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ABSTRACT
A new three-dimensional Navier-Stokes solver for flows in

turbomachines has been developed. The new solver is based of\s

the latest version of the Denton codes, but has been imptechen
to run on Graphics Processing Units (GPUSs) instead of thditra
tional Central Processing Unit (CPU). The change in process
enables an order-of-magnitude reduction in run-time duého
higher performance of the GPU. Scaling results for a 16 node
GPU cluster are also presented, showing almost linear scali
for typical turbomachinery cases. For validation purpasetest
case consisting of a three-stage turbine with complete md a
casing leakage paths is described. Good agreement is aatain
with previously published experimental results. The satiomh
runs in less than 10 minutes on a cluster with four GPUs.
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INTRODUCTION

A key metric in the evaluation of a CFD solver is the time
taken per node per timestep. Advances in hardware and, to a
lesser extent, algorithms have enabled this metric to taitio-
uously. In terms of low-cost commodity hardware (CPUS),-pro
cessor clock speed and changes in processor architectuee we
the primary drivers for this advance in the 1980s and 199Qs. A
present, parallel computing using clusters of multi-comreces-
sors is the key enabler. None-the-less, a step change imétig
(at least one order of magnitude) would be invaluable indirig
high fidelity (LES, DNS) solutions into routine industriegei or
in making the current standard of design tools interactive.

Alongside the shift from single- to multi-core CPUs that has
occurred over the last five years, advances have also beem mad
for other types of processors. There are now a variety ofschip
the market that exhibit a higher level of parallelism (andid¢es
performance) than CPUs, including Graphics ProcessingsUni
(GPUs) and the STI Cell microprocessor. Taking advantage of
such processors for CFD calculations could deliver a stepgé
in performance today, but requires significant changesdatt
derlying code.

There has been only limited work reported so far on the use
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of these novel processors for CFD. The present authors hrave p
sented results for 2D [1] and 3D [2] Euler solvers for turbema
chinery applications, achieving speed-ups of an order aj-ma
nitude for both AMD and NVIDIA GPUs compared to a single
CPU core. Similar results, with the extension to include la fu
multigrid scheme, have also been presented by Elsen et]al. [3
for a 3D Euler solver with applications to external flows.

In this paper, a new three-dimensional Navier-Stokes solve
which runs on GPUs is presented. The solver, called Tur-
bostream, includes a mixing-length turbulence model aad#a
pability of simulating both steady and unsteady flows in mult
row turbomachines. In addition, the solver is able, throtigh
use of the Message Passing Interface (MPI), to utilise many

GPUs together to solve problems that are beyond the scope of

a single processor. To the authors’ knowledge, this reptsse
the first viscous solver for engineering flows running on géar
number of GPUs.

We first present an overview of many-core processors, fo-
cusing specifically on GPUs and how they relate to CPUs. A
brief description of the solver algorithm and implemeraatis
then given, followed by a discussion of the solver’s perfante

as it compares to an older CPU solver that implements the same

algorithm. Finally, a test case consisting of a three-stagane
with hub and casing leakage paths is presented. Comparison
showing good agreement with experiments are also given.

MANY-CORE PROCESSORS

In order to keep increasing the computational power of their
chips, the semiconductor industry has now moved from sirgle
multi-core designs. The reason for this switch is the rezjuint
to keep within an acceptable power envelope of around 1@0-20
Watts. Given this constraint, Borkar [4] has identified tlraid-
ishing returns of core complexity as the main motivator fadtin
core processors. He refers to this relationship as PoBaché,
which states that the computational power of a core is roughl
proportional to the square root of its complexity. Therefdt is
clearly more power-efficient to use the extra transistofsrefl
by technology scaling to add more cores to a chip, rather than
to increase the complexity of the exisiting ones. This trend
widely expected to continue, resulting in 1000-core chipmb
common-place within the next 10 years.

For software development, the consequenses of this explo-

sion in core count are far-reaching, requiring significararges

to old codes and the algorithms they use. In this paper, thie-pr
lem is approached from the point of view of a developer rangit

an existing Fortran structured grid CFD solver. To set tlagest
we first introduce the two different processors that will lma€
sidered. The first is a quad-core Intel Xeon CPU which is repre
sentative of the processors that run most CFD solvers tdtay;
second is the less familiar design of an NVIDIA GPU that is the
current target processor of Turbostream. A schematic oerv
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of both processors can be seen in Fig. 1.

