
Proceedings of GT2009
ASME Turbo Expo 2009: Power for Land, Sea and Air

June 8-12, 2009, Orlando, USA

GT2009-60052

AN ACCELERATED 3D NAVIER-STOKES SOLVER FOR FLOWS IN
TURBOMACHINES

Tobias Brandvik and Graham Pullan
Whittle Laboratory

Department of Engineering
University of Cambridge

Cambridge, UK
tb302@cam.ac.uk, gp10006@cam.ac.uk

ABSTRACT
A new three-dimensional Navier-Stokes solver for flows in

turbomachines has been developed. The new solver is based on
the latest version of the Denton codes, but has been implemented
to run on Graphics Processing Units (GPUs) instead of the tradi-
tional Central Processing Unit (CPU). The change in processor
enables an order-of-magnitude reduction in run-time due tothe
higher performance of the GPU. Scaling results for a 16 node
GPU cluster are also presented, showing almost linear scaling
for typical turbomachinery cases. For validation purposes, a test
case consisting of a three-stage turbine with complete hub and
casing leakage paths is described. Good agreement is obtained
with previously published experimental results. The simulation
runs in less than 10 minutes on a cluster with four GPUs.

NOMENCLATURE
u Velocity vector
λ Thermal conductivity
ρ Density
τ Viscous stress tensor

cv Specific heat at constant volume
R Gas constant
e Specific entergy= cvT + 1

2v2

h0 Stagnation enthalpy
p Pressure

p0 Stagnation pressure
T Temperature

t Time
v Velocity magnitude

∆s Entropy change

INTRODUCTION
A key metric in the evaluation of a CFD solver is the time

taken per node per timestep. Advances in hardware and, to a
lesser extent, algorithms have enabled this metric to fall contin-
uously. In terms of low-cost commodity hardware (CPUs), pro-
cessor clock speed and changes in processor architecture were
the primary drivers for this advance in the 1980s and 1990s. At
present, parallel computing using clusters of multi-core proces-
sors is the key enabler. None-the-less, a step change in thismetric
(at least one order of magnitude) would be invaluable in bringing
high fidelity (LES, DNS) solutions into routine industrial use or
in making the current standard of design tools interactive.

Alongside the shift from single- to multi-core CPUs that has
occurred over the last five years, advances have also been made
for other types of processors. There are now a variety of chips on
the market that exhibit a higher level of parallelism (and hence
performance) than CPUs, including Graphics Processing Units
(GPUs) and the STI Cell microprocessor. Taking advantage of
such processors for CFD calculations could deliver a step change
in performance today, but requires significant changes to the un-
derlying code.

There has been only limited work reported so far on the use

1 Copyright c© 2009 by ASME

of these novel processors for CFD. The present authors have pre-
sented results for 2D [1] and 3D [2] Euler solvers for turboma-
chinery applications, achieving speed-ups of an order of mag-
nitude for both AMD and NVIDIA GPUs compared to a single
CPU core. Similar results, with the extension to include a full
multigrid scheme, have also been presented by Elsen et al. [3]
for a 3D Euler solver with applications to external flows.

In this paper, a new three-dimensional Navier-Stokes solver
which runs on GPUs is presented. The solver, called Tur-
bostream, includes a mixing-length turbulence model and the ca-
pability of simulating both steady and unsteady flows in multi-
row turbomachines. In addition, the solver is able, throughthe
use of the Message Passing Interface (MPI), to utilise many
GPUs together to solve problems that are beyond the scope of
a single processor. To the authors’ knowledge, this represents
the first viscous solver for engineering flows running on a large
number of GPUs.

We first present an overview of many-core processors, fo-
cusing specifically on GPUs and how they relate to CPUs. A
brief description of the solver algorithm and implementation is
then given, followed by a discussion of the solver’s performance
as it compares to an older CPU solver that implements the same
algorithm. Finally, a test case consisting of a three-stageturbine
with hub and casing leakage paths is presented. Comparisons
showing good agreement with experiments are also given.

MANY-CORE PROCESSORS
In order to keep increasing the computational power of their

chips, the semiconductor industry has now moved from single- to
multi-core designs. The reason for this switch is the requirement
to keep within an acceptable power envelope of around 100-200
Watts. Given this constraint, Borkar [4] has identified the dimin-
ishing returns of core complexity as the main motivator for multi-
core processors. He refers to this relationship as Pollack’s rule,
which states that the computational power of a core is roughly
proportional to the square root of its complexity. Therefore, it is
clearly more power-efficient to use the extra transistors offered
by technology scaling to add more cores to a chip, rather than
to increase the complexity of the exisiting ones. This trendis
widely expected to continue, resulting in 1000-core chips being
common-place within the next 10 years.

For software development, the consequenses of this explo-
sion in core count are far-reaching, requiring significant changes
to old codes and the algorithms they use. In this paper, the prob-
lem is approached from the point of view of a developer rewriting
an existing Fortran structured grid CFD solver. To set the stage,
we first introduce the two different processors that will be con-
sidered. The first is a quad-core Intel Xeon CPU which is repre-
sentative of the processors that run most CFD solvers today;the
second is the less familiar design of an NVIDIA GPU that is the
current target processor of Turbostream. A schematic overview

of both processors can be seen in Fig. 1.

