
Acceleration of scientific computing
using graphics hardware

Graham Pullan
Whittle Lab
Engineering Department, University of Cambridge
28 May 2008 I’ve added some notes that

weren’t on the original slides to
help readers of the online pdf
version.

Coming up...

• Background
• CPUs and GPUs
• GPU programming models
• An example – CFD
• Alternative devices
• Conclusions

Part 1: Background

Whittle Lab

You are here

Whittle Lab

You are here

I work here

Turbomachinery

Engine calculation

Courtesy Vicente Jerez
Fidalgo, Whittle Lab

CFD basics

Body-fitted mesh

CFD basics

Body-fitted mesh For each cell, conserve:

• mass

• momentum

• energy

and update flow properties

Approximate compute requirements

“Steady” models (no wake/blade interaction, etc)
1 blade 0.5 Mcells 1 CPU hour
1 stage (2 blades) 1.0 Mcells 3 CPU hours
1 component (5 stages) 5.0 Mcells 20 CPU hours

Approximate compute requirements

“Steady” models (no wake/blade interaction, etc)
1 blade 0.5 Mcells 1 CPU hour
1 stage (2 blades) 1.0 Mcells 3 CPU hours
1 component (5 stages) 5.0 Mcells 20 CPU hours

“Unsteady” models (with wakes, etc)
1 component (1000 blades) 500 Mcells 0.1 M CPU hours
Engine (4000 blades) 2 Gcells 1 M CPU hours

Graham’s coding experience:

• FORTRAN
• C
• MPI

Graham’s coding experience:

• C

•MPI

Part 2: CPUs and GPUs

Moore’s Law

“The complexity for minimum component costs has
increased at a rate of roughly a factor of two per year.
Certainly over the short term this rate can be expected to
continue.”
Gordon Moore (Intel), 1965

Moore’s Law

“The complexity for minimum component costs has
increased at a rate of roughly a factor of two per year.
Certainly over the short term this rate can be expected to
continue.”
Gordon Moore (Intel), 1965

“OK, maybe a factor of two every two years.”
Gordon Moore (Intel), 1975 [paraphrased]

Was Moore right?

Source: Intel

Source:
ftp://download.intel.com/resea
rch/silicon/Gordon_Moore_ISSC
C_021003.pdf

ftp://download.intel.com/research/silicon/Gordon_Moore_ISSCC_021003.pdf
ftp://download.intel.com/research/silicon/Gordon_Moore_ISSCC_021003.pdf
ftp://download.intel.com/research/silicon/Gordon_Moore_ISSCC_021003.pdf

Was Moore right?

Source: Intel

Was Moore right?

Source: Intel

Feature size

Source: Intel

Source:
ftp://download.intel.com/resea
rch/silicon/Gordon_Moore_ISSC
C_021003.pdf

ftp://download.intel.com/research/silicon/Gordon_Moore_ISSCC_021003.pdf
ftp://download.intel.com/research/silicon/Gordon_Moore_ISSCC_021003.pdf
ftp://download.intel.com/research/silicon/Gordon_Moore_ISSCC_021003.pdf

Clock speed

Source:
http://www.tomshardware.com/2005/11/21/the_mother_of_al
l_cpu_charts_2005/index.html

http://www.tomshardware.com/2005/11/21/the_mother_of_all_cpu_charts_2005/index.html
http://www.tomshardware.com/2005/11/21/the_mother_of_all_cpu_charts_2005/index.html

Power – the Clock speed limiter?

• 1 GHz CPU requires ≈ 25 W
• 3 GHz CPU requires ≈ 100 W

Power – the Clock speed limiter?

• 1 GHz CPU requires ≈ 25 W
• 3 GHz CPU requires ≈ 100 W

“The total of electricity consumed by major search
engines in 2006 approaches 5 GW.” – Wired / AMD

Source:
http://www.hotchips.org/hc19/docs/keynote2.pdf

http://www.hotchips.org/hc19/docs/keynote2.pdf

What to do with all these transistors?

