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Coming up...

• Background
• CPUs and GPUs
• GPU programming models
• An example – CFD
• Alternative devices
• Conclusions



Part 1: Background



Whittle Lab
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Turbomachinery



Engine calculation

Courtesy Vicente Jerez
Fidalgo, Whittle Lab



CFD basics

Body-fitted mesh



CFD basics

Body-fitted mesh For each cell, conserve:

• mass

• momentum

• energy

and update flow properties



Approximate compute requirements

“Steady” models (no wake/blade interaction, etc)
1 blade 0.5 Mcells 1 CPU hour
1 stage (2 blades) 1.0 Mcells 3 CPU hours
1 component (5 stages) 5.0 Mcells 20 CPU hours



Approximate compute requirements

“Steady” models (no wake/blade interaction, etc)
1 blade 0.5 Mcells 1 CPU hour
1 stage (2 blades) 1.0 Mcells 3 CPU hours
1 component (5 stages) 5.0 Mcells 20 CPU hours

“Unsteady” models (with wakes, etc)
1 component (1000 blades) 500 Mcells 0.1 M CPU hours
Engine (4000 blades) 2 Gcells 1 M CPU hours



Graham’s coding experience:

• FORTRAN
• C
• MPI
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•MPI



Part 2: CPUs and GPUs



Moore’s Law

“The complexity for minimum component costs has 
increased at a rate of roughly a factor of two per year. 
Certainly over the short term this rate can be expected to 
continue.”
Gordon Moore (Intel), 1965



Moore’s Law

“The complexity for minimum component costs has 
increased at a rate of roughly a factor of two per year. 
Certainly over the short term this rate can be expected to 
continue.”
Gordon Moore (Intel), 1965

“OK, maybe a factor of two every two years.”
Gordon Moore (Intel), 1975 [paraphrased]



Was Moore right?

Source: Intel

Source: 
ftp://download.intel.com/resea
rch/silicon/Gordon_Moore_ISSC
C_021003.pdf

ftp://download.intel.com/research/silicon/Gordon_Moore_ISSCC_021003.pdf
ftp://download.intel.com/research/silicon/Gordon_Moore_ISSCC_021003.pdf
ftp://download.intel.com/research/silicon/Gordon_Moore_ISSCC_021003.pdf
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Feature size

Source: Intel

Source: 
ftp://download.intel.com/resea
rch/silicon/Gordon_Moore_ISSC
C_021003.pdf

ftp://download.intel.com/research/silicon/Gordon_Moore_ISSCC_021003.pdf
ftp://download.intel.com/research/silicon/Gordon_Moore_ISSCC_021003.pdf
ftp://download.intel.com/research/silicon/Gordon_Moore_ISSCC_021003.pdf


Clock speed

Source: 
http://www.tomshardware.com/2005/11/21/the_mother_of_al
l_cpu_charts_2005/index.html

http://www.tomshardware.com/2005/11/21/the_mother_of_all_cpu_charts_2005/index.html
http://www.tomshardware.com/2005/11/21/the_mother_of_all_cpu_charts_2005/index.html


Power – the Clock speed limiter?

• 1 GHz CPU requires ≈ 25 W
• 3 GHz CPU requires ≈ 100 W



Power – the Clock speed limiter?

• 1 GHz CPU requires ≈ 25 W
• 3 GHz CPU requires ≈ 100 W

“The total of electricity consumed by major search 
engines in 2006 approaches 5 GW.” – Wired / AMD

Source: 
http://www.hotchips.org/hc19/docs/keynote2.pdf

http://www.hotchips.org/hc19/docs/keynote2.pdf


What to do with all these transistors?



Parallel computing

Multi-core chips are either:

– Instruction parallel
(Multipile Instruction, Multiple Data) – MIMD

or

– Data parallel
(Single Instruction, Multiple Data) – SIMD 



Today’s commodity MIMD chips: CPUs

Intel Core 2 Quad
• 4 cores
• 2.4 GHz
• 65nm features
• 582 million transistors
• 8MB on chip memory



Today’s commodity SIMD chips: GPUs

NVIDIA 8800 GTX
• 128 cores
• 1.35 GHz
• 90nm features
• 681 million transistors
• 768MB on board memory



CPUs vs GPUs

Source: 
http://www.eng.cam.ac.uk/~gp10006/research/Brandvi
k_Pullan_2008a_DRAFT.pdf

http://www.eng.cam.ac.uk/~gp10006/research/Brandvik_Pullan_2008a_DRAFT.pdf
http://www.eng.cam.ac.uk/~gp10006/research/Brandvik_Pullan_2008a_DRAFT.pdf


