. The greater number of fragment processors, combined with their memory

access capability, has led most GPU programs to do their computing on the

fragment processor instead of the vertex processor.

Most computations are performed as four-component vector operations -

this follows naturally from colours being specified as three components and

an opacity value. These are carried out with 32-bit floating point precision,

but small deviations from the IEEE 754 specification followed by CPUs exist

for all boards[15].

The limited control logic of the fragment processor means that support

for branching instructions is limited, and such operations are likely to be

expensive. This follows from all fragment processors having to apply the same

instruction at the same time. If a branching condition is evaluated differently

between any processors, both sides of the branch must be evaluated by all

processors. Hence, the performance penalty incurred depends on the branch

divergence. Loops that can’t be unrolled at compile-time also suffer from

similar problems.

From a programming perspective, it is the lack of support for scatter oper-

ations and the less flexible control capabilities that set the GPU apart from a

traditional cluster setup. While the stream programming model makes little

mention of branching restrictions, it does encapsulate the no-scatter con-

straint. In addition, it also provides the benefit of hiding from the developer

the splitting of the input stream to the different processors. The graphics

pipeline is therefore typically abstracted as a stream computer using the

procedure below:

• A single rectangle that covers the whole screen is is issued to the vertex

processor. This gets rasterised into thousand to millions of fragments

11

2.3 Programming the GPU 2 BACKGROUND

that are fed to the fragment processor.

• A fragment shader program is applied to each fragment independently

by the fragment processor. During this process, gather operations are

allowed through texture fetches. The mapping at this stage is simple

- the fragment processor is equivalent to the stream processor while

texture memory is used to store input and gather streams.

• Output streams are simply the output from the fragment processors.

These can be displayed on the screen or written to texture memory.

2.2.3 Changes in the latest generation

While the above model of the graphics pipeline is still largely accurate, the

latest generation of graphics cards from NVidia and ATI that have come

out while this project has been running have introduced some changes. In

particular, the distinction between vertex processors and fragment processors

has been removed in favour of unified shaders that can act as either type.

This is both a simplification of the architecture and a response to different

games requiring different amounts of vertex transformations and fragment

shading, making a unified pool of computing power more efficient.

In addition, both companies now have low level programming interfaces

that offer easier access to the hardware for developers wishing to do general

computations on it. The importance of this development will become clear

once the challenges of programming the GPU have been discussed.

2.3 Programming the GPU

As with the CPU, there are several approaches to programming the GPU.

These differ mainly in how portable they are across different GPUs and op-

erating systems, and the level of hardware abstraction provided. In general,

low-level approaches tend to lead to better performance at the expense of

portability and development time. However, this trade-off is not linear and

good high-level abstractions can both ease the development burden and still

12

2.3 Programming the GPU 2 BACKGROUND

offer good performance. The main options available to the GPU programmer

are discussed below.

2.3.1 Direct use of Graphics APIs

There are two major programming APIs that are used for 3D graphics, Di-

rect3D and OpenGL. Direct3D is part of Microsoft’s proprietary DirectX API

collection and is widely used by computer games targeting the Windows and

Xbox platforms. OpenGL is a standard specification that has efficient imple-

mentations on a variety of platforms, including Windows, Mac OS X, Linux,

Unix and the Playstation 3. Like Direct3D, it is widely used by computer

games, but is also popular for CAD applications due to its cross-platform

availability.

In the context of general purpose programming on the GPU, these APIs

enable the developer to allocate memories for textures and control the invoca-

tion of shader programs. The shader programs themselves are normally writ-

ten in a high-level shading language such as NVidia’s Cg[19] or Microsoft’s

HLSL[21]. These interfaces and languages represent the traditional route

to programming the GPU, but there are several obstacles associated with

this approach. First, the program must be expressed in terms of graphics

pipeline operations which generally have little to do with what the program

is actually doing. Consequently, the developer must be familiar with the pe-

culiarities of the GPU to develop a working program with good performance.

Second, the final program is dependent on GPU drivers and shader compilers

that change more frequently and tend to be more unstable than their CPU

counterparts. This poses problems for heterogeneous GPU cluster configu-

rations or consumer applications that have to run on a variety of cards and

platforms, but is less of an issue if the hardware and software environments

can be controlled.