Parallel computing

Multi-core chips are either:

– Instruction parallel
(Multipile Instruction, Multiple Data) – MIMD

or

– Data parallel
(Single Instruction, Multiple Data) – SIMD

Today’s commodity MIMD chips: CPUs

Intel Core 2 Quad
• 4 cores
• 2.4 GHz
• 65nm features
• 582 million transistors
• 8MB on chip memory

Today’s commodity SIMD chips: GPUs

NVIDIA 8800 GTX
• 128 cores
• 1.35 GHz
• 90nm features
• 681 million transistors
• 768MB on board memory

CPUs vs GPUs

Source:
http://www.eng.cam.ac.uk/~gp10006/research/Brandvi
k_Pullan_2008a_DRAFT.pdf

http://www.eng.cam.ac.uk/~gp10006/research/Brandvik_Pullan_2008a_DRAFT.pdf
http://www.eng.cam.ac.uk/~gp10006/research/Brandvik_Pullan_2008a_DRAFT.pdf

CPUs vs GPUs

Transistor usage:

Source: NVIDIA CUDA SDK
documentation

Graphics pipeline

Source:
ftp://download.nvidia.com/developer/presentations/200
4/Perfect_Kitchen_Art/English_Evolution_of_GPUs.pdf

ftp://download.nvidia.com/developer/presentations/2004/Perfect_Kitchen_Art/English_Evolution_of_GPUs.pdf
ftp://download.nvidia.com/developer/presentations/2004/Perfect_Kitchen_Art/English_Evolution_of_GPUs.pdf

Graphics pipeline

GPUs and scientific computing

GPUs are designed to apply the
same shading function

to many pixels simultaneously

GPUs and scientific computing

GPUs are designed to apply the
same function

to many data simultaneously

This is what most scientific computing needs!

Part 3: Programming methods

3 Generations of GPGPU (Owens, 2008)

3 Generations of GPGPU (Owens, 2008)

• Making it work at all:
– Primitive functionality and tools (graphics APIs)
– Comparisons with CPU not rigorous

3 Generations of GPGPU (Owens, 2008)

• Making it work at all:
– Primitive functionality and tools (graphics APIs)
– Comparisons with CPU not rigorous

• Making it work better:
– Easier to use (higher level APIs)
– Understanding of how best to do it

3 Generations of GPGPU (Owens, 2008)

• Making it work at all:
– Primitive functionality and tools (graphics APIs)
– Comparisons with CPU not rigorous

• Making it work better:
– Easier to use (higher level APIs)
– Understanding of how best to do it

• Doing it right:
– Stable, portable, modular building blocks

Source:

http://www.ece.ucdavis.edu/~jowens/talks/intel-
santaclara-070420.pdf

http://www.ece.ucdavis.edu/~jowens/talks/intel-santaclara-070420.pdf
http://www.ece.ucdavis.edu/~jowens/talks/intel-santaclara-070420.pdf

GPU – Programming for graphics

Application specifies geometry – GPU
rasterizes

Each fragment is shaded (SIMD)

Shading can use values from memory
(textures)

Image can be stored for re-use

Courtesy, John Owens, UC Davis

Source:

http://www.ece.ucdavis.edu/~jowens/talks/intel-
santaclara-070420.pdf

http://www.ece.ucdavis.edu/~jowens/talks/intel-santaclara-070420.pdf
http://www.ece.ucdavis.edu/~jowens/talks/intel-santaclara-070420.pdf

GPGPU programming (“old-school”)

Draw a quad

Run a SIMD program over each
fragment

Gather is permitted from texture memory

Resulting buffer can be stored for re-use

Courtesy, John Owens, UC Davis

NVIDIA G80 hardware implementation

• Vertex/fragment processors replaced by Unified Shaders
• Now view GPU as massively parallel co-processor
• Set of (16) SIMD MultiProcessors (8 cores)

Source:
http://www.ece.wisc.edu/~kati/fpga2008/fpga2008%20wo
rkshop%20-%2006%20NVIDIA%20-%20Kirk.pdf

http://www.ece.wisc.edu/~kati/fpga2008/fpga2008 workshop - 06 NVIDIA - Kirk.pdf
http://www.ece.wisc.edu/~kati/fpga2008/fpga2008 workshop - 06 NVIDIA - Kirk.pdf