Intel Xeon
The processor considered here is the 2.33GHz Harpertown

variant in Intel’s Xeon line. It is a general-purpose processor,
meaning that it is capable of running an operating system on its
own. Harpertown is a dual-die quad-core, i.e. two dual-cores
put together in the same package. Each core has its own 32 KB
L1 cache, while each die has its own 4 MB L2 cache shared be-
tween the two cores. Each core also has an adder and a multiplier
for 128-bit vectors, making it capable of 18.6 single precision
GFLOP/s (109 floating point operations per second). The theo-
retical aggregate performance of the whole chip is therefore 74.4
GFLOP/s. The cores have access to external memory through the
front side bus (FSB) at a rate of 10.6 GB/s.

The programming approach used for structured grid appli-
cations on CPUs is now well established. Typically, some form
of domain decompositioning with ghost cells is used to splitthe
domain between the processor cores. One CPU process is then
started per core. Each process iterates over its part of the domain,
updating the grid variables as it goes along. At the end of each
iteration, the processes exchange data with each other to update
the ghost cells by using MPI. A variation on this approach is to
only start one CPU process per processor, and then parallelise
the work given to that processor across its cores using threads
(either created explicitly or through compiler directivessuch as
OpenMP). However, since most established codes were already
parallelised with MPI before the arrival of multi-core CPUs, the
pure MPI approach involves less work and seems to be more pop-
ular.

NVIDIA GPU
The NVIDIA GPU considered here is the latest GT200 chip.

The older G80 chip is also used in some of the performance mea-
surements presented later - this has approximately half theper-
formance of the GT200.

The GT200 is is designed to accelerate the rendering of 3D
scenes in computer games, so its volume sales are driven by the
computer games industry. Unlike a CPU, it is not a general-
purpose chip and cannot run an operating system. Instead, itis
sold as part of an add-in card (graphics card) that comes withits
own on-board memory and plugs into an expansion slot on the
PCI-Express bus. The GT200 consists of 30 multi-processors
(MP), each of which contains 8 scalar processing units (SP) and
16 KB of explicitly managed local storage (referred to as shared
memory). Each MP has its own instruction counter and operates
independently of the others. Each SP can schedule one multi-
ply and one multiply-add operation (both single precision)per
cycle, giving a theoretical peak performance of 933GFLOP/sat
1.296GHz. By using a wide 512-bit bus to the graphics card’s on-
board GDDR3 memory, the GT200 achieves a maximum band-

2 Copyright c© 2009 by ASME

4MB Shared L2

XEON XEONXEON

4MB Shared L2

FSB

DDR2 DRAM

XEON

10.6GB/s

16K

x 30 G
D

D
R

3
D

R
A

MSP SP SP SP SP SP SP SP

Intel Xeon CPU NVIDIA GT200 GPU

142GB/s

Figure 1. CPU and GPU architecture overview

width of 141.7GB/s.

To simplify the programming of their GPUs, NVIDIA has
developed an extension to the C programming language called
CUDA. In a CUDA program, the developer sets up a large num-
ber of threads (often several thousand) that are grouped into
thread blocks. A CUDA thread is the smallest unit of execution
and has a set of registers and a program counter associated with
it. This is similar to traditional CPU threads, but CUDA threads
are much less expensive to create and swap between. Each thread
block is executed on a single multi-processor. It is possible to
synchronize the threads within a block, allowing the threads to
share data through the shared memory. Given that a thread block
can consist of more threads than the number of processors in a
multi-processor, the hardware is responsible for scheduling the
threads. This allows it to hide the latency of fetches from the
on-board memory by letting some threads perform computations
while others wait for data to arrive. For structured grid applica-
tions, a natural way of organising the code is to split the main
grid into smaller grids which can fit into the shared memory. A
block of threads is then started within each of the smaller grids
to compute the updated variables.

ALGORITHM

Turbostream is heavily based on the long line of codes from
Denton. In particular, it uses the same algorithm as that of the lat-
est Denton code, TBLOCK, with only minor differences in the
way that this algorithm is implemented. A complete descrip-
tion of TBLOCK is given by Klostermeier [5], while shorter
overviews and examples of its application to turbomachinery
problems have been published by Reid et al. [6] and Rosic et
al. [7]. In addition, the motivation for the current method can
be traced through a series of papers by Denton [8–11]. Here,
we give a basic overview of the algorithm as it is used in Tur-
bostream.

Algorithm overview
Turbostream uses a multi-block topology with arbitrary

patch interfaces to capture complex geometries. Information
is passed between blocks using surface patches which con-
tain nodes that are physically coincident but reside on different
blocks. The flow properties at these nodes are averaged at theend
of each timestep. Parallel simulations on a cluster of processors
can be performed by decomposing the domain on a block basis.
This decomposition is performed as an automatic pre-processing
step in which each block can be further split into smaller blocks
to achieve better load-balancing.

The Navier-Stokes equations are discretised using a finite
volume method with vertex storage in a structured grid of
hexahedral cells. In this technique, the equations in theirintegral
form for mass, momentum and energy are used:

Mass:

∂
∂t

Z

Ω
ρdΩ +

I

A
ρu.dA = 0 (1)

Momentum:

∂
∂t

Z

Ω
ρudΩ +

I

A
ρu(u.dA)+

I

A
pdA−

I

A
τ.dA = 0 (2)

Energy:

∂
∂t

Z

Ω
ρedΩ +

I

A
ρh0u.dA−

I

A
(τ.u).dA−

I

A
λ∇T.dA = 0 (3)

whereΩ is a control volume bounded by a surface A. The above
integrals are performed on each cell in the grid using a second-
order spatial discretisation.