2.3.2 Low-level GPGPU APIs

In response to the growing interest for GPU computing, NVidia and ATI have

both released low-level APIs for their latest generation of graphics cards that

13

2.3 Programming the GPU 2 BACKGROUND

expose the hardware in a non-graphics manner. ATI’s effort is called CTM

(Close to Metal). It is a software interface that exposes the GPU in fashion

similar to the stream computing model discussed earlier. NVidia’s CUDA

(Compute Unified Device Architecture) is a C-like programming language

with some extensions. It treats the GPU as a collection of independent

processors that can be programmed in a fashion somewhat similar to multi-

core CPUs.

These technologies bypass the graphics abstraction layer of DirectX and

OpenGL, treating the GPU instead as a new type of high-performance pro-

cessor with its own instruction set. This approach will be more familiar

to most developers of scientific applications. One potential problem is that

CUDA only works with NVidia GPUs and CTM only works with ATI GPUs.

Given that the two companies tend to leap-frog eachother in terms process-

ing power, this might be an issue if one always wants to run on the fastest

hardware available.

2.3.3 High-level libraries and languages

A third approach to programming the GPU is to use libraries and languages

that provide a higher level of abstraction than the solutions mentioned ear-

lier. Given the complexities of programming with the graphics APIs or

CUDA/CTM, it is perhaps not surprising that several such languages ex-

ist:

• Accelerator [24] is a library from Microsoft for its C# programming

language. It allows the developer access to the GPU through operations

on data-parallel arrays.

• Sh[20] is a similar effort developed at the University of Waterloo for

the C++ programming language. Although the open-source variant

is no longer actively supported, it forms the core of the commercial

RapidMind software platform that targets the GPU, multi-core CPUs

and the Cell processor.

• BrookGPU[2] from Stanford University provides a few simple exten-

14

2.4 Previous work on CFD codes for GPUs 2 BACKGROUND

sions to ANSI C that encapsulates the GPU as a stream computer

using streams and kernels. It can be compiled into programs that run

on most recent NVidia and ATI cards on both the DirectX and OpenGL

platforms. An experimental runtime for CTM is also available. Brook

is actively developed and there exists a small developer community

around the GPGPU.org website that provides help with most issues.

For this project, BrookGPU was chosen because it:

• abstracts away the underlying hardware in a stream programming model,

yet is low-level enough to still deliver the speed increase of the GPU;

• has a proven track record of performance and stability as demonstrated

by its use in the Stanford Folding@Home GPU client[23];

• works with NVidia and ATI graphics cards on both Windows and

Linux;

• is open-source so the inner workings of can be examined.

2.4 Previous work on CFD codes for GPUs

Much work has been done on using the GPU to accelerate the simulation of

visually appealing flows for computer games. An example of this is the work

of Harris et al.[14] on cloud evolution for flight simulators.

For physically realistic flows, the body of previous work is much smaller.

A description of an implementation of the incompressible Euler equations

can be found in [22]. For compressible flows, Hagen et al. have implemented

a 2D and 3D Euler solver for the GPU[13]. They achieve speed-ups between

10-20x for shock-bubble interactions and Rayleigh-Taylor instabilities. The

main difference between their work and the implementation presented in this

report is the addition of solid boundaries.

15

3 IMPLEMENTATION

3 Implementation

This section describes the original Fortran implementation of the 2D Euler

solver and the strategy used to rewrite it in BrookGPU. A comparison of

the results from the two solvers is given for a variety of test cases. Their

speed and memory requirements are also analysed, and the implications of

the speed-up seen with the GPU solver are discussed.

3.1 Solving the Euler equations

The 2D Euler equations for compressible flow can be expressed in conserva-

tion form as below:
∂w

∂t
+

∂f

∂x
+

∂g

∂y
= 0 (1)

where w is the conserved quantities and f and g the flux vectors:

w =

ρ

ρu

ρv

ρE

, f =

ρu

ρu2 + p

ρuv

ρuH

, g =

ρv

ρvu

ρv2 + p

ρvH

.

As is convention, u and v are the horizontal and vertical velocity compo-

nents, ρ is the density, p the pressure, H the stagnation enthalpy and E the

energy.

When solving these equations on a computer, the flow domain is discre-

tised and the derivatives approximated using finite areas. There are many

ways of doing this; the Fortran solver in the present work uses a cell-centred

Lax-Friedrichs scheme with vertex storage that is stabilised through smooth-

ing. Denton’s Scree scheme [6] is used for the time integration as it operates

down to very low Mach numbers and requires low levels of artificial viscosity.