NVIDIA G80 hardware implementation

Divide 128 cores into

16 Multiprocessors (MPs)

•Each MP has:
–Registers
–Shared memory
–Read only constant
cache
–Read only texture
cache

NVIDIA’s CUDA programming model

• G80 chip supports MANY active threads: 12,288
• Threads are lightweight:

– Little creation overhead
– “instant” switching
– Efficiency achieved through 1000’s of threads

• Threads are organised into blocks (1D, 2D, 3D)
• Blocks are further organised into a grid

Kernels, grids, blocks and threads

Kernels, grids, blocks and threads

• Organisation of threads and blocks is key abstraction

Kernels, grids, blocks and threads

• Organisation of threads and blocks is key abstraction
• Software:

– Threads from one block may cooperate:
• Using data in shared memory
• Through synchronising

Kernels, grids, blocks and threads

• Organisation of threads and blocks is key abstraction
• Software:

– Threads from one block may cooperate:
• Using data in shared memory
• Through synchronising

• Hardware:
– A block runs on one MP
– Hardware free to schedule any block on any MP
– More than one block can reside on one MP

Kernels, grids, blocks and threads

CUDA implementation

• CUDA implemented as extensions to C

• CUDA programs:
– explicitly manage host and device memory:

• allocation
• transfers

– set thread blocks and grid
– launch kernels
– are compiled with the CUDA nvcc compiler

Part 4: An example – CFD

Distribution function

) , ,(tff xc=

∫= cdf ρ

∫= ccu df ρ

c is microscopic velocity

u is macroscopic velocity

Boltzmann equation

collisionst
ff

t
f

∂
∂

=∇⋅+
∂
∂ u

)(1 eqfff
t
f

−−=∇⋅+
∂
∂

τ
u

The evolution of f :

Major simplification:

Lattice Boltzmann Method

Uniform mesh (lattice)

Lattice Boltzmann Method

Uniform mesh (lattice)

∑=
α

ααρ cu f∑=
α

αρ f

Restrict microscopic velocities
to a finite set:

Macroscopic flow

For 2D, 9 velocities recover

• Isothermal, incompressible Navier-Stokes eqns

• With viscosity:
t

x
Δ
Δ

⎟
⎠
⎞

⎜
⎝
⎛ −=

2

2
1τν

Solution procedure

1. Evaluate macroscopic properties:

∑=
α

ααρ cu f∑=
α

αρ f

2. Evaluate),(uρα
eqf

3. Find

()eqffff αααα τ
−−=

1*

Solution procedure

Solution procedure

Simple prescriptions at
boundary nodes

CPU code: main.c

/* Memory allocation */
f0 = (float *)malloc(ni*nj*sizeof(float));
...

/* Main loop */
Stream (...args...);
Apply_BCs (...args...);
Collide (...args...);

GPU code: main.cu

/* allocate memory on host */
f0 = (float *)malloc(ni*nj*sizeof(float));

/* allocate memory on device */
cudaMallocPitch((void **)&f0_data, &pitch,

sizeof(float)*ni, nj);

cudaMallocArray(&f0_array, &desc, ni, nj);

/* Main loop */
Stream (...args...);
Apply_BCs (...args...);
Collide (...args...);

CPU code – collide.c

for (j=0; j<nj; j++) {
for (i=0; i<ni; i++) {

i2d = I2D(ni,i,j);
/* Flow properties */

density = ...function of f’s ...
vel_x = ... “
vel_y = ... “

/* Equilibrium f’s */
f0eq = ... function of density, vel_x, vel_y ...
f1eq = ... “

/* Collisions */
f0[i2d] = rtau1 * f0[i2d] + rtau * f0eq;
f1[i2d] = rtau1 * f1[i2d] + rtau * f1eq;
...

