
Turbomachinery CFD on many-core
platforms – experiences and strategies

Graham Pullan
Whittle Laboratory, Department of Engineering, University of Cambridge

MUSAF Colloquium, CERFACS, Toulouse
September 27-29 2010

Turbomachinery CFD on many-core
platforms – experiences and strategies

Graham Pullan and Tobias Brandvik
Whittle Laboratory, Department of Engineering, University of Cambridge

MUSAF Colloquium, CERFACS, Toulouse
September 27-29 2010

Overview

•  The future (the present) is “many-core”

•  GPU hardware

•  A strategy for programming GPUs for CFD

•  Turbostream – a many-core CFD solver for Turbomachinery

•  Example simulations

•  Conclusions

Many-core

Moore’s “Law”

Source: Intel

Clock speed – the “power wall”

Source: Tom’s Hardware

Today’s many-core chips

Intel 4 core CPU

NVIDIA 240 cores GPU AMD 6 core CPU

NVIDIA Tesla GPUs

•  C2050 card for desktop PC;
448 cores, 3GB;
peak 515 GFLOP/s (DP)

•  S2050 1U rack mount;
4 x C2050 cards;
requires connection to CPU
host – typical average density
is 2 GPUs per 1U

Many-core summary

•  Many-core computing is here today –
and the trend is for greater and greater core count in future

•  The run-time of a scalar (non-parallel) code is no longer guaranteed to
reduce with each new computer (it may even increase)

•  Codes need to be parallel to take advantage of new hardware

•  The current distributed parallel computing model (MPI) will not work well
here (for many-core CPUs), and may not work at all (for GPUs)

GPUs – what do we get from all those cores?

How so many cores on a GPU?

Transistor usage:

Source: NVIDIA

4 cores >200 cores

Why so many cores on a GPU?

GPUs and scientific computing

GPUs are designed to apply the

same shading function

to many pixels simultaneously

GPUs and scientific computing

GPUs are designed to apply the

same function

to many data simultaneously

This is what CFD needs!

GPU performance

GPUs and CFD

Good speedups (> 10x) can be expected for:

•  Codes that apply the same function to lots of data

•  Codes where amount communication to/from card is small
(compared to the time to compute the data on the card – up to 4GB)

GPUs and CFD

Good speedups (> 10x) can be expected for:

•  Codes that apply the same function to lots of data

•  Codes where amount communication to/from card is small
(compared to the time to compute the data on the card – up to 4GB)

•  Turbomachinery CFD is an excellent fit!

Programming GPUs for CFD

Solving PDEs on multi-core processors

Solving PDEs on multi-core processors

Navier-Stokes

Solving PDEs on multi-core processors

Navier-Stokes

Finite volume, explicit time stepping

Solving PDEs on multi-core processors

Navier-Stokes

Finite volume, explicit time stepping

Second order central differences, Scree scheme

Solving PDEs on multi-core processors

Navier-Stokes

Finite volume, explicit time stepping

Second order central differences, Scree scheme

Set flux, Sum flux, Shear Stress ...

Solving PDEs on multi-core processors

Navier-Stokes

Finite volume, explicit time stepping

Second order central differences, Scree scheme

Set flux, Sum flux, Shear Stress ...

Multigrid, Mixing plane, Sliding plane ...

Solving PDEs on multi-core processors

Navier-Stokes

Finite volume, explicit time stepping

Second order central differences, Scree scheme

Set flux, Sum flux, Shear Stress ...

Multigrid, Mixing plane, Sliding plane ...

Stencil
operations

26

Solving PDEs on multi-core processors

Navier-Stokes

Finite volume, explicit time stepping

Second order central differences, Scree scheme

Set flux, Sum flux, Shear Stress ...

Multigrid, Mixing plane, Sliding plane ... Non-stencil
operations

Stencil
operations

27

Solving PDEs on multi-core processors

Navier-Stokes

Finite volume, explicit time stepping

Second order central differences, Scree scheme

Set flux, Sum flux, Shear Stress ...

Multigrid, Mixing plane, Sliding plane ...

90% of
run-time

10% of
run-time

Stencil
operations

Non-stencil
operations

Stencil operations on multi-core processors

•  Single implementation? e.g. OpenCL – but need to optimize for
hardware

•  Multiple implementations? e.g. C with SSE for CPU, CUDA for NVIDIA
GPUs, …

•  Alternative:

•  High level language for stencil operations – a DSL

•  Source-to-source compilation

Brandvik, T. and Pullan, G. (2010)
“SBLOCK: A Framework for Efficient Stencil-Based PDE Solvers on Multi-Core Platforms”
1st International Workshop on the Frontier of GPU Computing, Bradford, July 2010

Stencil example

•  Structured grid indexing

i, j, k
i-1, j, k i+1, j, k

i, j, k+1

i, j, k-1

i, j-1, k

i, j+1, k

Stencil example

•  in Fortran

Stencil example

•  Stencil definition:

Source-to-source compilation

•  The stencil definition is transformed at compile-time into code that can
run on the chosen processor

•  The transformation is performed by filling in a pre-defined template
using the stencil definition

Stencil definition

CPU template

GPU template

CPU source (.c)

GPU source (.cu)

Source-to-source compilation

•  The stencil definition is transformed at compile-time into code that can
run on the chosen processor

•  The transformation is performed by filling in a pre-defined template
using the stencil definition

Stencil definition

CPU template

GPU template

CPU source (.c)

GPU source (.cu)

X source X template

Implementation details

•  There are many optimisation strategies for stencil operations (see paper
from Supercomputing 2008 by Datta et al.)

•  CPUs:

•  Parallelise with pthreads

•  SSE vectorisation

•  GPUs:

•  Cyclic queues

CUDA strategy

CUDA strategy

CUDA strategy

CUDA strategy

CUDA strategy

CUDA strategy

Testbed

•  CPU 1: Intel Core i7 920 (2.66 GHZ)

•  CPU 2: AMD Phenom II X4 940 (3.0 GHz)

•  GPU: NVIDIA GTX 280

Stencil benchmark

Stencil benchmark

Turbostream

Turbostream

•  We have implemented a new solver that can run on both CPUs and
GPUs

•  The starting point was an existing solver (Fortran, MPI) called TBLOCK

•  The new solver is called Turbostream

Brandvik, T. and Pullan, G. (2009)
“An Accelerated 3D Navier-Stokes Solver for Flows in Turbomachines”
ASME IGTI Turbo Expo, Orlando, June 2009

TBLOCK

•  Developed by John Denton

•  Blocks with arbitrary patch interfaces

•  Simple and fast algorithm

•  20,000 lines of Fortran 77

•  Main solver routines are only 10,000 lines

Turbostream

•  3000 lines of stencil definitions (~15 different stencil kernels)

•  Code generated from stencil definitions is 15,000 lines

•  Additional 5000 lines of C for boundary conditions, file I/O etc.

•  Source code is very similar to TBLOCK – every subroutine has an
equivalent stencil definition

Turbostream performance

•  TBLOCK runs in parallel on all four CPU cores using MPI

•  Initial results from latest NVIDIA Fermi GPU show an further 2x seedup

Processor TBLOCK Turbostream

Intel Nehalem 1.21 1.48

AMD Phenom II 1 0.89

NVIDIA GT200 - 10.2

“Darwin” GPU cluster

•  Darwin is the central
Cambridge cluster

•  In 2008, NVIDIA made
Cambridge a CUDA
Centre of Excellence,
donating 128 GPUs to
Darwin

Scaling results

•  Unsteady multi-stage
turbine

•  Baseline: 27 E6 nodes

•  Largest: 432 E6 nodes

•  Weak scaling: Increase
grid size with # GPUs

•  Strong scaling: Constant
grid size (27 E6 nodes)

What can this be used for?

Steady,	 single	 passage:	
0.5	 million	 nodes	
40s	 (1	 GPU)	

Steady,	 3	 stage:	
3	 million	 nodes	
7.5	 mins	 (1	 GPU)	

Unsteady,	 3	 stage:	
120	 million	 nodes	
4	 hours	 (16	 GPUs)	 per	 rev	

Example simulations

Example simulations

•  Three-stage steady turbine simulation (mixing planes)

•  Three-stage unsteady compressor simulation (sliding planes)

Three-stage turbine

Turbine from Rosic et al,
ASME J. Turbo. (2006)

Entropy function through machine

•  4 million grid nodes

•  10 hours on a single CPU

•  8 minutes on four GPUs

Total pressure loss, Stator 3 exit

Experiment Turbostream

Compressor simulation

•  Three-stage compressor test rig at Siemens, UK

•  160 million grid nodes

•  5 revolutions needed to obtain a periodic solution (22500 time steps)

•  On 32 NVIDIA GT200 GPUs, each revolution takes 24 hours

Entropy function contours at mid-span

Conclusions

Conclusions

•  The switch to multi-core processors enables a step change in
performance, but existing codes have to be rewritten

•  The differences between processors make it difficult to hand-code a
solver that will run on all of them

•  We suggest a high level abstraction coupled with source-to-source
compilation

Conclusions

•  A new solver called Turbostream, which is based on Denton’s TBLOCK,
has been implemented

•  Turbostream is ~10 times faster than TBLOCK when running on an
NVIDIA GPU as compared to a quad-core Intel or AMD CPUs

•  Single blade-row calculations almost interactive on a desktop (10 – 30
seconds)

•  Multi-stage calculations in a few minutes on a small cluster ($10,000)

•  Full annulus unsteady calculations complete overnight on a modest
cluster ($100,000)