The equations can be expressed less formally as

∂U
∂t

=
ΣF
V

+ S (4)

3 Copyright c© 2009 by ASME

whereU is a vector containing the primary flow variables,F is
a vector containing the fluxes of the primary variables, the flux
summation is over the faces of the cell,S contains any source
terms andV is the volume of the cell. In the manner described
by Denton [10], the source vector is here used to hold the viscous
terms. This equation is integrated forward to reach a steadystate
(dU

dt ≈ 0) using the Scree scheme (see Denton [12]):

∆U =

(

2
∂U
∂t

∣

∣

∣

n
−

∂U
∂t

∣

∣

∣

n−1

)

∆t (5)

where the subscripts refer to the time step that the derivatives
were evaluated at.

Since the integrals are evaluated for a hexahedral cell and the
solver uses vertex storage, the cell-based∆U has to be distributed
to the surrounding vertices, each receiving an eighth. Finally, to
maintain numerical stability, artifical smoothing is then applied
to all the flow variables. Presently, only second-order smoothing
is used, but a more traditional blended second- and fourth-order
smoothing procedure is being considered.

Turbulence model
The effect of turbulence is modelled using a simple algebraic

mixing-length model in which the turbulent viscosityνt is related
to a length scalelmix over which turbulent mixing is assumed to
take place:

νt = l2mix

√

2Si j Si j (6)

whereSi j is the strain-rate tensor:

Si j =
1
2

(

∂ui

∂x j
+

∂u j

∂xi

)

(7)

The main drawback of this model is the specification of the mix-
ing length which is different for every type of flow. Experience
from previous Denton codes has shown that for turbomachinery
applications, a limiter based on the blade pitch is appropriate:

lmix =

{

κyn, yn < xlim

κxlim, yn > xlim
(8)

whereκ is a constant,yn is the normal distance from the nearest
wall andxlim is usually taken to be three percent of the pitch.
yn is calculated by Turbostream before the start of the main

timestepping loop using the Poisson equation approach described
by Tucker et al. [13].

To avoid having to use many grid points in the boundary
layer, the flow is allowed to slip at the walls and a wall-function
is used to obtain an expression for the wall shear stress. In this
approach, it is assumed that the first grid point away from the
wall lies either in the viscous sub-layer or in the logarithmic re-
gion of a turbulent boundary layer. In the former case the wall
shear stress is approximated by

Cf ,w =
1

Rew
(9)

and in the latter case by a curve fit to the log-law in the form of

Cf ,w = −0.001767+
0.03177
lnRew

+
0.25614
(lnRew)2 (10)

whereCf ,w is the coefficient of friction defined as

Cf ,w =
τw

1
2ρU2

w

(11)

andRew is the cell Reynolds number defined as

Rew =
ρUwyw

µ
(12)

In the above equations,Uw is the velocity at the first grid node
off the wall andyw the height of the cell normal to the wall.

Convergence acceleration
To accelerate the convergence rate, Turbostream uses both

spatially varying timesteps and a multi-grid scheme. In thefor-
mer method, the timestep in each cell is limited by the local flow
properties and geometry, allowing much larger timesteps tobe
used in the large free-stream cells that would otherwise be lim-
ited by the small cells in the boundary layer. The latter method
uses multiple grid levels, each coarser than the preceding one,
to accelerate the convergence by dispersing transients quickly
on the coarser levels while retaining the spatial accuracy of the
finest. In the Denton formulation used by Turbostream, adjacent
cells are combined to form a grid of larger cells or blocks. The
new coarse mesh is treated in just the same way as the original
fine grid and so much larger timesteps are possible. The change
in the value ofU during one iteration is given by

4 Copyright c© 2009 by ASME

∆U =

∣

∣

∣

∣

ΣF
V

+ S

∣

∣

∣

∣

cell
∆tcell + ∑

blks

[
∣

∣

∣

∣

ΣF
V

+ S

∣

∣

∣

∣

block
∆tblock

]

(13)

where the summation is over all the blocks to which the relevant
cell belongs. Typically, three levels of multi-grid with a coarsen-
ing ratio of two are used.

Multistage and unsteady simulations
For steady-state calculations, multistage simulations are

made possible by circumferentially averaging the flow entering a
blade row, see Denton and Singh [14], Dawes [15], Denton [11].
The technique is applied at a mixing plane, the position of which
is arbitrarily chosen by the user. The non-uniform flow upstream
of this plane is mixed out so that it becomes pitchwise, but not
spanwise, uniform downstream of the mixing plane. The process
is conservative, but, like any mixing process, it is irreversible (see
Fritsch and Giles [16]). In addition, care must be taken to avoid
locating the mixing plane too close to leading or trailing edges,
and thereby enforcing a non-physical circumferentially uniform
flow.

For unsteady simulations, Turbostream implements the
‘dual time stepping’ technique proposed by Jameson [17]. This
procedure allows the convergence acceleration methods de-
scribed earlier to be used in time-accurate simulations by split-
ting the calculation up into a number of implicit ‘outer loops’
that iterate forwards in real time, each of which is comprised of
a number of explicit ‘inner loops’ that converge the flow to a
steady state in pseudo-time. Multistage unsteady simulations are
enabled through an interpolation procedure that transfersinfor-
mation across a sliding interface that connects the upstream and
downstream grid blocks which rotate relative to each other.