}
}

GPU code – collide.cu – kernel wrapper

void collide(... args ...)
{
/* Set thread blocks and grid */

dim3 grid = dim3(ni/TILE_I, nj/TILE_J);
dim3 block = dim3(TILE_I, TILE_J);

/* Launch kernel */
collide_kernel<<<grid, block>>>(... args ...);

}

GPU code – collide.cu - kernel

/* Evaluate indices */
i = blockIdx.x*TILE_I + threadIdx.x;
j = blockIdx.y*TILE_J + threadIdx.y;
i2d = i + j*pitch/sizeof(float);
/* Read from device global memory */
f0now = f0_data[i2d];
f1now = f1_data[i2d];

/* Calc flow, feq, collide, as CPU code */

/* Write to device global memory */
f0_data[i2d] = rtau1 * f0now + rtau * f0eq;
f1_data[i2d] = rtau1 * f1now + rtau * f1eq;

GPU code – stream.cu – kernel wrapper

void stream(... args ...)
{
/* Copy linear memory to CUDA array */

cudaMemcpy2DToArray(f1_array, 0, 0,
(void *)f1_data, pitch,sizeof(float)*ni, nj,
cudaMemcpyDeviceToDevice);

/* Make CUDA array a texture */
f1_tex.filterMode = cudaFilterModePoint;
cudaBindTextureToArray(f1_tex, f1_array));

/* Set threads and launch kernel */
dim3 grid = dim3(ni/TILE_I, nj/TILE_J);
dim3 block = dim3(TILE_I, TILE_J);
stream_kernel<<<grid, block>>>(... args ...);

}

GPU code – stream.cu – kernel

/* indices */

i = blockIdx.x*TILE_I + threadIdx.x;
j = blockIdx.y*TILE_J + threadIdx.y;
i2d = i + j*pitch/sizeof(float);

/* stream using texture fetches */
f1_data[i2d] = tex2D(f1_tex, (i-1), j);
f2_data[i2d] = tex2D(f2_tex, i, (j-1));
...

CPU / GPU demo

Results

• 2D Lattice Boltzmann code: 15x speedup GPU vs CPU

• Real CFD is more complex:
– more kernels
– 3D

• To improve performance, make use of shared memory

3D stencil operations

• Most CFD operations use nearest neighbour lookups
(stencil operations)

• e.g. 7 point stencil: centre point + 6 nearest neighbours

• Load data into shared memory
• Perform stencil ops
• Export results to device global memory
• Read in more data into shared memory

Stencil operations

3D sub-domain Threads in one plane
Source:

http://www.eng.cam.ac.uk/~gp10006/research/Brandvik_Pullan_2
008a_DRAFT.pdf

http://www.eng.cam.ac.uk/~gp10006/research/Brandvik_Pullan_2008a_DRAFT.pdf
http://www.eng.cam.ac.uk/~gp10006/research/Brandvik_Pullan_2008a_DRAFT.pdf

CUDA stencil kernel

__global__ void smooth_kernel(float sf, float
*a_data, float *b_data){

/* shared memory array */
__shared__ float a[16][3][5];
/* fetch first planes */
a[i][0][k] = a_data[i0m10];
a[i][1][k] = a_data[i000];
a[i][2][k] = a_data[i0p10];
__syncthreads();
/* compute */
b_data[i000] =

sf1*a[i][1][k] + sfd6*(a[im1][1][k] +
a[ip1][1][k] + a[i][0][k] +
a[i][2][k] + a[i][1][km1] + a[i][1][kp1])

/* load next "j" plane and repeat ...*/

Typical grid – CUDA partitioning

Typical grid – CUDA partitioning

Each colour to a different
multiprocessor

3D results

30x speedup GPU vs CPU

Part 5: NVIDIA – the only show in town?

NVIDIA

• 4 Tesla HPC GPUs

• 500 GFLOPs peak per GPU

• 1.5GB per GPU

AMD

• Firestream HPC GPU

• 500 GFLOPs

• 2GB

• available?