Simulations of both duct flows and blade cascades can be done, the latter

through the use of periodic boundary conditions. An H-grid is used to rep-

resent the geometry in all cases. The cell and vertex numbering scheme is

showin in figure 5.

16

3.2 The Brook solver 3 IMPLEMENTATION

j+1

i
i+1

i
i+1

j+1

j

j

Grid point (i, j)

Grid point (i+1, j+1)

Flow direction

Cell (i, j)

Figure 5: Cell and vertex numbering.

3.2 The Brook solver

Before discussing the details of the Brook solver, it is useful to have an

overview of how a typical Brook program is compiled to run on a GPU.

A Brook program in defined in terms of kernels and streams. Brook

uses a source-to-source compiler called BRCC to compile the kernels into

Cg pixel shaders wrapped by C++ code. The Cg shaders are then further

compiled into GPU assembly using NVidia’s Cg compiler. The compiled

C++ wrappers and GPU assembly run on the Brook Runtime that manages

the texture memory and kernel invocation using either DirectX or OpenGL.

A GPU emulation back-end that runs on the CPU is also available for testing

purposes. The whole process is shown in figure 6.

As an example, consider the kernel calc changes from the Euler solver:

1 kernel void calc_changes(float deltat, float area<>, float4 iflux[][],

2 float4 jflux[][], out float4 delta<>) {

3 float2 up = {0, 1};

4 float2 right = {1, 0};

5 delta = (iflux[indexof delta.xy] - jflux[indexof delta.xy + up] -

17

3.2 The Brook solver 3 IMPLEMENTATION

6 iflux[indexof delta.xy + right] + jflux[indexof delta.xy])*deltat/area;

7 }

The kernel calculates the changes to the flow variables in each cell based on

the fluxes into the cell. Some noteworthy points are mentioned below:

• The main body of the kernel is called implicitly for each element in the

output stream.

• The area stream is a normal input stream, indicated by the <> braces.

This means that only the area corresponding to the current cell is

available at any time.

• Due to the cell-corner storage of the flow variables, information is

needed from the neighbouring cells when computing the change of the

current cell since these store the the fluxes across the top and right

faces. The flux streams are therefore defined as gather streams, indi-

cated by the [][] braces. These can be freely indexed into like normal

arrays as shown in the calculation in the main body. The indexof op-

erator gives the index of the current stream element, and is used for

relative indexing.

• The float4 type declarations refer to floating point vectors of length

four. Addition and multiplication operations can be performed on all

the values of a float4 at once.

A simplified version of the GPU assembly and the C++ wrapper is shown

below:

GPU assembly:

1 static const char* __calc_changes_fp40 = {

2 "PARAM c[6] = { program.local[0..4],\n"

3 " { 0, 1 } };\n"

4 "TEMP R0;\n"

5 "TEMP R1;\n"

6 "TEMP R2;\n"

7 "TEMP R3;\n"

8 "TEMP R4;\n"

9 "TEMP RC;\n"

10 "TEMP HC;\n"

11 "ADDR R0.zw, fragment.texcoord[1].xyxy, c[1];\n"

12 "ADDR R0.xy, fragment.texcoord[1], c[2].zwzw;\n"

18

3.2 The Brook solver 3 IMPLEMENTATION

13 "TEX R1, R0.zwzw, texture[1], RECT;\n"

14 "ADDR R3.xy, R0.zwzw, c[5].yxzw;\n"

15 "ADDR R0.zw, R0.xyxy, c[5].xyxy;\n"

16 "TEX R2, R0.zwzw, texture[2], RECT;\n"

17 "ADDR R1, R1, -R2;\n"

18 "TEX R2, R3, texture[1], RECT;\n"

19 "ADDR R1, R1, -R2;\n"

20 "TEX R2, R0, texture[2], RECT;\n"

21 "ADDR R1, R1, R2;\n"

22 "TEX R4.x, fragment.texcoord[0], texture[0], RECT;\n"

23 "MULR R1, R1, c[0].x;\n"

24 "RCPR R0.w, R4.x;\n"

25 "MULR result.color, R1, R0.w;\n"

26 "END \n"

27 }

C++ wrapper:

1 void calc_changes (const float deltat,

2 ::brook::stream area,

3 ::brook::stream iflux,

4 ::brook::stream jflux,

5 ::brook::stream delta) {

6 static ::brook::kernel __k(__calc_changes_fp40);

7 __k->PushConstant(deltat);

8 __k->PushStream(area);

9 __k->PushGatherStream(iflux);

10 __k->PushGatherStream(jflux);

11 __k->PushOutput(delta);

12 __k->Map();

13 }

Being able to inspect the Cg assembly is a valuable tool for understanding

what is going on behind the scenes of a Brook kernel. Some noteworthy points

are mentioned below:

• The shader uses several registers to store intermediate results (six in

this case).