IMPLEMENTATION
During the initial considerations of implementing a flow

solver to run on many-core architectures, there was some con-
cern over the great number of different processors and program-
ming models available. For GPUs alone, there are several op-
tions; these include the two main chip manufacturers AMD and
NVIDIA and at least half a dozen programming languages and
libraries that in some cases only target one vendor’s GPUs. In
this situation, it seems a daunting prospect to pick one combina-
tion that will have the longevity required for CFD solvers whose
lifetime is often measured in decades.

For this reason, it was decided that another approach than
a direct implementation was needed. Turbostream is therefore
expressed as a series of subroutine definitions in the high-level
Python scripting language. These definitions contain the input

j

Sub-block Threads in plane

k

i

j+1

j

j-1

Figure 2. Iteration procedure for stencil subroutines

and output arguments for each subroutine, as well as the compu-
tations that are carried out within them. An as yet unpublished
source-to-source compiler, which was developed for this work
by the authors, is then used to transform these definitions into
source code that can be further compiled for the target architec-
ture that we wish to run on. Currently, the compiler can produce
code for either multi-core CPUs or NVIDIA GPUs, with support
for the Cell processor currently being developed. Aside from en-
abling the solver to run on many different processors from the
same source code definition, this source-to-source compilation
approach has two other main benefits:

1. Since the definitions of the solver subroutines are com-
pletely separate from the source code that is actually pro-
duced for the target platform, the compiler is free to per-
form many different optimisations that would otherwise
have complicated the code to an unacceptable degree. For
an indication of the range and complexity of the many opti-
misations, of which only a subset are currently used by our
compiler, necessary to achieve near-optimal performance on
modern many-core architectures, see Datta et al. [18].

2. The use of a high-level language to express the logic of the
solver makes it easier for domain scientists to add extensions
such as new numerical schemes and turbulence models. This
capability is important because the solver is intended to bea
platform for academic research as well as a production code
for day-to-day turbomachinery design.

In addition to the compiler, a runtime library has also been
developed that takes care of memory management, subroutine
invocation, file I/O and MPI communication. Since the details of
the former two tasks are different for each processor, theseparts
of the library have to be written separately for each processor.

It should be noted that the source-to-source compilation
strategy described here is only possible because of the limited
range of computations that are performed by structured grid
solvers. In short, each subroutine is a combination of stencil
operations that use the nearest neighbours of a node to update its
properties. The only computations that break with this paradigm
are in the multigrid routine, which therefore has to be imple-
mented seperately for each processor.

5 Copyright c© 2009 by ASME

The main difficulty in producing efficient code for the sten-
cil subroutines is in parallelising the computations across the
hundreds of scalar processing units present on modern GPUs.
The strategy used by the compiler is to split each grid block
into smaller sub-blocks that are computed independently ofea-
chother. One CUDA thread is started for each node in a plane of
the sub-block. At the start of the subroutine, each thread loads
in the necessary grid node values corresponding to its location.
The threads then iterate upwards in the sub-block (Fig. 2), each
time fetching a new plane and computing the values for the cur-
rent one. Given that the shared memory can hold 16 KB, a typical
sub-block size is 16x10x5. For such sub-block sizes, the surface-
to-volume ratio is low enough to get good data reuse. The over-
all approach is similar to that described by Williams et al. [19]
for structured grid applications on the Cell processor. A more
detailed explanation of this implementation strategy and how it
differs from that commonly used on CPUs has been included in
Appendix A.

A final issue that has to be considered for a GPU implemen-
tation is that of data transfers across the PCI-Express bus which
bridges the CPU and GPU memory spaces. The PCI-Express bus
has a theoretical maximum bandwidth of 4 or 8 GB/s depending
on whether it is of generation 1 or 2. When this number is com-
pared to the bandwidth between the GPU’s on-board GDDR3
memory and the GPU multi-processors (up to 141.7 GB/s), it
becomes clear that any algorithm that requires a large amount
of continous data transfer between the CPU and GPU will not
achieve good performance. For a CFD solver, the obvious so-
lution is to limit the size of the domain that can be calculated so
that all of the necessary data can be stored in the GPU’s on-board
memory. Using this approach, it is only necessary to perform
large transfers across the PCI-Express bus at the start of the cal-
culation (the geometry) and at the end (the final flow solution).
High-end GPUs today have up to 4 GB of on-board memory, suf-
ficient to store all the data needed by Turbostream for a grid with
12·106 nodes, so this restriction is not a a significant limitation.

When operating in parallel across multiple GPUs, some
boundary information must inevitably be transferred across the
PCI-Express bus at the end of every time step. However, as will
be shown in the next section, the low surface-to-volume ratios in
turbomachinery grids mean that this data transfer is not a bottle-
neck.

PERFORMANCE
For any CFD solver, there are two important performance

metrics:

1. How fast is the solver on a single processor?
2. How well does the performance of the solver scale when

multiple processors are used together to tackle larger prob-
lems?

