
Taking on the dwarfs:
Advocating domain-specific
frameworks for many-core HPC
Graham Pullan
Tobias Brandvik
Department of Engineering

Overview

•  Dwarfs

•  Structured grid stencil operations

•  Templating

Overview

•  Dwarfs

•  Structured grid stencil operations

•  Templating

All with CFD as the target application

The mind of a domain scientist

The Task

The Code

 HPC hardware / software

Im
po

rta
nc

e

The mind of a domain scientist

Jet-engine aerodynamics

Turbomachinery CFD

 Fortran / MPI / GPU / CUDA

Im
po

rta
nc

e

e.g. for the present speaker:

The mind of a domain scientist

The origins of the Universe

Analysis of satellite data

 C / MPI / GPU / CUDA

Im
po

rta
nc

e

e.g. for Steven Gratton:

How to best share our experiences?

•  Each of us is motivated by a step-change in task performance
(results per $, results per W)

•  But, presented by task, overlap of techniques is not obvious

•  Dwarfs provide the necessary taxonomy

Dwarfs – Disney (1937)

Doc

Happy

Grumpy

Sleepy Bashful

Sneezy

Dopey

Dwarfs – Colella (2004)

Dense LA

Spectral

Sparse LA

N-Body Structured

Unstructured

Monte-Carlo

Turbostream CFD code

•  Finite volume structured grid code

•  Relevant dwarfs:

•  In the bulk – structured grid

•  At the boundary – sparse linear algebra

Finite volume CFD

Divide the volume into cells

Blade

Flow

Governing equations for each cell

Governing equations for each cell

Conserve:
•  Mass
•  Momentum
•  Energy

Example: mass conservation

•  Evaluate mass fluxes on each face

€

Fmass =
A
4

ρVn∑

Example: mass conservation

•  Sum fluxes on faces to find density change in cell

€

Δρcell = Δt Fmass∑

Example: mass conservation

•  Update density

€

Δρnode =
1
8

Δρcell∑

(only 4 of 8 surrounding cells shown))

Similarity of steps

Each step uses data from surrounding nodes – “stencil” operation

Structured grid strategy

•  Divide up domain

•  each sub-domain to a thread block

•  update nodes in sub-domain with
most efficient stencil operation we
can come up with
(make effective use of shared mem)

CUDA strategy (after Williams et al, 2007)

•  For each block, start a plane of threads (an i-k plane)

•  Load three planes into shared memory

•  Compute one plane

•  Load next plane into shared memory (swap out first plane)

•  Compute next plane

•  Repeat, moving along j direction

CUDA strategy

CUDA strategy

CUDA strategy

CUDA strategy

CUDA strategy

CUDA strategy

CUDA code (nearest neighbour stencil)

__global__ void stencil_kernel(float sf, float *a_data, float *b_data){
__shared__ float a[16][3][5];
i = (int) threadIdx.x;
k = (int) threadIdx.y;
a[i][0][k] = a_data[i0m10];
a[i][1][k] = a_data[i000];
/* begin loop in j-direction */
a[i][2][k] = a_data[i0p10];
__syncthreads();
/* compute */
b_data[i000] =
 sf1*a[i][1][k] + sfd6*(a[im1][1][k] +
 a[ip1][1][k] + a[i][0][k] +
 a[i][2][k] + a[i][1][km1] + a[i][1][kp1])
/* repeat: load j-plane, syncthreads, compute...*/

CUDA code (nearest neighbour stencil)

__global__ void stencil_kernel(float sf, float *a_data, float *b_data){
__shared__ float a[16][3][5];
i = (int) threadIdx.x;
k = (int) threadIdx.y;
a[i][0][k] = a_data[i0m10];
a[i][1][k] = a_data[i000];
/* begin loop in j-direction */
a[i][2][k] = a_data[i0p10];
__syncthreads();
/* compute */
b_data[i000] =
 sf1*a[i][1][k] + sfd6*(a[im1][1][k] +
 a[ip1][1][k] + a[i][0][k] +
 a[i][2][k] + a[i][1][km1] + a[i][1][kp1])
/* repeat: load j-plane, syncthreads, compute...*/

 declare shared memory array

CUDA code (nearest neighbour stencil)

__global__ void stencil_kernel(float sf, float *a_data, float *b_data){
__shared__ float a[16][3][5];
i = (int) threadIdx.x;
k = (int) threadIdx.y;
a[i][0][k] = a_data[i0m10];
a[i][1][k] = a_data[i000];
/* begin loop in j-direction */
a[i][2][k] = a_data[i0p10];
__syncthreads();
/* compute */
b_data[i000] =
 sf1*a[i][1][k] + sfd6*(a[im1][1][k] +
 a[ip1][1][k] + a[i][0][k] +
 a[i][2][k] + a[i][1][km1] + a[i][1][kp1])
/* repeat: load j-plane, syncthreads, compute...*/

 get i,k thread indices

CUDA code (nearest neighbour stencil)

__global__ void stencil_kernel(float sf, float *a_data, float *b_data){
__shared__ float a[16][3][5];
i = (int) threadIdx.x;
k = (int) threadIdx.y;
a[i][0][k] = a_data[i0m10];
a[i][1][k] = a_data[i000];
/* begin loop in j-direction */
a[i][2][k] = a_data[i0p10];
__syncthreads();
/* compute */
b_data[i000] =
 sf1*a[i][1][k] + sfd6*(a[im1][1][k] +
 a[ip1][1][k] + a[i][0][k] +
 a[i][2][k] + a[i][1][km1] + a[i][1][kp1])
/* repeat: load j-plane, syncthreads, compute...*/

 load initial 2 planes

CUDA code (nearest neighbour stencil)