• There are five texture fetches in total, two for each of the flux directions

and one for the area. Even though the area is just a single float, it is

as expensive to fetch as an entire float4.

• Three separate textures are used, one for each flux direction and one

for the area.

• The fragment shader cannot to direct division, instead the reciprocal

is taken and then used in a multiplication.

19

3.2 The Brook solver 3 IMPLEMENTATION

The C++ function calc changes can be used in a C++ program that

might include other functions that run on the CPU. Data transfer between

C++ arrays and Brook streams is handled by read/write functions that can

copy data back and forth between main memory and GPU textures.

The full Brook solver includes similar kernels for calculating the fluxes,

distributing the cell changes to the corner nodes and smoothing the flow vari-

ables. These are roughly equivalent to their Fortran function counterparts.

Streams are used throughout instead of arrays.

The conversion from Fortran to Brook is mostly straightforward once the

stream programming model is understood. This is in large part because

the locality of the Euler equations means that they lend themselves well to

parallel execution. Other problems that depend on global information or do

not fit neatly into the stream model would require larger algorithmic changes.

One issue that did arise in the conversion was that of boundary condi-

tions. The stream programming model requires that the same operation is

performed on every element in the input stream. However, the lack of sym-

metry at the boundaries requires the derivatives to be discretised differently

than in the interior flow. In the Fortran solver, this is solved by conditional

branching based on the index of the current cell. Unfortunately, branching

is inefficient and in some cases unsupported on GPUs, so another approach

called dependent texturing was taken instead.

Dependent texturing refers to the process of using one texture to store

the address of a value to be fetched from another texture. This allows the

indices to be used in the interior and at the boundaries to be pre-computed

before the kernel is invoked, removing the need for branching within the

kernel itself. As an example, consider the Fortran function sum changes

that calculates the new flow properties at a node based on the flux balances

of the surrounding cells:

1 subroutine sum_changes (delta, prop)

2

3 c Change for interior nodes

4 do i=2,ni-1

5 do j=2,nj-1

6 add = 0.25*(delta(i,j) + delta(i-1,j) + delta(i-1,j-1) +

7 & delta(i,j-1))

8 prop(i,j) = prop(i,j) + add

20

3.2 The Brook solver 3 IMPLEMENTATION

9 end do

10 end do

11

12 c Change for lower boundary

13 do i=2,ni-1

14 add = 0.5*(delta(i-1,1) + delta(i,1))

15 prop(I,1) = prop(I,1) + add

16

17 c Slightly different sums for upper boundary, inlet/outlet and corners

18 .

19 .

20 .

21

22 return

23 end

A direct Brook port of this function would include several if-else blocks to

test for what sum should be used. Instead, the indices to use in the sum are

pre-computed on the CPU:

1 #define INDEX(ni,j,i) ((ni)*(j) + (i))

2 void set_sum_index(int ni, int nj, Index4 *sum_index) {

3 int i, j;

4 Index4 index;

5

6 for (i = 1; i < ni-1; i++) {

7 // Change for interior nodes

8 for (j = 1; j < nj-1; j++) {

9 index.i1 = float2(i, j);

10 index.i2 = float2(i-1, j);

11 index.i3 = float2(i-1, j-1);

12 index.i4 = float2(i, j-1);

13 sum_index[INDEX(ni, j, i)] = index;

14 }

15 }

16 for (i = 1; i < ni-1; i++) {

17 // Change for lower boundary

18 index.i1 = float2(i-1,0);

19 index.i2 = float2(i-1,0);

20 index.i3 = float2(i,0);

21 index.i4 = float2(i,0);

22 sum_index[INDEX(ni, 0, i)] = index;

23 }

24 // Slightly different sums of upper boundary, inlet/outlet and corners

25 .

26 .

27 .