Table 1. Single processor performance

Solver Processor Time/node/step

TBLOCK Intel Xeon 2.33 GHz 5.1 ·10−7 s

Turbostream NVIDIA GT200 2.7 ·10−8 s

Turbostream dramatically increases the single-processorperfor-
mance as compared to other solvers by using NVIDIA GPUs
instead of traditional CPUs. To demonstrate this speed-up,we
compare TBLOCK running on all four cores of an Intel Xeon
2.33 GHz CPU with Turbostream running on an NVIDIA GT200
GPU. TBLOCK was compiled with the Intel 10.1 Fortran com-
pilers with automatic vectorisation and the highest degreeof
optimisation turned on, while Turbostream was compiled with
NVIDIA’s GPU compiler. Both solvers show approximately con-
stant performance for grids with more than 105 nodes so a rep-
resentative case with 106 nodes was used. The results are sum-
marised in Table 1, which shows the time taken per grid node
per timestep for each solver. The high performance of Tur-
bostream running on the NVIDIA GPU is primarily due to the
GPU’s higher memory bandwidth, as well as the extra optimi-
sations allowed by the source-to-source compilation. In terms
of wall-clock time, both solvers converge in approximatelythe
same number of timesteps, with a typical 300,000 node single-
row calculation that requires 5,000 steps taking approximately 1
minute in total with Turbostream and 20 minutes in total with
TBLOCK.

Over the last 10 years, CFD has become increasingly re-
liant on clusters of processors to enable more detailed simula-
tions within design time frames. For this reason, the scalabil-
ity of a solver across multiple processors can be equally impor-
tant as its single-processor performance. A potential problem
with increasing the single-processor performance by an order
of magnitude is then that the multi-processor performance suf-
fers since the time required to exchange boundary information
remains roughly constant. However, the low surface-to-volume
ratios in turbomachinery grids mean that good scalability can be
achieved even with very fast solvers. To demonstrate this point,
Fig. 3 shows the performance of Turbostream across a cluster
of 16 NVIDIA G80 GPUs. There are four nodes in the cluster,
each consisting of a traditional 1U server with a quad-core CPU
connected through PCI-Express cables to another 1U server with
four GPUs. The nodes are networked together with 1 Gigabit
Ethernet interconnects.

To simplify the mesh generation for an arbitrary number of
processors, we use an idealised case of simple flow through a
square channel. In an attempt to represent a typical multi-stage
turbomachinery calculation with one stage per GPU, the ratio

6 Copyright c© 2009 by ASME

0 2 4 6 8 10 12 14 16
Number of GPUs

0

2

4

6

8

10

12

14

16

P
e
rf

o
rm

a
n
ce

Ideal
Actual

Figure 3. Turbostream weak scaling over multiple GPUs. Performance

is measured as the inverse of the time per grid node per timestep.

between the number of points in the axial, radial and circumfer-
ential directions is taken to be 4:1:1. Two million nodes areused
per GPU, so the total size of the simulation scales with the num-
ber of GPUs used. In the authors’ experience, this setup closely
resembles real world usage – due to the high single-processor
performance of the solver, multiple GPUs are only used in prac-
tice if the simulation is too large to fit in a single GPU’s on-board
memory.

As can be seen in Fig. 3, almost ideal scaling is obtained
for 16 GPUs. It should also be noted that the interconnect used
here (Gigabit Ethernet) has poor performance compared to other
options, and that using a higher performance interconnect such
as Infiniband should improve the scaling performance further.

VALIDATION
Validation is the biggest hurdle for any new flow solver to

gain acceptance in the community. The authors are currentlyrun-
ning through many different existing TBLOCK test cases with
Turbostream. Although minor differences between the imple-
mentation of the two solvers mean that the results are not always
identical, they are in all cases in close agreement with eachother.
A calculation of a three-stage turbine with leakage paths ispre-
sented in this work.

Three-stage turbine with leakage paths
The test case is a three-stage turbine with leakage paths.

It was originally presented by Rosic et al. [7] to demonstrate
the importance of shroud leakage modeling in multistage tur-

Figure 4. Single stage geometry

bine flow calculations. The original work was carried out using
TBLOCK. Here, we show that Turbostream is capable of pro-
ducing similar results.

The arrangement of a single stage is is presented in Fig. 4,
showing both the hub and shroud geometries. All leakage paths
are fully represented in the CFD mesh, and a cavity with rotating
walls has been added to represent the area below the hub. This
stage is replicated three times to form the whole machine, result-
ing in an overall computational domain as shown in Fig. 5. The
mesh used is of the H-type, and the total number of grid nodes
is 4.5 · 106. A cluster with four NVIDIA G80 GPUs was used
to calculate the flow, resulting in an overall run time of lessthan
10 minutes. Further computational and experimental details are
given in the original paper.

Experimental and numerical results are presented using
span-wise distributions of the pitchwise averaged exit yawan-
gle for the third stator and rotor, as well as exit total pressure
coefficient contours for the third stator. The total pressure coeffi-
cient was obtained by nondimensionalizing the total pressure by
the total pressure drop across the whole machine:

Cp0 =
p0in − p0

p0in − p0ex

(14)

Two sets of Turbostream results are presented; one with
leakage flows and one without. For comparison, TBLOCK re-
sults for the case with leakages are also shown.