Intel Xeon

The processor considered here is the 2.33GHz Harpertown
variant in Intel's Xeon line. It is a general-purpose pre®s
meaning that it is capable of running an operating systemson i
own. Harpertown is a dual-die quad-core, i.e. two dual-sore
put together in the same package. Each core has its own 32 KB
L1 cache, while each die has its own 4 MB L2 cache shared be-
tween the two cores. Each core also has an adder and a naultipli
for 128-bit vectors, making it capable of 18.6 single prigeis
GFLOP/s (18 floating point operations per second). The theo-
retical aggregate performance of the whole chip is theeetdr.4
GFLOP/s. The cores have access to external memory throagh th
front side bus (FSB) at a rate of 10.6 GB/s.

The programming approach used for structured grid appli-
cations on CPUs is now well established. Typically, somenfor
of domain decompositioning with ghost cells is used to ghkt
domain between the processor cores. One CPU process is then
started per core. Each process iterates over its part ofdimah,
updating the grid variables as it goes along. At the end ofieac
iteration, the processes exchange data with each otherdatelp
the ghost cells by using MPI. A variation on this approactois t
only start one CPU process per processor, and then pasalleli
the work given to that processor across its cores using dsrea
(either created explicitly or through compiler directivasch as
OpenMP). However, since most established codes were glread
parallelised with MPI before the arrival of multi-core CRUise
pure MPI approach involves less work and seems to be more pop-
ular.

NVIDIA GPU

The NVIDIA GPU considered here is the latest GT200 chip.
The older G80 chip is also used in some of the performance mea-
surements presented later - this has approximately halpdine
formance of the GT200.

The GT200 is is designed to accelerate the rendering of 3D
scenes in computer games, so its volume sales are drivereby th
computer games industry. Unlike a CPU, it is not a general-
purpose chip and cannot run an operating system. Insteed, it
sold as part of an add-in card (graphics card) that comesitsith
own on-board memory and plugs into an expansion slot on the
PCI-Express bus. The GT200 consists of 30 multi-processors
(MP), each of which contains 8 scalar processing units (88) a
16 KB of explicitly managed local storage (referred to agsta
memory). Each MP has its own instruction counter and opgrate
independently of the others. Each SP can schedule one multi-
ply and one multiply-add operation (both single precisipgj
cycle, giving a theoretical peak performance of 933GFLGHR/s
1.296GHz. By using a wide 512-hit bus to the graphics canats o
board GDDR3 memory, the GT200 achieves a maximum band-
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Figure 1. CPU and GPU architecture overview

width of 141.7GB/s. Algorithm overview

Turbostream uses a multi-block topology with arbitrary
patch interfaces to capture complex geometries. Infonati
is passed between blocks using surface patches which con-
tain nodes that are physically coincident but reside orecsffit
blocks. The flow properties at these nodes are averagedeithe
of each timestep. Parallel simulations on a cluster of (ssces
can be performed by decomposing the domain on a block basis.
This decomposition is performed as an automatic pre-peicgs
step in which each block can be further split into smalleckio
to achieve better load-balancing.

The Navier-Stokes equations are discretised using a finite
volume method with vertex storage in a structured grid of
hexahedral cells. In this technique, the equations in theggral
form for mass, momentum and energy are used:

To simplify the programming of their GPUs, NVIDIA has
developed an extension to the C programming language called
CUDA. In a CUDA program, the developer sets up a large num-
ber of threads (often several thousand) that are grouped int
thread blocks. A CUDA thread is the smallest unit of exequtio
and has a set of registers and a program counter associated wi
it. This is similar to traditional CPU threads, but CUDA thos
are much less expensive to create and swap between. Eaatl thre
block is executed on a single multi-processor. It is possibl
synchronize the threads within a block, allowing the theet
share data through the shared memory. Given that a threak blo
can consist of more threads than the number of processors in a
multi-processor, the hardware is responsible for schadule
threads. This allows it to hide the latency of fetches from th
on-board memory by letting some threads perform computatio

while others wait for data to arrive. For structured grid kg Mass:
tions, a natural way of organising the code is to split thermai 9
grid into smaller grids which can fit into the shared memory. A 3t /deQJrﬁpU-dA =0 1)
block of threads is then started within each of the smalletsgr
to compute the updated variables. Momentum:
0
—/ pudQ+7{ pu(u.dA)+j[ pdA —j[T.dA =0 (2
ot Jo A A A
ALGORITHM Energy:

Turbostream is heavily based on the long line of codes from 5
Denton. In particular, it uses the same algorithm as thateft- a/ ped§2+f phou.dA — f (T.u).dA — f AOT.dA=0 (3)
est Denton code, TBLOCK, with only minor differences in the Q A A A

way that this algorithm is implemented. A complete descrip- \yhereq is a control volume bounded by a surface A. The above

tion of TBLOCK is given by Klostermeier [5], while shorter  inie4rais are performed on each cell in the grid using a sicon
overviews and examples of its application to turbomaclyiner order spatial discretisation.

problems have been published by Reid et al. [6] and Rosic et The equations can be expressed less formally as

al. [7]. In addition, the motivation for the current methoanc

be traced through a series of papers by Denton [8-11]. Here,

we give a basic overview of the algorithm as it is used in Tur- U SE

bostream. v " S (4)
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whereU is a vector containing the primary flow variablésjs

a vector containing the fluxes of the primary variables, the fl
summation is over the faces of the cell contains any source
terms andV is the volume of the cell. In the manner described
by Denton [10], the source vector is here used to hold theouisc
terms. This equation is integrated forward to reach a ststatg
(%U ~ 0) using the Scree scheme (see Denton [12]):

AU = (2 ) At
n—1

where the subscripts refer to the time step that the devesti
were evaluated at.

Since the integrals are evaluated for a hexahedral cellrend t
solver uses vertex storage, the cell-babdhas to be distributed
to the surrounding vertices, each receiving an eighth. Iyina
maintain numerical stability, artifical smoothing is thgmpéed
to all the flow variables. Presently, only second-order stinog
is used, but a more traditional blended second- and foudkro
smoothing procedure is being considered.

U
ot

ouU

T (5)

Turbulence model

The effect of turbulence is modelled using a simple algebrai
mixing-length model in which the turbulent viscosityis related
to a length scaléyix over which turbulent mixing is assumed to
take place:

Ve = I/ 25 S (6)
where§; is the strain-rate tensor:
1 /0u 0y
Si 2(6Xj+an) Q)

The main drawback of this model is the specification of the-mix
ing length which is different for every type of flow. Experin
from previous Denton codes has shown that for turbomachiner
applications, a limiter based on the blade pitch is appederi

Yn < Xim

Kyn,
Imix = 8
m { KXiim, Yn > Xiim ®

wherek is a constanty, is the normal distance from the nearest
wall and X, is usually taken to be three percent of the pitch.

timestepping loop using the Poisson equation approachidedc
by Tucker et al. [13].

To avoid having to use many grid points in the boundary
layer, the flow is allowed to slip at the walls and a wall-fuont
is used to obtain an expression for the wall shear stressign t
approach, it is assumed that the first grid point away from the
wall lies either in the viscous sub-layer or in the logaritbme-
gion of a turbulent boundary layer. In the former case thd wal
shear stress is approximated by

1
wa_

"= e ©)

and in the latter case by a curve fit to the log-law in the form of

0.03177 0.25614

Ctw=—0.001767+ Ry + (INRew)? (20)
whereC;s \ is the coefficient of friction defined as
Tw
Crw= (11)
TV
andRey is the cell Reynolds number defined as
Re, — pUn/YW (12)

In the above equationsly, is the velocity at the first grid node
off the wall andy,, the height of the cell normal to the wall.

Convergence acceleration

To accelerate the convergence rate, Turbostream uses both
spatially varying timesteps and a multi-grid scheme. Inftire
mer method, the timestep in each cell is limited by the local/fl
properties and geometry, allowing much larger timesteplseto
used in the large free-stream cells that would otherwisérbe |
ited by the small cells in the boundary layer. The latter rodth
uses multiple grid levels, each coarser than the precedieg o
to accelerate the convergence by dispersing transientklgui
on the coarser levels while retaining the spatial accurddh®
finest. In the Denton formulation used by Turbostream, atjac
cells are combined to form a grid of larger cells or blockseTh
new coarse mesh is treated in just the same way as the original
fine grid and so much larger timesteps are possible. The ehang

Vn is calculated by Turbostream before the start of the main in the value ofJ during one iteration is given by

4
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—+S
V+

2F
AU = ’V +S Atblock] (13)