28 }

The sum index array resulting from this is then given to the kernel as a

stream alongside the other arguments:

1 kernel void sum_changes(Index4 index<>, float4 primary_old<>,

2 float4 delta[][], out float4 primary<>) {

3 primary = primary_old + 0.25f*(delta[index.i1] + delta[index.i2] +

4 delta[index.i3] + delta[index.i4]);

}

21

3.2 The Brook solver 3 IMPLEMENTATION

Note that this approach increases the memory required per grid point - a

full memory analysis of the solver will be given later. Besides getting rid of

branching in the kernel, dependent texturing also simplifies the kernel itself.

Its correctness is therefore easier to validate, and most of the debugging effort

can be on the CPU side of things where better tools are available.

A similar approach is used in the kernel that calculates the fluxes through

each cell face. For the interior flow, linear interpolation between the nodes

at either end of the face is used to calculate the flow variables at the center

of the cell face. To calculate the mass flux through the j-faces, this approach

leads to the following kernel code:

1 mass_flux_j = 0.5f*((primary[indexof flux_j.xy].y +

2 primary[indexof flux_j.xy + right].y)*dlj.x +

3 (primary[indexof flux_j.xy].z +

4 primary[indexof flux_j.xy + right].z)*dlj.y);

However, at the solid boundaries the mass flux should be set to zero

instead of calculated like above. To avoid conditional brancing, a flux multi-

plier array is pre-computed on the CPU and given to the kernel just like the

index array discussed earlier. For interior nodes, the multiplier is simply a

half, but for the solid boundary nodes it is zero. This results in the following

modified kernel code:

1 mass_flux_j = mul*((primary[indexof flux_j.xy].y +

2 primary[indexof flux_j.xy + right].y)*dlj.x +

3 (primary[indexof flux_j.xy].z +

4 primary[indexof flux_j.xy + right].z)*dlj.y);

As can be seen, the constant multiplier 0.5f from before has been replaced

by the variable multiplier mul.

Figure 7 shows a block diagram of the solver, indicating which parts are

done on the CPU and which parts are done on the GPU. The middle block

shows the arrays and streams (dli and dlj are the projected lengths in the i-

and j-directions respectively).

22

3.2 The Brook solver 3 IMPLEMENTATION

Brook kernels

BRCC

C++ wrapper, Cg shader

Brook Runtime (BRT)

DirectX OpenGL

Figure 6: The BRCC source-to-source compiler and Brook Runtime.
Adapted from the Brook website.

generate_grid()

set_flux_mul()

set_sum_index()

set_smooth_index()

initial guess()

CPU functions

primary

secondary

area

dli

dlj

Arrays/streams

set_fluxes()

calc_changes()

sum_changes()

smooth()

apply_bconds()

GPU kernels

smooth_index

sum_index

sum_index

set_secondary()

Figure 7: A flow diagram for the GPU solver, showing pre-computation on
the CPU and the GPU kernels.

23

4 DISCUSSION AND RESULTS

4 Discussion and Results

4.1 Test cases

Several test cases were used to validate the implementation of the GPU

solver against the CPU reference implementation. These include sub- and

supersonic duct flows, as well as a blade cascade. In all cases, the flow

predicted by the GPU was identical to that predicted by the CPU. A selection

of test cases is shown below.

4.1.1 A simple sub-sonic nozzle

Figures 8 and 9 show the mach contours predicted by the CPU and GPU

solvers for sub-sonic flow through a simple nozzle. The grid uses uniform

spacing in the horisontal and vertical directions. The solutions are almost

symmetrical about the bump, indicating the ability of the Scree scheme to

eliminate most of the artificial viscosity.

Figure 8: Mach contours for subsonic nozzle predicted by CPU solver.

24

4.2 Performance 4 DISCUSSION AND RESULTS

Figure 9: Mach contours for subsonic nozzle predicted by GPU solver.

4.1.2 Turbine blade

The solver is also capable of simulating cascade flows using periodic boundary

conditions. Figure 10 shows the mach contours for the turbine blade shape

used in[5].

4.1.3 Supersonic wedge

Figure 11 shows the mach contours for supersonic flow over a wedge with

an inlet mach number of 1.6. For this flow, there exists an exact analytical

solution with complete shock cancellation. The solver comes close to this

solution, but the finite grid size smears the shock a bit and results in some

reflection.

4.2 Performance

4.2.1 Speed

Figure 4.2.1 shows the time taken for 5000 time-steps for the CPU and the

GPU. Two different GPUs were tested, the first a relatively old NVidia 6800

25

4.2 Performance 4 DISCUSSION AND RESULTS

Figure 10: Mach contours predicted by GPU for a blade cascade. The grid
used is 60x60, with smaller point separation near the leading edge.

