
Accelerating CFD with
Graphics Hardware
Graham Pullan (Whittle Laboratory, Cambridge University)

16 March 2009

Today

•  Motivation

•  CPUs and GPUs

•  Programming NVIDIA GPUs with CUDA

•  Application to turbomachinery CFD: Turbostream

•  Conclusions

Part 1: Motivation

Turbomachinery

Thousands of blades

Arranged in rows

Each blade row has a
bespoke blade profile
designed with CFD

Blade row

Approximate compute requirements

“Steady” models (no wake/blade interaction, etc)

 1 blade 0.5 Mcells 1 CPU hour

 1 stage (2 blades) 1.0 Mcells 3 CPU hours

 1 component (5 stages) 5.0 Mcells 20 CPU hours

Approximate compute requirements

“Steady” models (no wake/blade interaction, etc)

 1 blade 0.5 Mcells 1 CPU hour

 1 stage (2 blades) 1.0 Mcells 3 CPU hours

 1 component (5 stages) 5.0 Mcells 20 CPU hours

“Unsteady” models (with wakes, etc)

 1 component (1000 blades) 500 Mcells 0.1 M CPU hours

 Engine (4000 blades) 2 Gcells 1 M CPU hours

Aim

 To produce an order of magnitude reduction
in run-times for the same hardware cost

Part 2: CPUs and GPUs

Moore’s Law

 “The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue.”
Gordon Moore (Intel), 1965

Moore’s Law

 “The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue.”
Gordon Moore (Intel), 1965

 “OK, maybe a factor of two every two years.”
Gordon Moore (Intel), 1975 [paraphrased]

Was Moore right?

Source: Intel

Feature size

Source: Intel

Clock speed

Source: Tom’s Hardware

What to do with all these transistors?

Parallel computing

 Multi-core chips are either:

•  Instruction parallel
(Multiple Instruction, Multiple Data) – MIMD

or

•  Data parallel
(Single Instruction, Multiple Data) – SIMD

Today’s commodity MIMD chips: CPUs

Intel Core 2 Quad
•  4 cores
•  2.4 GHz
•  65nm features
•  582 million transistors
•  8MB on chip memory

Today’s commodity SIMD chips: GPUs

NVIDIA 8800 GTX

•  128 cores

•  1.35 GHz

•  90nm features

•  681 million transistors

•  768MB on board memory

CPUs vs GPUs

CPUs vs GPUs

Transistor usage:

Source: NVIDIA

Graphics pipeline

(Traditional) graphics pipeline

GPUs and scientific computing

 GPUs are designed to apply the

same shading function

to many pixels simultaneously

GPUs and scientific computing

 GPUs are designed to apply the

same function

to many data simultaneously

This is what most scientific computing needs!

Part 3: Programming GPUs with CUDA

3 Generations of GPGPU (Owens, 2008)

3 Generations of GPGPU (Owens, 2008)

•  Making it work at all:

•  Primitive functionality and tools (graphics)

•  Comparisons with CPU not rigorous

3 Generations of GPGPU (Owens, 2008)

•  Making it work at all:

•  Primitive functionality and tools (graphics)

•  Comparisons with CPU not rigorous

•  Making it work better:

•  Easier to use (higher level)

•  Understanding of how best to do it

3 Generations of GPGPU (Owens, 2008)

•  Making it work at all:

•  Primitive functionality and tools (graphics)

•  Comparisons with CPU not rigorous

•  Making it work better:

•  Easier to use (higher level)

•  Understanding of how best to do it

•  Doing it right:

•  Stable, portable, modular building blocks

GPU – Programming for graphics

Application specifies geometry – GPU
rasterizes

Each fragment is shaded (SIMD)

Shading can use values from memory
(textures)

Image can be stored for re-use

Courtesy, John Owens, UC Davis

GPGPU programming (“old-school”)

Draw a quad

Run a SIMD program over each
fragment

Gather is permitted from texture memory

Resulting buffer can be stored for re-use

Courtesy, John Owens, UC Davis

NVIDIA G80 hardware implementation

•  Vertex/fragment processors replaced by Unified Shaders

•  Now view GPU as massively parallel co-processor

•  Set of (16) SIMD MultiProcessors (8 cores)

NVIDIA G80 hardware implementation

Divide 128 cores into

16 Multiprocessors (MPs)

• Each MP has:
– Registers
– Shared memory
– Read only constant
cache
– Read only texture
cache

NVIDIA’s CUDA programming model

•  G80 chip supports MANY active threads: 12,288

•  Threads are lightweight:

•  Little creation overhead

•  “instant” switching

•  Efficiency achieved through 1000’s of threads

•  Threads are organised into blocks (1D, 2D, 3D)

•  Blocks are further organised into a grid

Kernels, grids, blocks and threads

Kernels, grids, blocks and threads

•  Organisation of threads and blocks is key abstraction

Kernels, grids, blocks and threads

•  Organisation of threads and blocks is key abstraction
•  Software:

•  Threads from one block may cooperate:
•  Using data in shared memory
•  Through synchronising

Kernels, grids, blocks and threads

•  Organisation of threads and blocks is key abstraction
•  Software:

•  Threads from one block may cooperate:
•  Using data in shared memory
•  Through synchronising

•  Hardware:
•  A block runs on one MP
•  Hardware free to schedule any block on any MP
•  More than one block can reside on one MP