Atcell"‘% [
cell blks

where the summation is over all the blocks to which the reieva
cell belongs. Typically, three levels of multi-grid with a@rsen-
ing ratio of two are used.

block

Multistage and unsteady simulations

For steady-state calculations, multistage simulatiores ar
made possible by circumferentially averaging the flow éntga
blade row, see Denton and Singh [14], Dawes [15], Denton [11]
The technique is applied at a mixing plane, the position dttvh
is arbitrarily chosen by the user. The non-uniform flow ugain
of this plane is mixed out so that it becomes pitchwise, bat no
spanwise, uniform downstream of the mixing plane. The psce
is conservative, but, like any mixing process, itis irresible (see
Fritsch and Giles [16]). In addition, care must be taken wicv
locating the mixing plane too close to leading or trailingyes,
and thereby enforcing a non-physical circumferentialljfenm
flow.

For unsteady simulations, Turbostream implements the
‘dual time stepping’ technique proposed by Jameson [17]s Th
procedure allows the convergence acceleration methods de-
scribed earlier to be used in time-accurate simulationspiiy- s
ting the calculation up into a number of implicit ‘outer lasip
that iterate forwards in real time, each of which is comptieé
a number of explicit ‘inner loops’ that converge the flow to a
steady state in pseudo-time. Multistage unsteady sinounisitire
enabled through an interpolation procedure that transféos-
mation across a sliding interface that connects the upsaterad
downstream grid blocks which rotate relative to each other.

IMPLEMENTATION

During the initial considerations of implementing a flow
solver to run on many-core architectures, there was some con
cern over the great number of different processors and progr

.

j
+1

M |
i j1

J

Sub-block Threads in plane

Figure 2. lteration procedure for stencil subroutines

and output arguments for each subroutine, as well as thewomp
tations that are carried out within them. An as yet unpulelish
source-to-source compiler, which was developed for thiskwo
by the authors, is then used to transform these definitiotas in
source code that can be further compiled for the target tachi
ture that we wish to run on. Currently, the compiler can pielu
code for either multi-core CPUs or NVIDIA GPUs, with support
for the Cell processor currently being developed. Asidenfen-
abling the solver to run on many different processors from th
same source code definition, this source-to-source cotiguila
approach has two other main benefits:

1. Since the definitions of the solver subroutines are com-
pletely separate from the source code that is actually pro-
duced for the target platform, the compiler is free to per-
form many different optimisations that would otherwise
have complicated the code to an unacceptable degree. For
an indication of the range and complexity of the many opti-
misations, of which only a subset are currently used by our
compiler, necessary to achieve near-optimal performance o
modern many-core architectures, see Datta et al. [18].

. The use of a high-level language to express the logic of the
solver makes it easier for domain scientists to add extessio
such as new numerical schemes and turbulence models. This
capability is important because the solver is intended ta be
platform for academic research as well as a production code
for day-to-day turbomachinery design.

In addition to the compiler, a runtime library has also been
developed that takes care of memory management, subroutine

ming models available. For GPUs alone, there are several op- invocation, file I/O and MPI communication. Since the detafl
tions; these include the two main chip manufacturers AMD and the former two tasks are different for each processor, thasts
NVIDIA and at least half a dozen programming languages and of the library have to be written separately for each proocess

libraries that in some cases only target one vendor’s GPUSs. |
this situation, it seems a daunting prospect to pick one @oanb
tion that will have the longevity required for CFD solversoge
lifetime is often measured in decades.

For this reason, it was decided that another approach than
a direct implementation was needed. Turbostream is therefo
expressed as a series of subroutine definitions in the leiggl-|
Python scripting language. These definitions contain tipatin

5

It should be noted that the source-to-source compilation
strategy described here is only possible because of théelimi
range of computations that are performed by structured grid
solvers. In short, each subroutine is a combination of dtenc
operations that use the nearest neighbours of a hode toaupslat
properties. The only computations that break with this gigya
are in the multigrid routine, which therefore has to be imple
mented seperately for each processor.
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The main difficulty in producing efficient code for the sten-
cil subroutines is in parallelising the computations asrtse

hundreds of scalar processing units present on modern GPUs.