CPUs vs GPUs

Transistor usage:

Source: NVIDIA CUDA SDK 
documentation



Graphics pipeline

Source: 
ftp://download.nvidia.com/developer/presentations/200
4/Perfect_Kitchen_Art/English_Evolution_of_GPUs.pdf

ftp://download.nvidia.com/developer/presentations/2004/Perfect_Kitchen_Art/English_Evolution_of_GPUs.pdf
ftp://download.nvidia.com/developer/presentations/2004/Perfect_Kitchen_Art/English_Evolution_of_GPUs.pdf


Graphics pipeline



GPUs and scientific computing

GPUs are designed to apply the 
same shading function

to many pixels simultaneously



GPUs and scientific computing

GPUs are designed to apply the 
same function

to many data simultaneously

This is what most scientific computing needs!



Part 3: Programming methods



3 Generations of GPGPU (Owens, 2008)
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3 Generations of GPGPU (Owens, 2008)

• Making it work at all:
– Primitive functionality and tools (graphics APIs)
– Comparisons with CPU not rigorous

• Making it work better:
– Easier to use (higher level APIs)
– Understanding of how best to do it

• Doing it right: 
– Stable, portable, modular building blocks

Source:

http://www.ece.ucdavis.edu/~jowens/talks/intel-
santaclara-070420.pdf

http://www.ece.ucdavis.edu/~jowens/talks/intel-santaclara-070420.pdf
http://www.ece.ucdavis.edu/~jowens/talks/intel-santaclara-070420.pdf


GPU – Programming for graphics

Application specifies geometry – GPU 
rasterizes

Each fragment is shaded (SIMD)

Shading can use values from memory 
(textures)

Image can be stored for re-use

Courtesy, John Owens, UC Davis

Source:

http://www.ece.ucdavis.edu/~jowens/talks/intel-
santaclara-070420.pdf

http://www.ece.ucdavis.edu/~jowens/talks/intel-santaclara-070420.pdf
http://www.ece.ucdavis.edu/~jowens/talks/intel-santaclara-070420.pdf


GPGPU programming (“old-school”)

Draw a quad

Run a SIMD program over each 
fragment

Gather is permitted from texture memory

Resulting buffer can be stored for re-use

Courtesy, John Owens, UC Davis



NVIDIA G80 hardware implementation 

• Vertex/fragment processors replaced by Unified Shaders
• Now view GPU as massively parallel co-processor
• Set of (16) SIMD MultiProcessors (8 cores)

Source:
http://www.ece.wisc.edu/~kati/fpga2008/fpga2008%20wo
rkshop%20-%2006%20NVIDIA%20-%20Kirk.pdf

http://www.ece.wisc.edu/~kati/fpga2008/fpga2008 workshop - 06 NVIDIA - Kirk.pdf
http://www.ece.wisc.edu/~kati/fpga2008/fpga2008 workshop - 06 NVIDIA - Kirk.pdf


NVIDIA G80 hardware implementation

Divide 128 cores into 

16 Multiprocessors (MPs)

•Each MP has:
–Registers
–Shared memory
–Read only constant 
cache
–Read only texture 
cache



NVIDIA’s CUDA programming model

• G80 chip supports MANY active threads: 12,288
• Threads are lightweight:

– Little creation overhead
– “instant” switching
– Efficiency achieved through 1000’s of threads

• Threads are organised into blocks (1D, 2D, 3D)
• Blocks are further organised into a grid



Kernels, grids, blocks and threads



Kernels, grids, blocks and threads

• Organisation of threads and blocks is key abstraction
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• Using data in shared memory
• Through synchronising



Kernels, grids, blocks and threads

• Organisation of threads and blocks is key abstraction
• Software:

– Threads from one block may cooperate:
• Using data in shared memory
• Through synchronising

• Hardware:
– A block runs on one MP
– Hardware free to schedule any block on any MP
– More than one block can reside on one MP



Kernels, grids, blocks and threads



CUDA implementation

• CUDA implemented as extensions to C

• CUDA programs:
– explicitly manage host and device memory:

• allocation
• transfers

– set thread blocks and grid
– launch kernels
– are compiled with the CUDA nvcc compiler



Part 4: An example – CFD



Distribution function

) , ,( tff xc=

∫= cdf  ρ

∫= ccu df  ρ

c is microscopic velocity

u is macroscopic velocity



Boltzmann equation
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Lattice Boltzmann Method

Uniform mesh (lattice)



Lattice Boltzmann Method

Uniform mesh (lattice)
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Restrict microscopic velocities 
to a finite set:



Macroscopic flow

For 2D, 9 velocities recover

• Isothermal, incompressible Navier-Stokes eqns

• With viscosity:
t

x
Δ
Δ

⎟
⎠
⎞

⎜
⎝
⎛ −=

2

2
1τν



Solution procedure

1. Evaluate macroscopic properties:
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Solution procedure



Solution procedure

Simple prescriptions at 
boundary nodes



CPU code: main.c

/* Memory allocation */
f0 = (float *)malloc(ni*nj*sizeof(float));
...

