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Part 1: Motivation 



Turbomachinery 

Thousands of blades 

Arranged in rows 

Each blade row has a 
bespoke blade profile 
designed with CFD 

Blade row 



Approximate compute requirements 

“Steady” models (no wake/blade interaction, etc) 

 1 blade    0.5 Mcells  1 CPU hour 

 1 stage (2 blades)   1.0 Mcells  3 CPU hours 

 1 component (5 stages)  5.0 Mcells  20 CPU hours 



Approximate compute requirements 

“Steady” models (no wake/blade interaction, etc) 

 1 blade    0.5 Mcells  1 CPU hour 

 1 stage (2 blades)   1.0 Mcells  3 CPU hours 

 1 component (5 stages)  5.0 Mcells  20 CPU hours 

“Unsteady” models (with wakes, etc) 

 1 component (1000 blades)  500 Mcells  0.1 M CPU hours 

 Engine (4000 blades)   2 Gcells  1 M CPU hours 



Aim 

  To produce an order of magnitude reduction 
in run-times for the same hardware cost 



Part 2: CPUs and GPUs 



Moore’s Law 

  “The complexity for minimum component costs has increased at a rate of 
roughly a factor of two per year. Certainly over the short term this rate 
can be expected to continue.”  
Gordon Moore (Intel), 1965 



Moore’s Law 

  “The complexity for minimum component costs has increased at a rate of 
roughly a factor of two per year. Certainly over the short term this rate 
can be expected to continue.”  
Gordon Moore (Intel), 1965 

 “OK, maybe a factor of two every two years.”  
Gordon Moore (Intel), 1975 [paraphrased] 



Was Moore right? 

Source: Intel 



Feature size 

Source: Intel 



Clock speed 

Source: Tom’s Hardware 



What to do with all these transistors? 



Parallel computing 

  Multi-core chips are either: 

•  Instruction parallel 
(Multiple Instruction, Multiple Data) – MIMD 

or 

•  Data parallel 
(Single Instruction, Multiple Data) – SIMD  



Today’s commodity MIMD chips: CPUs 

Intel Core 2 Quad 
•  4 cores 
•  2.4 GHz 
•  65nm features 
•  582 million transistors 
•  8MB on chip memory 



Today’s commodity SIMD chips: GPUs 

NVIDIA 8800 GTX 

•  128 cores 

•  1.35 GHz 

•  90nm features 

•  681 million transistors 

•  768MB on board memory 



CPUs vs GPUs 



CPUs vs GPUs 

Transistor usage: 

Source: NVIDIA 



Graphics pipeline 



(Traditional) graphics pipeline 



GPUs and scientific computing 

 GPUs are designed to apply the  

same shading function  

to many pixels simultaneously 



GPUs and scientific computing 

 GPUs are designed to apply the  

same function  

to many data simultaneously 

This is what most scientific computing needs! 



Part 3: Programming GPUs with CUDA 



3 Generations of GPGPU (Owens, 2008) 
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3 Generations of GPGPU (Owens, 2008) 

•  Making it work at all: 

•  Primitive functionality and tools (graphics) 

•  Comparisons with CPU not rigorous 

•  Making it work better: 

•  Easier to use (higher level) 

•  Understanding of how best to do it 

•  Doing it right:  

•  Stable, portable, modular building blocks 



GPU – Programming for graphics 

Application specifies geometry – GPU 
rasterizes 

Each fragment is shaded (SIMD) 

Shading can use values from memory 
(textures) 

Image can be stored for re-use 

Courtesy, John Owens, UC Davis 



GPGPU programming (“old-school”) 

Draw a quad 

Run a SIMD program over each 
fragment 

Gather is permitted from texture memory 

Resulting buffer can be stored for re-use 

Courtesy, John Owens, UC Davis 



NVIDIA G80 hardware implementation  

•  Vertex/fragment processors replaced by Unified Shaders 

•  Now view GPU as massively parallel co-processor 

•  Set of (16) SIMD MultiProcessors (8 cores) 



NVIDIA G80 hardware implementation 

Divide 128 cores into  

16 Multiprocessors (MPs) 

• Each MP has: 
– Registers 
– Shared memory 
– Read only constant 
cache 
– Read only texture 
cache 



NVIDIA’s CUDA programming model 

•  G80 chip supports MANY active threads: 12,288 

•  Threads are lightweight: 

•  Little creation overhead 

•  “instant” switching 

•  Efficiency achieved through 1000’s of threads 

•  Threads are organised into blocks (1D, 2D, 3D) 

•  Blocks are further organised into a grid 



Kernels, grids, blocks and threads 
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Kernels, grids, blocks and threads 

•  Organisation of threads and blocks is key abstraction 
•  Software: 

•  Threads from one block may cooperate: 
•  Using data in shared memory 
•  Through synchronising 

•  Hardware: 
•  A block runs on one MP 
•  Hardware free to schedule any block on any MP 
•  More than one block can reside on one MP 



CUDA implementation 

•  CUDA implemented as extensions to C 

•  CUDA programs: 

•  explicitly manage host and device memory: 