As should be expected, the results are similar to those of the
original work (Rosic et al. [7]) and so only a brief discussion
is warranted here. Fig. 6 shows a meridional view of pitch-

7 Copyright c© 2009 by ASME

Figure 5. Computational domain

0.90 0.93 0.95 0.97 1.00

Figure 6. Pitchwise averaged entropy function: exp(−∆s/R) (Turbostream)

0.90 0.93 0.95 0.97 1.00

Figure 7. Pitchwise averaged entropy function: exp(−∆s/R) (TBLOCK)

wise averaged entropy function for Turbostream (Fig. 7 shows
the same for TBLOCK). It is clear that the rotor shroud leakage
flows interact strongly, and enhance the casing secondary flow in
the following stator. Similarly, but to a lesser extent, thestator
hub leakages add to the strength of the hub secondary flow in
the following rotor. As an example of this effect, Fig. 8 shows
a comparison of measured (using a 5-hole pneumatic probe) and
calculated total pressure loss coefficient at the exit of stator 3.
The experimental results show a dominant casing secondary flow
loss core that has migrated to 50% span, and a smaller hub loss
core at 25% span. With no leakage flows (clean hub and casing
annulus lines), Turbostream predicts two distinct small loss cores
at 15% and 85% span. With the addition of leakage paths, the

agreement is much closer. In particular, the shroud leakagefrom
rotor 2 has strengthened the stator 3 casing secondary flow and
pushed the associated loss core toward mid-span. The remain-
ing discrepancy between the CFD and experiment is likely to be
largely the result of difficulties in obtaining the precise leakage
gaps in the experiment (particularly at the hub). Finally, Fig. 9
compares the exit yaw angle distributions downstream of stator 3
and rotor 3. Again, the addition of shroud leakage improves the
predictions of the stator 3 flow near the casing but, in this case,
the accuracy of the rotor exit prediction has not been significantly
improved by the inclusion of leakage paths.

8 Copyright c© 2009 by ASME

0.74

0.71

0.69

0.67

0.64

Figure 8. Cp0 contours - Stator 3

60 64 68 72 76
Yaw (
◦
)

0.0

0.2

0.4

0.6

0.8

1.0

S
p
a
n

Stator 3

 TS - no leak
 TS - leak
TB - leak
 Exp −78−74−70−66−62

Relative yaw (
◦
)

0.0

0.2

0.4

0.6

0.8

1.0
Rotor 3

Figure 9. Measured and predicted pitchwise averaged yaw angle

DISCUSSION
The work presented here has shown that GPUs have enabled

a dramatic acceleration of Turbostream (19 times speed-up on a
single GPU versus a quad core CPU) as compared to the original
Fortran solver, TBLOCK. Such a step-change will have two clear
implications for the turbomachinery design process:

First, as demonstrated by the three-stage turbine calculation
presented in this paper, it is now possible to perform steady-state
simulations of whole machines in less than 10 minutes, even on
clusters of moderate size and cost. Furthermore, single blade

calculations are approaching interactive time scales on desktop
computers with a single GPU.

Second, the performance offered by Turbostream enables
the use of high-fidelity methods in the design process. For exam-
ple, full annulus unsteady simulations, which are not currently
routine for design work, can now be done in calculations thatcan
be left to complete overnight.

CONCLUSIONS
The main conclusion that can be drawn from this work is that

massively parallel architectures such as GPUs can provide an or-
der of magnitude greater performance than traditional CPUsfor
CFD solvers. However, taking advantage of processors such as
the GPU requires a complete rewrite of the solver. We argue that
the rapidly changing many-core processor landscape means that
the use of a source-to-source compiler to decouple the solver’s
definition from its implementation is crucial. This approach has
the added benefit of allowing for the use of complicated optimi-
sation strategies that would otherwise make it difficult forCFD
developers to recognise the underlying algorithm in the source
code.

For turbomachinery design, the dramatic increase in perfor-
mance offered by Turbostream will open up new levels of inter-
activity in three-dimensional design, as well as enabling the use
of high-fidelity methods in the routine design process.

ACKNOWLEDGMENT
The authors would like to thank NVIDIA for donating the

GPU hardware used in this work. In addition, the authors are
grateful to Budimir Rosic of the Whittle Laboratory for provid-
ing the three-stage turbine test case.

REFERENCES
[1] Brandvik, T., and Pullan, G., 2007. “Acceleration of a two-

dimensional Euler solver using commodity graphics hard-
ware”. IMechE Journal of Mechanical Engineering Sci-
ence,221(12), pp. 1745–1748.

[2] Brandvik, T., and Pullan, G., 2008. “Acceleration of a 3D
Euler Solver using Commodity Graphics Hardware”.46th
AIAA Aerospace Sciences Meeting, Reno, NV.

[3] Elsen, E., LeGresley, P., and Darve, E., 2008. “Large calcu-
lation of the flow over a hypersonic vehicle using a GPU”.
J. Comput. Phys.,227(24), pp. 10148–10161.

[4] Borkar, S., 2007. “Thousand core chips: a technology per-
spective”. In DAC ’07: Proceedings of the 44th annual
conference on Design automation.

[5] Klostermeier, C., 2008. “Investigation into the Capabil-
ity of Large Eddy Simulation for Turbomachinery Design”.
PhD thesis, University of Cambridge.

9 Copyright c© 2009 by ASME

[6] Reid, K., Denton, J., Pullan, G., Curtis, E., and Longley, J.,
2007. “The Interaction of Turbine Inter-Platform Leakage
Flow With the Mainstream Flow”.ASME J. Turb.,129(2),
pp. 303–310.

[7] Rosic, B., Denton, J. D., and Pullan, G., 2006. “The Impor-
tance of Shroud Leakage Modeling in Multistage Turbine
Flow Calculations”.ASME J. Turb.,128(4), pp. 699–707.