The strategy used by the compiler is to split each grid block
into smaller sub-blocks that are computed independentBeef
chother. One CUDA thread is started for each node in a plane of
the sub-block. At the start of the subroutine, each threaddo
in the necessary grid node values corresponding to itsitwtat
The threads then iterate upwards in the sub-block (Fig. @&he
time fetching a new plane and computing the values for the cur
rent one. Given that the shared memory can hold 16 KB, a typica
sub-block size is 16x10x5. For such sub-block sizes, thacer
to-volume ratio is low enough to get good data reuse. The-over
all approach is similar to that described by Williams et &B]
for structured grid applications on the Cell processor. Areno
detailed explanation of this implementation strategy aod Ft
differs from that commonly used on CPUs has been included in
Appendix A.

A final issue that has to be considered for a GPU implemen-
tation is that of data transfers across the PCI-Express ichw

Table 1. Single processor performance

Solver Processor Time/node/step
TBLOCK Intel Xeon 2.33 GHz 3.107s
Turbostream NVIDIA GT200 Z7-108s

Turbostream dramatically increases the single-procgssdor-
mance as compared to other solvers by using NVIDIA GPUs
instead of traditional CPUs. To demonstrate this speedmap,
compare TBLOCK running on all four cores of an Intel Xeon
2.33 GHz CPU with Turbostream running on an NVIDIA GT200
GPU. TBLOCK was compiled with the Intel 10.1 Fortran com-
pilers with automatic vectorisation and the highest degke
optimisation turned on, while Turbostream was compilechwit
NVIDIA's GPU compiler. Both solvers show approximately eon
stant performance for grids with more than°Ibdes so a rep-

bridges the CPU and GPU memory spaces. The PCI-Express busresentative case with $modes was used. The results are sum-

has a theoretical maximum bandwidth of 4 or 8 GB/s depending
on whether it is of generation 1 or 2. When this number is com-
pared to the bandwidth between the GPU’s on-board GDDR3
memory and the GPU multi-processors (up to 141.7 GB/s), it
becomes clear that any algorithm that requires a large amoun
of continous data transfer between the CPU and GPU will not
achieve good performance. For a CFD solver, the obvious so-
lution is to limit the size of the domain that can be calculate
that all of the necessary data can be stored in the GPU’s ardbo
memory. Using this approach, it is only necessary to perform
large transfers across the PCI-Express bus at the staré afih
culation (the geometry) and at the end (the final flow solgtion
High-end GPUs today have up to 4 GB of on-board memory, suf-
ficient to store all the data needed by Turbostream for a gitial w
12-10° nodes, so this restriction is not a a significant limitation.

When operating in parallel across multiple GPUs, some
boundary information must inevitably be transferred asrbe
PCI-Express bus at the end of every time step. However, &s wil
be shown in the next section, the low surface-to-volumesdti
turbomachinery grids mean that this data transfer is nottéebo
neck.

PERFORMANCE
For any CFD solver, there are two important performance
metrics:

1. How fast is the solver on a single processor?

2. How well does the performance of the solver scale when
multiple processors are used together to tackle larger-prob
lems?

marised in Table 1, which shows the time taken per grid node
per timestep for each solver. The high performance of Tur-
bostream running on the NVIDIA GPU is primarily due to the
GPU’s higher memory bandwidth, as well as the extra optimi-
sations allowed by the source-to-source compilation. fmse

of wall-clock time, both solvers converge in approximattig
same number of timesteps, with a typical 300,000 node single
row calculation that requires 5,000 steps taking approtehgd
minute in total with Turbostream and 20 minutes in total with
TBLOCK.

Over the last 10 years, CFD has become increasingly re-
liant on clusters of processors to enable more detailed laimu
tions within design time frames. For this reason, the séalab
ity of a solver across multiple processors can be equallyoimp
tant as its single-processor performance. A potential lerab
with increasing the single-processor performance by arerord
of magnitude is then that the multi-processor performande s
fers since the time required to exchange boundary infolonati
remains roughly constant. However, the low surface-tamwa
ratios in turbomachinery grids mean that good scalabibty be
achieved even with very fast solvers. To demonstrate thistpo
Fig. 3 shows the performance of Turbostream across a cluster
of 16 NVIDIA G80 GPUs. There are four nodes in the cluster,
each consisting of a traditional 1U server with a quad-cdr&JC
connected through PCI-Express cables to another 1U seitrer w
four GPUs. The nodes are networked together with 1 Gigabit
Ethernet interconnects.