26

4.2 Performance 4 DISCUSSION AND RESULTS

Figure 11: Mach contours predicted by GPU for a supersonic wedge. The
grid is 100x100 and uses uniform spacing in both directions.

and the other a recent ATI 1950XT. Compared to the Intel Core 2 Duo,

the 6800 offers a 6x speed-up for large grids, while the 1950XT shows a

40x speed-up. Larger speed-ups are seen when compared to the older AMD

Opteron.

While the time taken by the GPU solver increases linearly with grid size,

the CPU solver slows down for large grids. The reason for this has not

been investigated fully, but a likely explanation is that the CPU makes less

efficient use of its cache for large grids. The fact that the Duo (2MB cache)

is slower than the Opteron (1MB cache) on small grids, but faster on large

grids, supports this theory.

A more detailed performance analysis of the GPU solver is possible by

inspecting the shader assembly generated by Cg for each kernel. An example

of such assembly code has already been given in section 3. Table 1 shows

the number of instructions and texture fetches for each kernel, as well as the

fraction of the overall run time used by the kernel. The data is for a ATI

1950XT running on a 1000x1000 grid. Note that the most time-consuming

kernels (with the exception of apply bconds, a special case because it contains

27

4.2 Performance 4 DISCUSSION AND RESULTS

0 0.2 0.4 0.6 0.8 1.0

AMD Opteron 2200 MHz
Intel Core Duo 1.88 MHz
NVidia 6800
ATI 1950XT

Number of grid nodes (/ 106)

T
im

e
pe

r
st

ep

Figure 12: Run time vs. Grid nodes for different CPUs and GPUs.

28

4.2 Performance 4 DISCUSSION AND RESULTS

some conditional branching) are those with the greatest number of texture

fetches, indicating that the solver is memory-bound.

Kernel Run time Instructions Fetches
apply bconds 29% 65 6
sum changes 27% 39 13
smooth 25% 34 11
calc fluxes 8% 35 5
calc changes 7% 26 5
set secondary 4% 17 1

Table 1: The expected number of cycles used by each kernel.

Using data from the GPU benchmarking suite GPUBench[17] from Stan-

ford, it is possible to estimate that fetching a float4 from texture memory

takes approximately 20 cycles, a number that decreases with the number

of consecutive fetches (e.g. one fetch takes 20 cycles, but five consecutive

fetches take 80 cycles). Clearly, most of the kernels do not make enough

computations to hide the cost of these memory fetches. For example, 5000

time steps on the 1000x1000 grid takes 117 seconds. The total number of

instructions per time step is 216, so the overall instruction rate is:

216 · 5000 · 1000 · 1000

117
= 9.2 · 109Instructions/s

The maximum instruction issue rate for the 1950XT is 30 · 109 Instruc-

tions/s, which means that only 30% of the GPU’s computational power is

being used. The bandwidth used by the solver can be calculated in a similar

way by considering the number of texture fetches, giving 28 GByte/s. The

actual number is likely to be somewhat lower since the driver will replace

some of these texture fetches with cache fetches. The maximum bandwidth

of the 1950XT given by GPUBench is 27.3 GByte/s, so the solver is close to

maximum bandwidth consumption. This is as expected since the kernels are

memory-bound.

Making use of more of the GPU’s computational power can be done by

increasing the arithmetic intensity of the solver. Including a viscous model

29

4.2 Performance 4 DISCUSSION AND RESULTS

would require more computations and go some way towards this goal.

Another approach would be to change the implementation to use an ex-

plicit instead of implicit caching scheme, reducing the number of expensive

memory fetches needed. This is currently not possible to do using Brook,

but NVidia’s latest G80 GPU and the CUDA framework provides some of

the functionality needed. Given the difficulties of increasing the bandwidth

compared to the processing power, it seems likely that hierarchal memory

systems with several layers of caching will become more common. Indeed,

some of the people behind Brook are involved with another research project

called Sequoia[9] that is meant to facilitate programs for such architectures.

4.2.2 Memory

The use of index and multiplier streams described in section 3 results in a

higher memory requirement for the GPU solver than the CPU solver. Table

2 shows the size of the arrays and streams used by both implementations

and the resulting total memory use. The almost three-fold increase in the

memory requirement of the GPU solver reduces the maximum size of the

simulations that can be run by the same factor.