•  allocation 

•  transfers 

•  set thread blocks and grid 

•  launch kernels 

•  are compiled with the CUDA nvcc compiler 



Part 4: Application to CFD 



Introduction to CFD 

Divide the volume into cells 

Blade 

Flow  



Governing equations for each cell 



Governing equations for each cell 

Conserve: 
•  Mass 
•  Momentum 
•  Energy 



Example: mass conservation 

•  Evaluate mass fluxes on each face 

€ 

Fmass =
A
4

ρVn∑



Example: mass conservation 

•  Sum fluxes on faces to find density change in cell 

€ 

Δρcell = Fmass∑



Example: mass conservation 

•  Update density 

€ 

Δρnode =
1
8

Δρcell∑

(only 4 of 8 surrounding cells shown)) 



Similarity of steps 

Each step uses data from surrounding nodes – “stencil” operation 



Similarity of equations 

•  For each equation (5 in all): 

•  Set relevant flux (mass, momentum, energy) 

•  Sum fluxes 

•  Update nodes 

•  (plus smoothing – also stencil 
 boundary conditions – not stencil) 



Overall strategy 

•  Divide up domain  

•  each sub-domain to a thread block 

•  update nodes in sub-domain with 
most efficient stencil operation we 
can come up with! 

•  update sub-domain boundaries 
(MPI if needed) 



Efficient stencil operations 

•  Launch one thread per element in an i-k plane 

•  Load enough planes into shared memory as needed by stencil 

•  Update elements in plane (store in global device memory) 

•  Load new (i-k) plane – repeat, iterate in j direction 



CUDA example 

__global__ void smooth_kernel(float sf, float *a_data, float *b_data){ 
/* shared memory array */ 
__shared__ float a[16][3][5]; 
/* fetch first planes */ 
a[i][0][k] = a_data[i0m10]; 
a[i][1][k] = a_data[i000]; 
a[i][2][k] = a_data[i0p10]; 
__syncthreads(); 
/* compute */ 
b_data[i000] = 
   sf1*a[i][1][k] + sfd6*(a[im1][1][k] + 
   a[ip1][1][k] + a[i][0][k] + 
   a[i][2][k] + a[i][1][km1] + a[i][1][kp1]) 
/* load next "j" plane and repeat ...*/ 



SBLOCK – stencil framework 

•  SBLOCK framework for stencil operations on structured grids:  

•  Source-to-source compiler 

•  Takes in high level kernel definitions 

•  Produces optimised kernels in C or CUDA 

•  Allows new stencils to be implemented quickly 

•  Allows new stencil optimisation strategies to be deployed on all stencils 
(without typos!) 



Example SBLOCK definition 

kind = "stencil" 

bpin = ["a"] 

bpout = ["b”] 

lookup = ((1,0, 0), (0, 0, 0), (1,0, 0), (0, 1,0), 

         (0, 1, 0), (0, 0, 1), (0, 0, 1)) 

calc = {"lvalue": "b", 

        "rvalue": """sf1*a[0][0][0] + 
    sfd6*(a[1][0][0] + a[1][0][0] + 

                       a[0][1][0] + a[0][1][0] + 
                       a[0][0][1] + a[0][0][1])"""} 



C implementation 

void smooth(float sf, float *a, float *b)  
{ 
 for (k=0; k < nk; k++) { 

    for (j=0; j < nj; j++) { 
    for (i=0; i < ni; i++) { 

/* compute indices i000, im100, etc */ 
      b[i000] = sf1*a[i000] + 
                sfd6*(a[im100] + a[ip100] + 
     a[i0m10] + a[i0p10] 

                      + a[i00m1] + a[i00p1]); 
      } 
    } 
  } 
} 



GPU implementation 

__global__ void smooth_kernel(float sf, float *a_data, float *b_data){ 
/* shared memory array */ 
__shared__ float a[16][3][5]; 
/* fetch first planes */ 
a[i][0][k] = a_data[i0m10]; 
a[i][1][k] = a_data[i000]; 
a[i][2][k] = a_data[i0p10]; 
__syncthreads(); 
/* compute */ 
b_data[i000] = 
   sf1*a[i][1][k] + sfd6*(a[im1][1][k] + 
   a[ip1][1][k] + a[i][0][k] + 
   a[i][2][k] + a[i][1][km1] + a[i][1][kp1]) 
/* load next "j" plane and repeat ...*/ 



Turbostream 

•  CUDA port of existing FORTRAN code (TBLOCK) 

•  15,000 lines FORTRAN 

•  5,000 lines kernel definitions -> 30,000 lines of CUDA 

•  Runs on CPU or multiple GPUs 

•  20x speedup on Tesla C1060 as compared to all cores of a modern 
Intel core2 quad. 



Turbostream 

•  9 minutes on a Tesla S870 (4 GPUs) 

•  12 hours on one 2.5GHz CPU core 



Application to 3 stage turbine 



FORTRAN & CUDA comparison 

Fortran 

CUDA 



Comparison to experimental data 



Impact of GPU accelerated CFD 

•  Tesla Personal Supercomputer enables 

•  Full turbine in 10 minutes (not 12 hours) 

•  One blade (for design) in 2 minutes 

•  Tesla cluster enables 

•  Interactive design of blades for first time 

•  Use of higher accuracy methods at early stage in design process 



Summary 

•  Many science applications fit the SIMD model used in GPUs 

•  CUDA enables science developers to access to NVIDIA GPUs without 
cumbersome graphics APIs 

•  Existing codes have to be analysed and re-coded to best fit the  many-
core architecture 

•  The speedups are such that this can be worth doing 

•  For our application, the step-change in capability is revolutionary 



More information 

www.many-core.group.cam.ac.uk 



Lattice Boltzmann demo  