To simplify the mesh generation for an arbitrary number of
processors, we use an idealised case of simple flow through a
square channel. In an attempt to represent a typical mialgjes
turbomachinery calculation with one stage per GPU, therati
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Figure 3. Turbostream weak scaling over multiple GPUs. Performance
is measured as the inverse of the time per grid node per timestep.

between the number of points in the axial, radial and cir@armmnf
ential directions is taken to be 4:1:1. Two million nodesased

per GPU, so the total size of the simulation scales with the-nu
ber of GPUs used. In the authors’ experience, this setuglgios
resembles real world usage — due to the high single-processo
performance of the solver, multiple GPUs are only used icpra
tice if the simulation is too large to fit in a single GPU’s oaand
memory.

As can be seen in Fig. 3, almost ideal scaling is obtained
for 16 GPUs. It should also be noted that the interconneat use
here (Gigabit Ethernet) has poor performance comparechtr ot
options, and that using a higher performance interconnedt s
as Infiniband should improve the scaling performance furthe

VALIDATION

Validation is the biggest hurdle for any new flow solver to
gain acceptance in the community. The authors are curramtly
ning through many different existing TBLOCK test cases with
Turbostream. Although minor differences between the imple
mentation of the two solvers mean that the results are na@ysw
identical, they are in all cases in close agreement with etwér.
A calculation of a three-stage turbine with leakage pathsés
sented in this work.

Three-stage turbine with leakage paths

The test case is a three-stage turbine with leakage paths.
It was originally presented by Rosic et al. [7] to demonstrat
the importance of shroud leakage modeling in multistage tur
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Figure 4. Single stage geometry

bine flow calculations. The original work was carried outngsi
TBLOCK. Here, we show that Turbostream is capable of pro-
ducing similar results.

The arrangement of a single stage is is presented in Fig. 4,
showing both the hub and shroud geometries. All leakagespath
are fully represented in the CFD mesh, and a cavity with iogat
walls has been added to represent the area below the hub. This
stage is replicated three times to form the whole machirselte
ing in an overall computational domain as shown in Fig. 5. The
mesh used is of the H-type, and the total number of grid nodes
is 45-10°. A cluster with four NVIDIA G80 GPUs was used
to calculate the flow, resulting in an overall run time of l&san
10 minutes. Further computational and experimental deta#
given in the original paper.

Experimental and numerical results are presented using
span-wise distributions of the pitchwise averaged exit yaw
gle for the third stator and rotor, as well as exit total puess
coefficient contours for the third stator. The total presuoeffi-
cient was obtained by nondimensionalizing the total presby
the total pressure drop across the whole machine:

_ Poi, — Po

= 14
Poi, — Poex ( )

Po

Two sets of Turbostream results are presented; one with
leakage flows and one without. For comparison, TBLOCK re-
sults for the case with leakages are also shown.

As should be expected, the results are similar to those of the
original work (Rosic et al. [7]) and so only a brief discussio
is warranted here. Fig. 6 shows a meridional view of pitch-
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Figure 7. Pitchwise averaged entropy function: eXF(—AS/R) (TBLOCK)

wise averaged entropy function for Turbostream (Fig. 7 show agreementis much closer. In particular, the shroud leakage

the same for TBLOCK). It is clear that the rotor shroud leakag rotor 2 has strengthened the stator 3 casing secondary fldw an
flows interact strongly, and enhance the casing secondawjrilo pushed the associated loss core toward mid-span. The remain
the following stator. Similarly, but to a lesser extent, gtator ing discrepancy between the CFD and experiment is likelyeto b
hub leakages add to the strength of the hub secondary flow in largely the result of difficulties in obtaining the precismkage
the following rotor. As an example of this effect, Fig. 8 stlow  gaps in the experiment (particularly at the hub). Finalig.™

a comparison of measured (using a 5-hole pneumatic prolgde) an compares the exit yaw angle distributions downstream ¢bs8a
calculated total pressure loss coefficient at the exit absta. and rotor 3. Again, the addition of shroud leakage improhes t
The experimental results show a dominant casing secondary fl  predictions of the stator 3 flow near the casing but, in thiseca
loss core that has migrated to 50% span, and a smaller hub lossthe accuracy of the rotor exit prediction has not been sicpnifily
core at 25% span. With no leakage flows (clean hub and casing improved by the inclusion of leakage paths.

annulus lines), Turbostream predicts two distinct smatlcores

at 15% and 85% span. With the addition of leakage paths, the

8 Copyright © 2009 by ASME
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DISCUSSION

The work presented here has shown that GPUs have enabled [3]

a dramatic acceleration of Turbostream (19 times speediup o
single GPU versus a quad core CPU) as compared to the original
Fortran solver, TBLOCK. Such a step-change will have twarcle
implications for the turbomachinery design process:

First, as demonstrated by the three-stage turbine caionlat
presented in this paper, it is now possible to perform stesidie
simulations of whole machines in less than 10 minutes, ewen o
clusters of moderate size and cost. Furthermore, singldebla

9

calculations are approaching interactive time scales ahtdp
computers with a single GPU.