[8] Denton, J. D., 1975. “A Time Marching Method for Two
and Three Dimensional Blade to Blade Flow”.Aero. Res.
Coun. 3775.

[9] Denton, J. D., 1982. “An Improved Time Marching Method
for Turbomachinery Flow Calculation”.ASME 82-GTP-
239.

[10] Denton, J. D., 1990. “The Use of a Distributed Body
Force to Simulate Viscous Effects in 3D Flow Calcula-
tions”. ASME 86-GT-144.

[11] Denton, J. D., 1990. “The Calculation of Three Dimen-
sional Viscous Flow through Multistage Turbomachines”.
ASME 90-GT-19.

[12] Denton, J. D., 2002. “The effects of lean and sweep on
transonic fan performance”.TASK Quart., pp. 7–23.

[13] Tucker, P. G., Rumsey, C. L., Spalart, P. R., Bartels, R.E.,
and Biedron, R. T., 2005. “Computations of Wall Distances
Based on Differential Equations”.AIAA Journal,43.

[14] Denton, J. D., and Singh, U. K., 1979. “Time Marching
Methods for Turbomachinery Flow Calculation”.VKI Lec-
ture Series - 1979-7.

[15] Dawes, W. N., 1992. “Toward Improved Throughflow
Capability: The Use of Three-Dimensional Viscous Flow
Solvers in a Multistage Environment”.ASME J. Turb.,
114(8), pp. 8–17.

[16] Fritsch, G., and Giles, M. B., 1992. “Second-order Effects
of Unsteadiness on the Performance of Turbomachines”.
ASME 92-GT-389.

[17] Jameson, A., 1991. “Time Dependent Calculations Using
Multigrid, with Applications to Unsteady Flows Past Air-
foils and Wings”.AIAA 91-1596.

[18] Datta, K., Murphy, M., Volkov, V., Williams, S., Carter,
J., Oliker, L., Patterson, D., Shalf, J., and Yelick, K.,
2009. “Stencil Computation Optimization and Autotun-
ing on State-of-the-Art Multicore Architectures”. In Su-
percomputing 2009.

[19] Williams, S., Carter, J., Oliker, L., Shalf, J., and Yelick,
K., 2007. “Scientific Computing Kernels on the Cell Pro-
cessor”. International Journal of Parallel Programming,
35(3), pp. 263–298.

Appendix A: Implementation details
To illustrate how the implementation of stencil operations

differs for CPUs and GPUs, we will consider the simple second
order smoothing stencil defined below:

bi, j ,k = (1−s)ai, j ,k +
s
6
(ai−1, j ,k +ai+1, j ,k

+ai, j−1,k +ai, j+1,k +ai, j ,k−1+ai, j ,k+1), (15)

wherea andb are values in a structured grid indexed byi, j, k,
ands is a factor controlling the amount of smoothing.

To simplify the problem, we only consider a computational
domain consisting of a single block. The block has the dimen-
sions NI-2, NJ-2 and NK-2 in the three coordinate directions.
In memory, this block is represented as a three-dimensionalar-
ray with dimensions NI, NJ and NK, where the extra two points
in each dimension contain ghost cells, one on either side of the
domain in each dimension. These ghost cells are assumed to con-
tain the appropriate values so that whatever boundary conditions
exist around the block are satisfied when we perform the stencil
operation at the edges of the domain.

Listings 1 and 2 contain examples of the implementation of
the stencil for a CPU and an NVIDIA GPU respectively. The
CPU implementation is in Fortran 77; the GPU implementation
in NVDIA’s CUDA language. The examples include the memory
allocation, the calling of the subroutine and the definitionof the
subroutine itself (note that subroutines are referred to askernels
on the GPU). For the sake of brevity, we do not show the ini-
tialization of the memory. The CPU implementation should be
familiar to most CFD developers. It consists of a simple nested
loop over the computational domain, with the inner computation
performing the stencil operation.

The GPU implementation is more complicated. First, there
are now two disjoint memory spaces to manage, one for the CPU
and one for the GPU. It is therefore necessary to allocate memory
on both the CPU (line 5) and the GPU (lines 8 and 9), and then
transfer data from the CPU to the GPU (line 12). Any operations
that involve GPU memory outside of a kernel require calls to spe-
cial functions implemented by the NVIDIA GPU driver, these
have the prefixcuda. Second, since a GPU kernel is executed in
parallel by many threads at the same time, it is necessary when
calling it to specify how many threads are needed and how these
should be organised. Here, we assume that the domain is small
enough to fit in a single sub-block, so that only a single “thread
block” is needed (line 15). A thread block is a CUDA term for
a group of threads that operate together, and are executed inpar-
allel on the same multi-processor. In this particular example, the
thread block consists of a single plane of threads (line 16).Note
that CUDA’s facility for multi-dimensional thread blocks is used
to simplify the indexing in the kernel later. Finally, the kernel is
called with the the required number of threads (line 19).