/* Main loop */
Stream (...args...);
Apply_BCs (...args...);
Collide (...args...);



GPU code: main.cu

/* allocate memory on host */
f0 = (float *)malloc(ni*nj*sizeof(float));

/* allocate memory on device */
cudaMallocPitch((void **)&f0_data, &pitch, 

sizeof(float)*ni, nj);

cudaMallocArray(&f0_array, &desc, ni, nj);

/* Main loop */
Stream (...args...);
Apply_BCs (...args...);
Collide (...args...);



CPU code – collide.c

for (j=0; j<nj; j++) {
for (i=0; i<ni; i++) {

i2d = I2D(ni,i,j);
/* Flow properties */

density = ...function of f’s ...
vel_x = ...   “
vel_y = ...   “

/* Equilibrium f’s */
f0eq = ... function of density, vel_x, vel_y ...
f1eq = ...     “

/* Collisions */
f0[i2d] = rtau1 * f0[i2d] + rtau * f0eq;
f1[i2d] = rtau1 * f1[i2d] + rtau * f1eq;
...

}
}



GPU code – collide.cu – kernel wrapper 

void collide( ... args ...)
{
/* Set thread blocks and grid */

dim3 grid = dim3(ni/TILE_I, nj/TILE_J);
dim3 block = dim3(TILE_I, TILE_J);

/* Launch kernel */
collide_kernel<<<grid, block>>>(... args ...);

}



GPU code – collide.cu - kernel

/* Evaluate indices */
i = blockIdx.x*TILE_I + threadIdx.x;
j = blockIdx.y*TILE_J + threadIdx.y;
i2d = i + j*pitch/sizeof(float);
/* Read from device global memory */
f0now = f0_data[i2d];
f1now = f1_data[i2d];

/* Calc flow, feq, collide, as CPU code */

/* Write to device global memory */
f0_data[i2d] = rtau1 * f0now + rtau * f0eq;
f1_data[i2d] = rtau1 * f1now + rtau * f1eq;



GPU code – stream.cu – kernel wrapper

void stream( ... args ...)
{
/* Copy linear memory to CUDA array */

cudaMemcpy2DToArray(f1_array, 0, 0,
(void *)f1_data, pitch,sizeof(float)*ni, nj,
cudaMemcpyDeviceToDevice);

/* Make CUDA array a texture */
f1_tex.filterMode = cudaFilterModePoint;
cudaBindTextureToArray(f1_tex, f1_array));

/* Set threads and launch kernel */
dim3 grid = dim3(ni/TILE_I, nj/TILE_J);
dim3 block = dim3(TILE_I, TILE_J);
stream_kernel<<<grid, block>>>(... args ...);

}



GPU code – stream.cu – kernel

/* indices */

i = blockIdx.x*TILE_I + threadIdx.x;
j = blockIdx.y*TILE_J + threadIdx.y;
i2d = i + j*pitch/sizeof(float);

/* stream using texture fetches */
f1_data[i2d] = tex2D(f1_tex, (i-1), j);
f2_data[i2d] = tex2D(f2_tex, i, (j-1));
...



CPU / GPU demo



Results

• 2D Lattice Boltzmann code: 15x speedup GPU vs CPU

• Real CFD is more complex:
– more kernels
– 3D

• To improve performance, make use of shared memory



3D stencil operations

• Most CFD operations use nearest neighbour lookups 
(stencil operations)

• e.g. 7 point stencil: centre point + 6 nearest neighbours

• Load data into shared memory
• Perform stencil ops
• Export results to device global memory
• Read in more data into shared memory



Stencil operations

3D sub-domain                 Threads in one plane
Source:

http://www.eng.cam.ac.uk/~gp10006/research/Brandvik_Pullan_2
008a_DRAFT.pdf

http://www.eng.cam.ac.uk/~gp10006/research/Brandvik_Pullan_2008a_DRAFT.pdf
http://www.eng.cam.ac.uk/~gp10006/research/Brandvik_Pullan_2008a_DRAFT.pdf


CUDA stencil kernel

__global__ void smooth_kernel(float sf, float 
*a_data, float *b_data){

/* shared memory array */
__shared__ float a[16][3][5];
/* fetch first planes */
a[i][0][k] = a_data[i0m10];
a[i][1][k] = a_data[i000];
a[i][2][k] = a_data[i0p10];
__syncthreads();
/* compute */
b_data[i000] =

sf1*a[i][1][k] + sfd6*(a[im1][1][k] +
a[ip1][1][k] + a[i][0][k] +
a[i][2][k] + a[i][1][km1] + a[i][1][kp1])

/* load next "j" plane and repeat ...*/



Typical grid – CUDA partitioning



Typical grid – CUDA partitioning

Each colour to a different 
multiprocessor



3D results

30x speedup GPU vs CPU



Part 5: NVIDIA – the only show in town?