Second, the performance offered by Turbostream enables
the use of high-fidelity methods in the design process. Famex
ple, full annulus unsteady simulations, which are not qutye
routine for design work, can now be done in calculations tlaat
be left to complete overnight.

CONCLUSIONS

The main conclusion that can be drawn from this work is that
massively parallel architectures such as GPUs can provide-a
der of magnitude greater performance than traditional Cfolds
CFD solvers. However, taking advantage of processors ssich a
the GPU requires a complete rewrite of the solver. We argaie th
the rapidly changing many-core processor landscape mbans t
the use of a source-to-source compiler to decouple the s®lve
definition from its implementation is crucial. This apprbdtas
the added benefit of allowing for the use of complicated optim
sation strategies that would otherwise make it difficult @D
developers to recognise the underlying algorithm in thers®u
code.

For turbomachinery design, the dramatic increase in perfor
mance offered by Turbostream will open up new levels of inter
activity in three-dimensional design, as well as enablimguse
of high-fidelity methods in the routine design process.
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Appendix A: Implementation details

To illustrate how the implementation of stencil operations
differs for CPUs and GPUs, we will consider the simple second
order smoothing stencil defined below:

S
6(&—1,j7k+ai+17j,k

+aj_1k+ & j+1k+ @) k-1 + 8 jke1)s

bijk=(1—9ajk+
(15)

wherea andb are values in a structured grid indexediby, k,
andsis a factor controlling the amount of smoothing.

To simplify the problem, we only consider a computational
domain consisting of a single block. The block has the dimen-
sions NI-2, NJ-2 and NK-2 in the three coordinate directions
In memory, this block is represented as a three-dimensamal
ray with dimensions NI, NJ and NK, where the extra two points
in each dimension contain ghost cells, one on either sidaeof t
domain in each dimension. These ghost cells are assumed-+o co
tain the appropriate values so that whatever boundary tiondi
exist around the block are satisfied when we perform the stenc
operation at the edges of the domain.

Listings 1 and 2 contain examples of the implementation of
the stencil for a CPU and an NVIDIA GPU respectively. The
CPU implementation is in Fortran 77; the GPU implementation
in NVDIA's CUDA language. The examples include the memory
allocation, the calling of the subroutine and the definitidrthe
subroutine itself (note that subroutines are referred thessels
on the GPU). For the sake of brevity, we do not show the ini-
tialization of the memory. The CPU implementation should be
familiar to most CFD developers. It consists of a simple egst
loop over the computational domain, with the inner compaiat
performing the stencil operation.

The GPU implementation is more complicated. First, there
are now two disjoint memory spaces to manage, one for the CPU
and one for the GPU. Itis therefore necessary to allocateangm
on both the CPU (line 5) and the GPU (lines 8 and 9), and then
transfer data from the CPU to the GPU (line 12). Any operation
that involve GPU memory outside of a kernel require callpi®-s
cial functions implemented by the NVIDIA GPU driver, these
have the prefixxuda Second, since a GPU kernel is executed in
parallel by many threads at the same time, it is necessary whe
calling it to specify how many threads are needed and hovethes
should be organised. Here, we assume that the domain is small
enough to fit in a single sub-block, so that only a single “ddre
block” is needed (line 15). A thread block is a CUDA term for
a group of threads that operate together, and are execupeg-in
allel on the same multi-processor. In this particular exenibe
thread block consists of a single plane of threads (line li6}e
that CUDA's facility for multi-dimensional thread blocks used
to simplify the indexing in the kernel later. Finally, therkel is
called with the the required number of threads (line 19).

