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Overview 

•  The future (the present) is “many-core” 

•  GPU hardware 

•  A strategy for programming GPUs for CFD 

•  Turbostream – a many-core CFD solver for Turbomachinery 

•  Example simulations 

•  Conclusions 



Many-core 



Moore’s “Law” 

Source: Intel 



Clock speed – the “power wall” 

Source: Tom’s Hardware 



Today’s many-core chips 

Intel 4 core CPU 

NVIDIA  240 cores GPU AMD 6 core CPU 



NVIDIA Tesla GPUs 

•  C2050 card for desktop PC; 
448 cores, 3GB; 
peak 515 GFLOP/s (DP) 

•  S2050 1U rack mount; 
4 x C2050 cards; 
requires connection to CPU 
host – typical average density 
is 2 GPUs per 1U 



Many-core summary 

•  Many-core computing is here today –  
and the trend is for greater and greater core count in future 

•  The run-time of a scalar (non-parallel) code is no longer guaranteed to 
reduce with each new computer (it may even increase) 

•  Codes need to be parallel to take advantage of new hardware 

•  The current distributed parallel computing model (MPI) will not work well 
here (for many-core CPUs), and may not work at all (for GPUs) 



GPUs – what do we get from all those cores? 



How so many cores on a GPU? 

Transistor usage: 

Source: NVIDIA 

4 cores >200 cores 



Why so many cores on a GPU? 



GPUs and scientific computing 

GPUs are designed to apply the  

same shading function  

to many pixels simultaneously 



GPUs and scientific computing 

GPUs are designed to apply the  

same function  

to many data simultaneously 

This is what CFD needs! 



GPU performance 



GPUs and CFD 

Good speedups (> 10x) can be expected for: 

•  Codes that apply the same function to lots of data  

•  Codes where amount communication to/from card is small  
(compared to the time to compute the data on the card – up to 4GB) 



GPUs and CFD 

Good speedups (> 10x) can be expected for: 

•  Codes that apply the same function to lots of data  

•  Codes where amount communication to/from card is small  
(compared to the time to compute the data on the card – up to 4GB) 

•  Turbomachinery CFD is an excellent fit! 



Programming GPUs for CFD 



Solving PDEs on multi-core processors 
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Solving PDEs on multi-core processors 

Navier-Stokes 

Finite volume, explicit time stepping 

Second order central differences, Scree scheme 

Set flux, Sum flux, Shear Stress ... 

Multigrid, Mixing plane, Sliding plane ... 

Stencil 
operations 
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Solving PDEs on multi-core processors 

Navier-Stokes 

Finite volume, explicit time stepping 

Second order central differences, Scree scheme 

Set flux, Sum flux, Shear Stress ... 

Multigrid, Mixing plane, Sliding plane ... Non-stencil 
operations 

Stencil 
operations 
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Solving PDEs on multi-core processors 

Navier-Stokes 

Finite volume, explicit time stepping 

Second order central differences, Scree scheme 

Set flux, Sum flux, Shear Stress ... 

Multigrid, Mixing plane, Sliding plane ... 

90% of  
run-time 

10% of  
run-time 

Stencil 
operations 

Non-stencil 
operations 



Stencil operations on multi-core processors 

•  Single implementation? e.g. OpenCL – but need to optimize for 
hardware   

•  Multiple implementations? e.g. C with SSE for CPU, CUDA for NVIDIA 
GPUs, … 

•  Alternative: 

•  High level language for stencil operations – a DSL 

•  Source-to-source compilation 

Brandvik, T. and Pullan, G. (2010) 
“SBLOCK: A Framework for Efficient Stencil-Based PDE Solvers on Multi-Core Platforms” 
1st International Workshop on the Frontier of GPU Computing, Bradford, July 2010  



Stencil example 

•  Structured grid indexing 

i, j, k 
i-1, j, k i+1, j, k 

i, j, k+1 

i, j, k-1 

i, j-1, k 

i, j+1, k 



Stencil example 

•         in Fortran 



Stencil example 

•  Stencil definition: 



Source-to-source compilation 

•  The stencil definition is transformed at compile-time into code that can 
run on the chosen processor 

•  The transformation is performed by filling in a pre-defined template 
using the stencil definition 

Stencil definition 

CPU template 

GPU template 

CPU source (.c) 

GPU source (.cu) 



Source-to-source compilation 

•  The stencil definition is transformed at compile-time into code that can 
run on the chosen processor 

•  The transformation is performed by filling in a pre-defined template 
using the stencil definition 

Stencil definition 

CPU template 

GPU template 

CPU source (.c) 

GPU source (.cu) 

X source X template 



Implementation details 

•  There are many optimisation strategies for stencil operations (see paper 
from Supercomputing 2008 by Datta et al.) 