Although the values shown are for a 2D solver, the situation for a struc-

tured 3D solver would be similar, but with higher overall memory require-

ments for both the GPU and CPU due to the extra momentum equation and

geometry variable. Using a pessimistic estimate of the GPU solver requiring

300 bytes per grid node in 3D, the total number of nodes for a typical 512

Mb graphics card would be 1.7 million. This is still more than sufficient to

run a typical 100x100x100 cascade simulation.

It should also be noted that for an unstructured solver, the disparity

between the GPU and CPU memory requirements would be smaller. This

is because the CPU would be unable to infer boundary locations from a

conditional test of the grid index, requiring instead explicit storage of node

connectivity.

30

5 FUTURE DIRECTIONS

Array/stream CPU (bytes) GPU (bytes)
primary 16 16
secondary 16 16
area 4 4
dli 8 8
dlj 8 8
smooth index 0 52
sum index 0 32
flux multiplier 0 4

Total bytes 52 140

Table 2: Arrays and streams used by the GPU and CPU solver implementa-
tions

5 Future directions

5.1 Solver improvements

The GPU solver presented in this report serves as a proof-of-concept that

GPUs are capable of running fluid simulations significantly faster than CPUs.

However, the solver itself is quite simplistic and its usefulness is limited by

being 2D and inviscid. Obvious extensions are therefore the additions of the

ability to handle 3D flows and some form of turbulence modeling

Another interesting extension would be to change the solver to work on

unstructured grids. Although structured grids work well for simple turboma-

chinery configurations, there are many other application domains that would

require unstructured grids to represent their geometries. Two common data

structures used in meshing algorithms for unstructured grids, kd-trees and

octrees, have been implemented on the GPU[11][18]. It might therefore be

possible to offload some of the normally time-consuming unstructured grid

generation process to the GPU.

5.2 GPU Clusters

The memory analysis in section 4.2.2 shows that it is feasible to run simula-

tions on grids with a few million node points on a single graphics card. Larger

31

6 CONCLUSIONS

simulations would require a cluster of GPUs, introducing another memory

bottleneck to the system. Buttari et al.[3] discuss this problem in the context

of running the SUMMA[12] matrix multiplication algorithm on a cluster of

Playstation3 consoles containing Cell processors. Compared to the on-board

memory bus found in the Cell or the GPU, the gigabit ethernet connections

used in such clusters are relatively low-speed. Following Buttari’s procedure,

the number of computational operations that must be performed per 32-bit

float transferred over the network in order to keep the processors of the ATI

1950XT busy is:

Computational power

Bandwidth
=

250 GFlops/s

0.125 GByte/s
= 8000 F lops/32 bits

Due to the surface-to-volume effect (the number of transferred values

scales as N2, but the number of computations scales as N3), such a high

ratio is possible if each node has enough memory to hold a sufficiently large

data set. For a 512 MByte graphics card operating on a 100x100x100 grid,

this results in 800 operations required per float. As shown in section 4.2.1,

the GPU solver performs approximately 200 operations per float, but this

would increase if expanded to 3D viscous flows . Hence, it seems likely that

a cluster of GPUs running a 3D solver would achieve around 50% of the ideal

scaling factor of unity.

6 Conclusions

The work presented in this report has shown the feasibility of solving the

2D Euler equations on the GPU. Simulations of cascade flows with periodic

boundary conditions have been performed successfully.

The GPU solver running on the ATI 1950XT GPU shows a 40x speed-up

over the Fortran reference implementation running on an Intel Core 2 Duo

CPU. By analysing the GPU assembly code, it was shown that the GPU

solver is memory-bound and only uses around 30% of the computational

power of the GPU - indicating the potential for even larger speed-ups for a

32

6 CONCLUSIONS

viscous solver with higher arithmetic intensity.

33

REFERENCES REFERENCES

References

[1] D. Beazley and P. Lomdahl. Feeding a large scale physics application

to python, 1997.

[2] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fata-

halian, Mike Houston, and Pat Hanrahan. Brook for gpus: stream com-

puting on graphics hardware. In SIGGRAPH ’04: ACM SIGGRAPH

2004 Papers, pages 777–786, New York, NY, USA, 2004. ACM Press.

[3] A. Buttari, P. Luszczek, J. Kurzak, J. Dongarra, and G. Bosilca. A rough

guide to scientific computing on the playstation 3. Technical report,

Innovative Computing Laboratory, University of Tennessee Knoxville,

2007.

