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•  Dwarfs 

•  Structured grid stencil operations 

•  Templating 

All with CFD as the target application 



The mind of a domain scientist 
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The mind of a domain scientist 

Jet-engine aerodynamics 

Turbomachinery CFD 

 Fortran / MPI / GPU / CUDA 
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e.g. for the present speaker: 



The mind of a domain scientist 

The origins of the Universe 

Analysis of satellite data 

 C / MPI / GPU / CUDA  
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e.g. for Steven Gratton: 



How to best share our experiences? 

•  Each of us is motivated by a step-change in task performance 
(results per $, results per W) 

•  But, presented by task, overlap of techniques is not obvious 

•  Dwarfs provide the necessary taxonomy 



Dwarfs – Disney (1937) 
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Dwarfs – Colella (2004) 
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Turbostream CFD code 

•  Finite volume structured grid code 

•  Relevant dwarfs: 

•  In the bulk – structured grid 

•  At the boundary – sparse linear algebra 



Finite volume CFD  

Divide the volume into cells 

Blade 

Flow  



Governing equations for each cell 



Governing equations for each cell 

Conserve: 
•  Mass 
•  Momentum 
•  Energy 



Example: mass conservation 

•  Evaluate mass fluxes on each face 
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Fmass =
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ρVn∑



Example: mass conservation 

•  Sum fluxes on faces to find density change in cell 

€ 

Δρcell = Δt Fmass∑



Example: mass conservation 

•  Update density 

€ 

Δρnode =
1
8

Δρcell∑

(only 4 of 8 surrounding cells shown)) 



Similarity of steps 

Each step uses data from surrounding nodes – “stencil” operation 



Structured grid strategy 

•  Divide up domain  

•  each sub-domain to a thread block 

•  update nodes in sub-domain with 
most efficient stencil operation we 
can come up with  
(make effective use of shared mem) 



CUDA strategy (after Williams et al, 2007) 

•  For each block, start a plane of threads (an i-k plane) 

•  Load three planes into shared memory 

•  Compute one plane 

•  Load next plane into shared memory (swap out first plane) 

•  Compute next plane 

•  Repeat, moving along j direction 



CUDA strategy 



CUDA strategy 
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CUDA strategy  



CUDA code (nearest neighbour stencil) 

__global__ void stencil_kernel(float sf, float *a_data, float *b_data){ 
__shared__ float a[16][3][5]; 
i = (int) threadIdx.x; 
k = (int) threadIdx.y; 
a[i][0][k] = a_data[i0m10]; 
a[i][1][k] = a_data[i000]; 
/* begin loop in j-direction */ 
a[i][2][k] = a_data[i0p10]; 
__syncthreads(); 
/* compute */ 
b_data[i000] = 
   sf1*a[i][1][k] + sfd6*(a[im1][1][k] + 
   a[ip1][1][k] + a[i][0][k] + 
   a[i][2][k] + a[i][1][km1] + a[i][1][kp1]) 
/* repeat: load j-plane, syncthreads, compute...*/ 



CUDA code (nearest neighbour stencil) 

__global__ void stencil_kernel(float sf, float *a_data, float *b_data){ 
__shared__ float a[16][3][5]; 
i = (int) threadIdx.x; 
k = (int) threadIdx.y; 
a[i][0][k] = a_data[i0m10]; 
a[i][1][k] = a_data[i000]; 
/* begin loop in j-direction */ 
a[i][2][k] = a_data[i0p10]; 
__syncthreads(); 
/* compute */ 
b_data[i000] = 
   sf1*a[i][1][k] + sfd6*(a[im1][1][k] + 
   a[ip1][1][k] + a[i][0][k] + 
   a[i][2][k] + a[i][1][km1] + a[i][1][kp1]) 
/* repeat: load j-plane, syncthreads, compute...*/ 

     declare shared memory array 



CUDA code (nearest neighbour stencil) 

__global__ void stencil_kernel(float sf, float *a_data, float *b_data){ 
__shared__ float a[16][3][5]; 
i = (int) threadIdx.x; 
k = (int) threadIdx.y; 
a[i][0][k] = a_data[i0m10]; 
a[i][1][k] = a_data[i000]; 
/* begin loop in j-direction */ 
a[i][2][k] = a_data[i0p10]; 
__syncthreads(); 
/* compute */ 
b_data[i000] = 
   sf1*a[i][1][k] + sfd6*(a[im1][1][k] + 
   a[ip1][1][k] + a[i][0][k] + 
   a[i][2][k] + a[i][1][km1] + a[i][1][kp1]) 
/* repeat: load j-plane, syncthreads, compute...*/ 

     get i,k thread indices 



CUDA code (nearest neighbour stencil) 

__global__ void stencil_kernel(float sf, float *a_data, float *b_data){ 
__shared__ float a[16][3][5]; 
i = (int) threadIdx.x; 
k = (int) threadIdx.y; 
a[i][0][k] = a_data[i0m10]; 
a[i][1][k] = a_data[i000]; 
/* begin loop in j-direction */ 
a[i][2][k] = a_data[i0p10]; 
__syncthreads(); 
/* compute */ 
b_data[i000] = 
   sf1*a[i][1][k] + sfd6*(a[im1][1][k] + 
   a[ip1][1][k] + a[i][0][k] + 
   a[i][2][k] + a[i][1][km1] + a[i][1][kp1]) 
/* repeat: load j-plane, syncthreads, compute...*/ 

     load initial 2 planes 



CUDA code (nearest neighbour stencil) 