•  CPUs: 

•  Parallelise with pthreads 

•  SSE vectorisation 

•  GPUs: 

•  Cyclic queues 



CUDA strategy 



CUDA strategy 



CUDA strategy 



CUDA strategy  



CUDA strategy 



CUDA strategy  



Testbed 

•  CPU 1: Intel Core i7 920 (2.66 GHZ) 

•  CPU 2: AMD Phenom II X4 940 (3.0 GHz) 

•  GPU: NVIDIA GTX 280 



Stencil benchmark 



Stencil benchmark 



Turbostream 



Turbostream 

•  We have implemented a new solver that can run on both CPUs and 
GPUs 

•  The starting point was an existing solver (Fortran, MPI) called TBLOCK 

•  The new solver is called Turbostream 

Brandvik, T. and Pullan, G. (2009) 
“An Accelerated 3D Navier-Stokes Solver for Flows in Turbomachines” 
ASME IGTI Turbo Expo, Orlando, June 2009  



TBLOCK 

•  Developed by John Denton 

•  Blocks with arbitrary patch interfaces 

•  Simple and fast algorithm 

•  20,000 lines of Fortran 77 

•  Main solver routines are only 10,000 lines 



Turbostream 

•  3000 lines of stencil definitions (~15 different stencil kernels) 

•  Code generated from stencil definitions is 15,000 lines 

•  Additional 5000 lines of C for boundary conditions, file I/O etc. 

•  Source code is very similar to TBLOCK – every subroutine has an 
equivalent stencil definition 



Turbostream performance 

•  TBLOCK runs in parallel on all four CPU cores using MPI 

•  Initial results from latest NVIDIA Fermi GPU show an further 2x seedup 

Processor TBLOCK Turbostream 

Intel Nehalem 1.21 1.48 

AMD Phenom II 1 0.89 

NVIDIA GT200 - 10.2 



“Darwin” GPU cluster 

•  Darwin is the central 
Cambridge cluster 

•  In 2008, NVIDIA made 
Cambridge a CUDA 
Centre of Excellence, 
donating 128 GPUs to 
Darwin 



Scaling results 

•  Unsteady multi-stage 
turbine 

•  Baseline: 27 E6 nodes  

•  Largest: 432 E6 nodes 

•  Weak scaling: Increase 
grid size with # GPUs 

•  Strong scaling: Constant 
grid size (27 E6 nodes) 



What can this be used for? 

Steady,	  single	  passage:	  
0.5	  million	  nodes	  
40s	  (1	  GPU)	  

Steady,	  3	  stage:	  
3	  million	  nodes	  
7.5	  mins	  (1	  GPU)	  

Unsteady,	  3	  stage:	  
120	  million	  nodes	  
4	  hours	  (16	  GPUs)	  per	  rev	  



Example simulations 



Example simulations 

•  Three-stage steady turbine simulation (mixing planes) 

•  Three-stage unsteady compressor simulation (sliding planes) 



Three-stage turbine 

Turbine from Rosic et al, 
ASME J. Turbo. (2006) 



Entropy function through machine 

•  4 million grid nodes 

•  10 hours on a single CPU 

•  8 minutes on four GPUs 



Total pressure loss, Stator 3 exit 

Experiment Turbostream 



Compressor simulation 

•  Three-stage compressor test rig at Siemens, UK 

•  160 million grid nodes 

•  5 revolutions needed to obtain a periodic solution (22500 time steps) 

•  On 32 NVIDIA GT200 GPUs, each revolution takes 24 hours 



Entropy function contours at mid-span 



Conclusions 



Conclusions 

•  The switch to multi-core processors enables a step change in 
performance, but existing codes have to be rewritten 

•  The differences between processors make it difficult to hand-code a 
solver that will run on all of them 

•  We suggest a high level abstraction coupled with source-to-source 
compilation  



Conclusions 

•  A new solver called Turbostream, which is based on Denton’s TBLOCK, 
has been implemented 

•  Turbostream is ~10 times faster than TBLOCK when running on an 
NVIDIA GPU as compared to a quad-core Intel or AMD CPUs 

•  Single blade-row calculations almost interactive on a desktop (10 – 30 
seconds) 

•  Multi-stage calculations in a few minutes on a small cluster ($10,000) 

•  Full annulus unsteady calculations complete overnight on a modest 
cluster ($100,000) 