[4] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonte, J-H

A., N. Jayasena, U. J. Kapasi, A. Das, J. Gummaraju, and I. Buck.

Merrimac: Supercomputing with streams. In SC’03, Phoenix, Arizona,

November 2003.

[5] J. D. Denton. An improved time marching method for turbomachinery

flow calculation. The American Society of Mechanical Engineers, 1982.

[6] J. D. Denton. The effects of lean and sweep on transonic fan perfor-

mance. TASK Quarterly, pages 7–23, 2002.

[7] Mattan Erez, Jung Ho Ahn, Ankit Garg, William J. Dally, and Eric

Darve. Analysis and Performance Results of a Molecular Modeling Ap-

plication on Merrimac. In SC’04, Pittsburgh, Pennsylvaniva, November

2004.

[8] Asanovic et al. The landscape of parallel computing research: A view

from berkeley. Technical Report UCB/EECS-2006-183, EECS Depart-

ment, University of California, Berkeley, December 18 2006.

[9] Kayvon Fatahalian, Timothy J. Knight, Mike Houston, Mattan Erez,

Daniel Reiter Horn, Larkhoon Leem, Ji Young Park, Manman Ren, Alex

34

REFERENCES REFERENCES

Aiken, William J. Dally, and Pat Hanrahan. Sequoia: Programming the

memory hierarchy. In Proceedings of the 2006 ACM/IEEE Conference

on Supercomputing, 2006.

[10] Massimiliano Fatica, Antony Jameson, and Juan J. Alonso. Stream-

FLO: an euler solver for streaming architectures. In IAA paper 2004-

1090, 42nd Aerospace Sciences Meeting and Exhibit Conference, Reno,

California, January 2004.

[11] Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures

for a gpu raytracer. In HWWS ’05: Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware, pages

15–22, New York, NY, USA, 2005. ACM Press.

[12] R. A. Van De Geijn and J. Watts. SUMMA: scalable universal ma-

trix multiplication algorithm. Concurrency: Practice and Experience,

9(4):255–274, 1997.

[13] Trond Runar Hagen, Knut-Andreas Lie, and Jostein R. Natvig. Solv-

ing the euler equations on graphics processing units. In Computational

Science – ICCS 2006, volume 3994 of LNCS, pages 220–227. Springer,

2006.

[14] Mark J. Harris, William V. Baxter, Thorsten Scheuermann, and

Anselmo Lastra. Simulation of cloud dynamics on graphics hardware. In

HWWS ’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware, pages 92–101, Aire-la-Ville, Switzer-

land, Switzerland, 2003. Eurographics Association.

[15] K. Hillesand and A. Das Lastra. Gpu floating-point paranoia. In Pro-

ceedings of GP2, 2004.

[16] Ujval Kapasi, William J. Dally, Scott Rixner, John D. Owens, and

Brucek Khailany. The Imagine stream processor. In Proceedings 2002

IEEE International Conference on Computer Design, pages 282–288,

September 2002.

35

REFERENCES REFERENCES

[17] Stanford University Graphics Lab. GPUBench. http://graphics. stan-

ford.edu/projects/gpubench/.

[18] Aaron Lefohn, Joe M. Kniss, Robert Strzodka, Shubhabrata Sengupta,

and John D. Owens. Glift: Generic, efficient, random-access gpu data

structures. ACM Transactions on Graphics, 25(1):60–99, January 2006.

[19] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kil-

gard. Cg: a system for programming graphics hardware in a c-like

language. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pages

896–907, New York, NY, USA, 2003. ACM Press.

[20] Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. Shader

metaprogramming. In HWWS ’02: Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware, pages

57–68, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics As-

sociation.

[21] Microsoft. HLSL Reference. http://msdn2.microsoft.com/en-us/library/

bb205181.aspx.

[22] NVidia. GPU Gems 2. NVidia, 2004.

[23] Stanford. Folding@Home on ATI GPU’s: a major step forward. http://

folding.stanford.edu/FAQ-ATI.html.

[24] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: using data

parallelism to program gpus for general-purpose uses. In ASPLOS-XII:

Proceedings of the 12th international conference on Architectural support

for programming languages and operating systems, pages 325–335, New

York, NY, USA, 2006. ACM Press.

36