__global__ void stencil_kernel(float sf, float *a_data, float *b_data){ 
__shared__ float a[16][3][5]; 
i = (int) threadIdx.x; 
k = (int) threadIdx.y; 
a[i][0][k] = a_data[i0m10]; 
a[i][1][k] = a_data[i000]; 
/* begin loop in j-direction */ 
a[i][2][k] = a_data[i0p10]; 
__syncthreads(); 
/* compute */ 
b_data[i000] = 
   sf1*a[i][1][k] + sfd6*(a[im1][1][k] + 
   a[ip1][1][k] + a[i][0][k] + 
   a[i][2][k] + a[i][1][km1] + a[i][1][kp1]) 
/* repeat: load j-plane, syncthreads, compute...*/ 

     main loop: 
                                                                       load next plane 
                                                                       syncthreads (whole plane loaded) 

                                                                       compute result (if not a halo node) 



Motivation for “SBLOCK” framework 

•  CFD code will have many stencil kernels 

•  All look (almost) the same 

•  During development – several optimization strategies might be tried 

•  We want to decouple the stencil task from the hardware target 



Source-to-source compilation  

•  The stencil definition is transformed at compile-time into code that can 
run on the chosen processor 

•  The transformation is performed by filling in a pre-defined template 
using the stencil definition 

Stencil definition 

CPU template 

GPU template 

CPU source (.c) 

GPU source (.cu) 



Source-to-source compilation 

•  The stencil definition is transformed at compile-time into code that can 
run on the chosen processor 

•  The transformation is performed by filling in a pre-defined template 
using the stencil definition 

Stencil definition 

CPU template 

GPU template 

CPU source (.c) 

GPU source (.cu) 

X source X template 



A Python-based template engine – “Cheetah” 

fortran_tmpl.tmpl: 

      WRITE(6,*) ’$message'!
      STOP!
      END!

make python module: 

cheetah compile fortran_tmpl!



A Python-based template engine – “Cheetah” 

fortran_tmpl.tmpl: 

      WRITE(6,*) ’$message'!
      STOP!
      END!

make python module: 

cheetah compile fortran_tmpl!

html_tmpl.tmpl: 

<HTML>!
<HEAD><TITLE>Test</HEAD>!
<BODY>!
<p>$message</p>!
</BODY>!
</HTML>!

make python module: 

cheetah compile html_tmpl!



A Python-based template engine – “Cheetah” 

make_fortran.py: 

from fortran_tmpl import * 
t=fortran_template()!
t.message="Hello”!
print t!

make_html.py: 

from html_tmpl import * 
t=html_template()!
t.message="Hello”!
print t!



A Python-based template engine – “Cheetah” 

make_fortran.py: 

from fortran_tmpl import * 
t=fortran_template()!
t.message="Hello”!
print t!

python make_fortran.py gives 

      WRITE(6,*) ’Hello'!
      STOP!
      END!

make_html.py: 

from html_tmpl import * 
t=html_template()!
t.message="Hello”!
print t!

python make_html.py gives 

<HTML>!
<HEAD><TITLE>Test</HEAD>!
<BODY>!
<p>Hello</p>!
</BODY>!
</HTML>!



Example SBLOCK stencil definition 

kind = "stencil" 

bpin = ["a"] 

bpout = ["b”] 

lookup = ((1,0, 0), (0, 0, 0), (1,0, 0), (0, 1,0), 

         (0, 1, 0), (0, 0, 1), (0, 0, 1)) 

calc = {"lvalue": "b", 

        "rvalue": """sf1*a[0][0][0] + 
    sfd6*(a[1][0][0] + a[1][0][0] + 

                       a[0][1][0] + a[0][1][0] + 
                       a[0][0][1] + a[0][0][1])"""} 



Turbostream 

•  3000 lines of stencil definitions (~15 different stencil kernels) 

•  Code generated from stencil definitions is 15,000 lines 

•  Additional 5000 lines of C for boundary conditions, file I/O etc. 

•  Source code is very similar to TBLOCK – every subroutine has an 
equivalent stencil definition 



Single-processor performance 

•  TBLOCK uses all four cores on the CPU through MPI 

•  Turbostream is ~20 times faster 



Multi-processor performance 

•  Benchmark case is an unsteady 
simulation of a turbine stage 



Multi-processor performance 

•  16 NVIDIA G200 GPUs, 1 Gb/s Ethernet 

•  Weak scaling: 6 million grid nodes per GPU 

•  Strong scaling: 6 million grid nodes in total 





Desktop run times 

Steady model Unsteady model 

3 x GT200: 7 minutes 
2 x Xeon quad: 210 minutes 

3 x GT200: 1 hour 
2 x Xeon quad: 30 hours 
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•  Dwarfs: a taxonomy for sharing experiences / techniques between 
practitioners from different fields 
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Summary 

•  Dwarfs: a taxonomy for sharing experiences / techniques between 
practitioners from different fields 

•  Structured grid dwarf: Plane-by-plane (cyclic queue) approach yields 
good results (Datta et al SC08) 

•  Templating can: 

•  Save time during development  

•  Makes porting to different languages / platforms painless 

•  Resulting CFD code shows 20x speedup (GT200 vs 2.33GHz Intel 
quad) compared to legacy Fortran-MPI code  



Finally 

2nd UK CUDA Developers’ Conference 

December 2010, Cambridge 