Copyright (© 2009 by ASME



Listing 1. Fortran implementation for a CPU

Listing 2.  CUDA implementation for an NVIDIA GPU

REAL A(NI,NJ,NK), B(NI,NJ,NK), SF 1
2

CALL SMOOTH(SF, A, B) 3
4

SUBROUTINE SMOOTH(SF, A, B) 5
6

C LOOP OVER DOMAIN 7
DO K=2 ,NK-1 8
DO J=2,NJ-1 9
DO 1=2,NI-1 10
B(I1,J,K) = (1.0-SF}xA(I1+1,J,K) + 11
& SFx(A(1 —1,3 ,K) + A(1+1,J,K) + 12
& A(1,J-1,K) + A(1,J+1,K) + 13
& A(l,J,K=1) + A(I,J,K+1))/6.0 14
END DO 15
END DO 16
END DO 17
RETURN 18
END 19
20

21

22

Regarding the implementation of the kernel itself, the fdl3
lowing points should be noted: 2‘5‘

1.

. Each thread uses the built-in variableeadl dx to find its

. The variable$m1, j andjpl are used to hold the offsets t67

. Data from the arrap_d in the GPU’s main memory is ex-43

. The outer threads only load data from the ghost zones

Two CUDA-specific keywords are used. The GPU kernelj
defined as_global__ (line 22), which means that it is called,q
from the CPU and is exectuted on the GPU. The array stgg-
age in the kernel is defined asshared__ (line 27), which 30
means that the arrays are stored in the 16KB on-chip me¥h-
ory associated with each of the GPU’s multi-processors.

i and k coordinate in the plane of a sub-block (lines 31 apsl
32). 36

thej—1, j andj+ 1 planes in shared memory (line 38) 38
These are cycled at the end of each iteration (line 58) so that
the new plane that is loaded during the next iteration regdags
the one that is no longer required by the stencil operations2

plicitly loaded into the array in shared memory (lines 34,14
35 and 44). The threads in the plane load one value e

so the built-in function_syncthreads() has to be called to47
make sure all the threads have finished loading data befare
progressing further in the code. 49

g
do not participate in the computation with the inner threa£

/+ Macro for 3D to 1D index translationx/

#define 13D (ni,nj,i,j,k) ((i)+(ni)*(j)+(ni)=(nj)=(k))
float xa.cpu, xa.gpu, xb_gpu, sf;

I/« allocate memory on the host (CPUX/
nbyte = sizeof (float)*NIxNJ«NK;

a_h = malloc (nbyte);

I/« allocate memory on the device (GPU3)/
cudaMalloc(&ad, nbyte);

cudaMalloc(&hd, nbyte);

I+« transfer memory from host to device/
cudaMemcpy (ad , ah, nbyte, cudaMemcpyHostToDevice);

I« GPU kernel parametersx/

numthreadblocks = dim3(1,1,1);// single thread bloc
numthreads = dim3(NI,NK,1);// plane of threads

I+ invoke GPU kernel x/
smoothkernel<<<num_threadblocks ,
ad, b.d, sf);

numthreads>>>(

__global_._ void smoothkernel (
float sf, float xa_data, float xb_data)
{

int i, j, jml, jpl1, k, j-plane;
/+ shared memory for three planes/
__shared. float a[NI][3][NK];

I/« current thread indexx*/
i (int)threadldx .x;

k (int)threadldx .y;

/x fetch the first planes into shared memony/
a[i][0][k] = a_d[I3D(NI, NJ, i, 0, k)]
a[i][1][k] = a-d[ISD(NI, NJ, i, 1, kK)I;

I« set initial jm1, j, jpl =/

jml = 0; j =1; jpl = 2;

/% iterate upwards in j-direction x/

for (j_-plane=1; pplane < NJ-1; j_plane++) {

I/« read the next plane into the jpl slo&/
alilljpl]1[k] = a-d[ISBD(NI, NJ, i, j-plane+1, k)]
/+ make sure reads into shared memory are domé
__syncthreads ();

I/« ghost-zone threads don't compute!/

if (i>08&% i < ni—-1& k > 0 & k < nk—1) {
/x apply stencil and write out resultx/
i000 = I3BD(NI, NJ, i, j, k);

(line 49). 53 b.d[i000] = (1.0f-sf)xa[i][j][k] +
54 stx(ali—1][j1[k] + a[i+1][j]1[K] +
55 al[i][im1][k] + a[il[jp1][k] +
56 a[il[jllk=1] + a[i][j][k+1])/6.0f;
57 1
58 I/« cycle j indices x/
59 tmp = jml; jml = j; j = jpl; jpl = tmp;
60 }
61 |}
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