__global__ void stencil_kernel(float sf, float *a_data, float *b_data){
__shared__ float a[16][3][5];
i = (int) threadIdx.x;
k = (int) threadIdx.y;
a[i][0][k] = a_data[i0m10];
a[i][1][k] = a_data[i000];
/* begin loop in j-direction */
a[i][2][k] = a_data[i0p10];
__syncthreads();
/* compute */
b_data[i000] =
 sf1*a[i][1][k] + sfd6*(a[im1][1][k] +
 a[ip1][1][k] + a[i][0][k] +
 a[i][2][k] + a[i][1][km1] + a[i][1][kp1])
/* repeat: load j-plane, syncthreads, compute...*/

 main loop:
 load next plane
 syncthreads (whole plane loaded)

 compute result (if not a halo node)

Motivation for “SBLOCK” framework

•  CFD code will have many stencil kernels

•  All look (almost) the same

•  During development – several optimization strategies might be tried

•  We want to decouple the stencil task from the hardware target

Source-to-source compilation

•  The stencil definition is transformed at compile-time into code that can
run on the chosen processor

•  The transformation is performed by filling in a pre-defined template
using the stencil definition

Stencil definition

CPU template

GPU template

CPU source (.c)

GPU source (.cu)

Source-to-source compilation

•  The stencil definition is transformed at compile-time into code that can
run on the chosen processor

•  The transformation is performed by filling in a pre-defined template
using the stencil definition

Stencil definition

CPU template

GPU template

CPU source (.c)

GPU source (.cu)

X source X template

A Python-based template engine – “Cheetah”

fortran_tmpl.tmpl:

 WRITE(6,*) ’$message'!
 STOP!
 END!

make python module:

cheetah compile fortran_tmpl!

A Python-based template engine – “Cheetah”

fortran_tmpl.tmpl:

 WRITE(6,*) ’$message'!
 STOP!
 END!

make python module:

cheetah compile fortran_tmpl!

html_tmpl.tmpl:

<HTML>!
<HEAD><TITLE>Test</HEAD>!
<BODY>!
<p>$message</p>!
</BODY>!
</HTML>!

make python module:

cheetah compile html_tmpl!

A Python-based template engine – “Cheetah”

make_fortran.py:

from fortran_tmpl import *
t=fortran_template()!
t.message="Hello”!
print t!

make_html.py:

from html_tmpl import *
t=html_template()!
t.message="Hello”!
print t!

A Python-based template engine – “Cheetah”

make_fortran.py:

from fortran_tmpl import *
t=fortran_template()!
t.message="Hello”!
print t!

python make_fortran.py gives

 WRITE(6,*) ’Hello'!
 STOP!
 END!

make_html.py:

from html_tmpl import *
t=html_template()!
t.message="Hello”!
print t!

python make_html.py gives

<HTML>!
<HEAD><TITLE>Test</HEAD>!
<BODY>!
<p>Hello</p>!
</BODY>!
</HTML>!

Example SBLOCK stencil definition

kind = "stencil"

bpin = ["a"]

bpout = ["b”]

lookup = ((1,0, 0), (0, 0, 0), (1,0, 0), (0, 1,0),

 (0, 1, 0), (0, 0, 1), (0, 0, 1))

calc = {"lvalue": "b",

 "rvalue": """sf1*a[0][0][0] +
 sfd6*(a[1][0][0] + a[1][0][0] +

 a[0][1][0] + a[0][1][0] +
 a[0][0][1] + a[0][0][1])"""}

Turbostream

•  3000 lines of stencil definitions (~15 different stencil kernels)

•  Code generated from stencil definitions is 15,000 lines

•  Additional 5000 lines of C for boundary conditions, file I/O etc.

•  Source code is very similar to TBLOCK – every subroutine has an
equivalent stencil definition

Single-processor performance

•  TBLOCK uses all four cores on the CPU through MPI

•  Turbostream is ~20 times faster

Multi-processor performance

•  Benchmark case is an unsteady
simulation of a turbine stage

Multi-processor performance

•  16 NVIDIA G200 GPUs, 1 Gb/s Ethernet

•  Weak scaling: 6 million grid nodes per GPU

•  Strong scaling: 6 million grid nodes in total

Desktop run times

Steady model Unsteady model

3 x GT200: 7 minutes
2 x Xeon quad: 210 minutes

3 x GT200: 1 hour
2 x Xeon quad: 30 hours

Summary

•  Dwarfs: a taxonomy for sharing experiences / techniques between
practitioners from different fields

Summary

•  Dwarfs: a taxonomy for sharing experiences / techniques between
practitioners from different fields

•  Structured grid dwarf: Plane-by-plane (cyclic queue) approach yields
good results (Datta et al SC08)

Summary

•  Dwarfs: a taxonomy for sharing experiences / techniques between
practitioners from different fields

•  Structured grid dwarf: Plane-by-plane (cyclic queue) approach yields
good results (Datta et al SC08)

•  Templating can:

•  Save time during development

•  Makes porting to different languages / platforms painless

Summary

•  Dwarfs: a taxonomy for sharing experiences / techniques between
practitioners from different fields

•  Structured grid dwarf: Plane-by-plane (cyclic queue) approach yields
good results (Datta et al SC08)

•  Templating can:

•  Save time during development

•  Makes porting to different languages / platforms painless

•  Resulting CFD code shows 20x speedup (GT200 vs 2.33GHz Intel
quad) compared to legacy Fortran-MPI code

Finally

2nd UK CUDA Developers’ Conference

December 2010, Cambridge