NVIDIA

• 4 Tesla HPC GPUs

• 500 GFLOPs peak per GPU

• 1.5GB per GPU



AMD

• Firestream HPC GPU

• 500 GFLOPs

• 2GB 

• available?



ClearSpeed

80 GFLOPs

35 W !



IBM Cell BE

25 x 8 GFLOPs



Chip comparison (Giles 2008)

Source:
http://www.cardiff.ac.uk/arcca/services/events/NovelArchitecture/
Mike-Giles.pdf

http://www.cardiff.ac.uk/arcca/services/events/NovelArchitecture/Mike-Giles.pdf
http://www.cardiff.ac.uk/arcca/services/events/NovelArchitecture/Mike-Giles.pdf


Too much choice!

• Each device has 
– different hardware characteristics
– different software (C extensions)
– different developer tools

• How can we write code for all SIMD devices for all 
applications?



Big picture – all devices, all problems?



Forget the big picture



Tackle the dwarves!



The View from Berkeley (7 “dwarves”)

1. Dense Linear Algebra
2. Sparse Linear Algebra
3. Spectral Methods
4. N-Body Methods
5. Structured Grids
6. Unstructured Grids
7. MapReduce

Source:
http://view.eecs.berkeley.edu/wiki/Main_Page

http://view.eecs.berkeley.edu/wiki/Main_Page


The View from Berkeley (13 dwarves?)

1. Dense Linear Algebra
2. Sparse Linear Algebra
3. Spectral Methods
4. N-Body Methods
5. Structured Grids
6. Unstructured Grids
7. MapReduce
8. Combinational Logic
9. Graph Traversal
10.Dynamic Programming
11.Backtrack and Branch-and-Bound
12.Graphical Models
13.Finite State Machines 
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SBLOCK (Brandvik)

• Tackle structured grid, stencil operations dwarf
• Define kernel using high level Python abstraction
• Generate kernel for a range of devices from same 

definition: CPU, GPU, Cell
• Use MPI to handle multiple devices



SBLOCK kernel definition

kind = "stencil"
bpin = ["a"]
bpout = ["b"]
lookup = ((1,0, 0), (0, 0, 0), (1,0, 0), (0, 1,0),

(0, 1, 0), (0, 0, 1), (0, 0, 1))
calc = {"lvalue": "b",

"rvalue": """sf1*a[0][0][0] +
sfd6*(a[1][0][0] + a[1][0][0] +

a[0][1][0] + a[0][1][0] +
a[0][0][1] + a[0][0][1])"""}



SBLOCK – CPU implementation (C)

void smooth(float sf, float *a, float *b) 
{

for (k=0; k < nk; k++) {
for (j=0; j < nj; j++) {
for (i=0; i < ni; i++) {

/* compute indices i000, im100, etc */
b[i000] = sf1*a[i000] +

sfd6*(a[im100] + a[ip100] +
a[i0m10] + a[i0p10]

+ a[i00m1] + a[i00p1]);
}

}
}

}



SBLOCK – GPU implementation (CUDA)

__global__ void smooth_kernel(float sf, float 
*a_data, float *b_data){

/* shared memory array */
__shared__ float a[16][3][5];
/* fetch first planes */
a[i][0][k] = a_data[i0m10];
a[i][1][k] = a_data[i000];
a[i][2][k] = a_data[i0p10];
__syncthreads();
/* compute */
b_data[i000] =

sf1*a[i][1][k] + sfd6*(a[im1][1][k] +
a[ip1][1][k] + a[i][0][k] +
a[i][2][k] + a[i][1][km1] + a[i][1][kp1])

/* load next "j" plane and repeat ...*/



Benefits of SBLOCK

So long as the task fits the dwarf:

• Programmer need not learn every device library
• Optimal device code is produced
• Code is future proofed (so long as back-ends are 

available)



Part 6: Conclusions
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• Many science applications fit the SIMD model
• GPUs are commodity SIMD chips
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