10 Copyright c© 2009 by ASME

Listing 1. Fortran implementation for a CPU
REAL A(NI , NJ ,NK) , B(NI , NJ ,NK) , SF

CALL SMOOTH(SF , A, B)

SUBROUTINE SMOOTH(SF , A, B)

C LOOP OVER DOMAIN
DO K=2 ,NK−1
DO J =2 ,NJ−1
DO I =2 , NI−1
B(I , J ,K) = (1.0−SF)∗A(I +1 , J ,K) +

& SF∗ (A(I −1,J ,K) + A(I +1 , J ,K) +
& A(I , J −1,K) + A(I , J +1 ,K) +
& A(I , J ,K−1) + A(I , J ,K+ 1)) / 6 . 0

END DO
END DO
END DO
RETURN
END

Regarding the implementation of the kernel itself, the fol-
lowing points should be noted:

1. Two CUDA-specific keywords are used. The GPU kernel is
defined as global (line 22), which means that it is called
from the CPU and is exectuted on the GPU. The array stor-
age in the kernel is defined asshared (line 27), which
means that the arrays are stored in the 16KB on-chip mem-
ory associated with each of the GPU’s multi-processors.

2. Each thread uses the built-in variablethreadIdx to find its
i and k coordinate in the plane of a sub-block (lines 31 and
32).

3. The variablesjm1, j andjp1 are used to hold the offsets to
the j − 1, j and j + 1 planes in shared memory (line 38) .
These are cycled at the end of each iteration (line 58) so that
the new plane that is loaded during the next iteration replaces
the one that is no longer required by the stencil operation.

4. Data from the arraya d in the GPU’s main memory is ex-
plicitly loaded into the arraya in shared memory (lines 34,
35 and 44). The threads in the plane load one value each,
so the built-in function syncthreads() has to be called to
make sure all the threads have finished loading data before
progressing further in the code.

5. The outer threads only load data from the ghost zones and
do not participate in the computation with the inner threads
(line 49).

Listing 2. CUDA implementation for an NVIDIA GPU
1 /∗ Macro f o r 3D to 1D index t r a n s l a t i o n ∗ /
2 # d e f i n e I3D (ni , n j , i , j , k) ((i) + (n i) ∗ (j) + (n i) ∗ (n j)∗ (k))
3
4 f l o a t ∗a cpu , ∗a gpu , ∗b gpu , s f ;
5
6 /∗ a l l o c a t e memory on t h e h o s t (CPU)∗ /
7 nby te = s i z e o f (f l o a t)∗NI∗NJ∗NK;
8 a h = mal loc (nby te) ;
9 /∗ a l l o c a t e memory on t h e d e v i c e (GPU)∗ /

10 cudaMal loc (&ad , nby te) ;
11 cudaMal loc (&bd , nby te) ;
12
13 /∗ t r a n s f e r memory from h o s t to d e v i c e∗ /
14 cudaMemcpy (ad , a h , nbyte , cudaMemcpyHostToDevice) ;
15
16 /∗ GPU k e r n e l pa ramete r s∗ /
17 num th readb locks = dim3 (1 , 1 , 1) ;/ / s i n g l e th read b lock
18 num th reads = dim3 (NI ,NK, 1) ; / / p lane o f t h r e a d s
19 /∗ i nvoke GPU k e r n e l ∗ /
20 sm oo th kerne l<<<num th readb locks , numthreads>>>(
21 a d , b d , s f) ;
22
23 g l o b a l vo id sm oo th kerne l (
24 f l o a t s f , f l o a t ∗ a da ta , f l o a t ∗ b d a t a)
25 {
26 i n t i , j , jm1 , jp1 , k , j p l a n e ;
27 /∗ shared memory f o r t h r e e p lanes∗ /
28 s h a r e d f l o a t a [NI] [3] [NK] ;
29
30 /∗ c u r r e n t th read index ∗ /
31 i = (i n t) t h re a d I d x . x ;
32 k = (i n t) t h re a d I d x . y ;
33
34 /∗ f e t c h t h e f i r s t p lanes i n t o shared memory∗ /
35 a [i] [0] [k] = a d [I3D (NI , NJ , i , 0 , k)]
36 a [i] [1] [k] = a d [I3D (NI , NJ , i , 1 , k)] ;
37
38 /∗ s e t i n i t i a l jm1 , j , j p1 ∗ /
39 jm1 = 0 ; j = 1 ; jp1 = 2 ;
40
41 /∗ i t e r a t e upwards in j−d i r e c t i o n ∗ /
42 f o r (j p l a n e =1; j p l a n e < NJ−1; j p l a n e ++) {
43
44 /∗ read t h e n e x t p lane i n t o t h e jp1 s l o t∗ /
45 a [i] [j p1] [k] = a d [I3D (NI , NJ , i , j p l a n e +1 , k)]
46 /∗ make su re reads i n t o shared memory are done∗ /
47 s y n c t h r e a d s () ;
48
49 /∗ ghos t−zone t h r e a d s don ’ t compute∗ /
50 i f (i > 0 && i < ni−1 && k > 0 && k < nk−1) {
51 /∗ app ly s t e n c i l and w r i t e ou t r e s u l t∗ /
52 i000 = I3D (NI , NJ , i , j , k) ;
53 b d [i000] = (1 . 0 f−s f)∗ a [i] [j] [k] +
54 s f∗ (a [i −1][j] [k] + a [i +1] [j] [k] +
55 a [i] [jm1] [k] + a [i] [j p1] [k] +
56 a [i] [j] [k −1] + a [i] [j] [k + 1]) / 6 . 0 f ;
57 }
58 /∗ c y c l e j i n d i c e s ∗ /
59 tmp = jm1 ; jm1 = j ; j = jp1 ; jp1 = tmp ;
60 }
61 }

11 Copyright c© 2009 by ASME