CUDA implementation

•  CUDA implemented as extensions to C

•  CUDA programs:

•  explicitly manage host and device memory:

•  allocation

•  transfers

•  set thread blocks and grid

•  launch kernels

•  are compiled with the CUDA nvcc compiler

Part 4: Application to CFD

Introduction to CFD

Divide the volume into cells

Blade

Flow

Governing equations for each cell

Governing equations for each cell

Conserve:
•  Mass
•  Momentum
•  Energy

Example: mass conservation

•  Evaluate mass fluxes on each face

€

Fmass =
A
4

ρVn∑

Example: mass conservation

•  Sum fluxes on faces to find density change in cell

€

Δρcell = Fmass∑

Example: mass conservation

•  Update density

€

Δρnode =
1
8

Δρcell∑

(only 4 of 8 surrounding cells shown))

Similarity of steps

Each step uses data from surrounding nodes – “stencil” operation

Similarity of equations

•  For each equation (5 in all):

•  Set relevant flux (mass, momentum, energy)

•  Sum fluxes

•  Update nodes

•  (plus smoothing – also stencil
 boundary conditions – not stencil)

Overall strategy

•  Divide up domain

•  each sub-domain to a thread block

•  update nodes in sub-domain with
most efficient stencil operation we
can come up with!

•  update sub-domain boundaries
(MPI if needed)

Efficient stencil operations

•  Launch one thread per element in an i-k plane

•  Load enough planes into shared memory as needed by stencil

•  Update elements in plane (store in global device memory)

•  Load new (i-k) plane – repeat, iterate in j direction

CUDA example

__global__ void smooth_kernel(float sf, float *a_data, float *b_data){
/* shared memory array */
__shared__ float a[16][3][5];
/* fetch first planes */
a[i][0][k] = a_data[i0m10];
a[i][1][k] = a_data[i000];
a[i][2][k] = a_data[i0p10];
__syncthreads();
/* compute */
b_data[i000] =
 sf1*a[i][1][k] + sfd6*(a[im1][1][k] +
 a[ip1][1][k] + a[i][0][k] +
 a[i][2][k] + a[i][1][km1] + a[i][1][kp1])
/* load next "j" plane and repeat ...*/

SBLOCK – stencil framework

•  SBLOCK framework for stencil operations on structured grids:

•  Source-to-source compiler

•  Takes in high level kernel definitions

•  Produces optimised kernels in C or CUDA

•  Allows new stencils to be implemented quickly

•  Allows new stencil optimisation strategies to be deployed on all stencils
(without typos!)

Example SBLOCK definition

kind = "stencil"

bpin = ["a"]

bpout = ["b”]

lookup = ((1,0, 0), (0, 0, 0), (1,0, 0), (0, 1,0),

 (0, 1, 0), (0, 0, 1), (0, 0, 1))

calc = {"lvalue": "b",

 "rvalue": """sf1*a[0][0][0] +
 sfd6*(a[1][0][0] + a[1][0][0] +

 a[0][1][0] + a[0][1][0] +
 a[0][0][1] + a[0][0][1])"""}

C implementation

void smooth(float sf, float *a, float *b)
{
 for (k=0; k < nk; k++) {

 for (j=0; j < nj; j++) {
 for (i=0; i < ni; i++) {

/* compute indices i000, im100, etc */
 b[i000] = sf1*a[i000] +
 sfd6*(a[im100] + a[ip100] +
 a[i0m10] + a[i0p10]

 + a[i00m1] + a[i00p1]);
 }
 }
 }
}

GPU implementation

__global__ void smooth_kernel(float sf, float *a_data, float *b_data){
/* shared memory array */
__shared__ float a[16][3][5];
/* fetch first planes */
a[i][0][k] = a_data[i0m10];
a[i][1][k] = a_data[i000];
a[i][2][k] = a_data[i0p10];
__syncthreads();
/* compute */
b_data[i000] =
 sf1*a[i][1][k] + sfd6*(a[im1][1][k] +
 a[ip1][1][k] + a[i][0][k] +
 a[i][2][k] + a[i][1][km1] + a[i][1][kp1])
/* load next "j" plane and repeat ...*/

Turbostream

•  CUDA port of existing FORTRAN code (TBLOCK)

•  15,000 lines FORTRAN

•  5,000 lines kernel definitions -> 30,000 lines of CUDA

•  Runs on CPU or multiple GPUs

•  20x speedup on Tesla C1060 as compared to all cores of a modern
Intel core2 quad.

Turbostream

•  9 minutes on a Tesla S870 (4 GPUs) 

•  12 hours on one 2.5GHz CPU core 

Application to 3 stage turbine

FORTRAN & CUDA comparison

Fortran

CUDA

Comparison to experimental data

Impact of GPU accelerated CFD

•  Tesla Personal Supercomputer enables

•  Full turbine in 10 minutes (not 12 hours)

•  One blade (for design) in 2 minutes

•  Tesla cluster enables

•  Interactive design of blades for first time

•  Use of higher accuracy methods at early stage in design process

Summary

•  Many science applications fit the SIMD model used in GPUs

•  CUDA enables science developers to access to NVIDIA GPUs without
cumbersome graphics APIs

•  Existing codes have to be analysed and re-coded to best fit the many-
core architecture

•  The speedups are such that this can be worth doing

•  For our application, the step-change in capability is revolutionary

More information

www.many-core.group.cam.ac.uk

Lattice Boltzmann demo