ClearSpeed

80 GFLOPs

35 W !

IBM Cell BE

25 x 8 GFLOPs

Chip comparison (Giles 2008)

Source:
http://www.cardiff.ac.uk/arcca/services/events/NovelArchitecture/
Mike-Giles.pdf

http://www.cardiff.ac.uk/arcca/services/events/NovelArchitecture/Mike-Giles.pdf
http://www.cardiff.ac.uk/arcca/services/events/NovelArchitecture/Mike-Giles.pdf

Too much choice!

• Each device has
– different hardware characteristics
– different software (C extensions)
– different developer tools

• How can we write code for all SIMD devices for all
applications?

Big picture – all devices, all problems?

Forget the big picture

Tackle the dwarves!

The View from Berkeley (7 “dwarves”)

1. Dense Linear Algebra
2. Sparse Linear Algebra
3. Spectral Methods
4. N-Body Methods
5. Structured Grids
6. Unstructured Grids
7. MapReduce

Source:
http://view.eecs.berkeley.edu/wiki/Main_Page

http://view.eecs.berkeley.edu/wiki/Main_Page

The View from Berkeley (13 dwarves?)

1. Dense Linear Algebra
2. Sparse Linear Algebra
3. Spectral Methods
4. N-Body Methods
5. Structured Grids
6. Unstructured Grids
7. MapReduce
8. Combinational Logic
9. Graph Traversal
10.Dynamic Programming
11.Backtrack and Branch-and-Bound
12.Graphical Models
13.Finite State Machines

The View from Berkeley (13 dwarves?)

1. Dense Linear Algebra
2. Sparse Linear Algebra
3. Spectral Methods
4. N-Body Methods
5. Structured Grids
6. Unstructured Grids
7. MapReduce
8. Combinational Logic
9. Graph Traversal
10.Dynamic Programming
11.Backtrack and Branch-and-Bound
12.Graphical Models
13.Finite State Machines

SBLOCK (Brandvik)

• Tackle structured grid, stencil operations dwarf
• Define kernel using high level Python abstraction
• Generate kernel for a range of devices from same

definition: CPU, GPU, Cell
• Use MPI to handle multiple devices

SBLOCK kernel definition

kind = "stencil"
bpin = ["a"]
bpout = ["b"]
lookup = ((1,0, 0), (0, 0, 0), (1,0, 0), (0, 1,0),

(0, 1, 0), (0, 0, 1), (0, 0, 1))
calc = {"lvalue": "b",

"rvalue": """sf1*a[0][0][0] +
sfd6*(a[1][0][0] + a[1][0][0] +

a[0][1][0] + a[0][1][0] +
a[0][0][1] + a[0][0][1])"""}

SBLOCK – CPU implementation (C)

void smooth(float sf, float *a, float *b)
{

for (k=0; k < nk; k++) {
for (j=0; j < nj; j++) {
for (i=0; i < ni; i++) {

/* compute indices i000, im100, etc */
b[i000] = sf1*a[i000] +

sfd6*(a[im100] + a[ip100] +
a[i0m10] + a[i0p10]

+ a[i00m1] + a[i00p1]);
}

}
}

}

SBLOCK – GPU implementation (CUDA)

__global__ void smooth_kernel(float sf, float
*a_data, float *b_data){

/* shared memory array */
__shared__ float a[16][3][5];
/* fetch first planes */
a[i][0][k] = a_data[i0m10];
a[i][1][k] = a_data[i000];
a[i][2][k] = a_data[i0p10];
__syncthreads();
/* compute */
b_data[i000] =

sf1*a[i][1][k] + sfd6*(a[im1][1][k] +
a[ip1][1][k] + a[i][0][k] +
a[i][2][k] + a[i][1][km1] + a[i][1][kp1])

/* load next "j" plane and repeat ...*/

Benefits of SBLOCK

So long as the task fits the dwarf:

• Programmer need not learn every device library
• Optimal device code is produced
• Code is future proofed (so long as back-ends are

available)

Part 6: Conclusions

Conclusions

• Many science applications fit the SIMD model
• GPUs are commodity SIMD chips
• Good speedups (10x – 100x) can be achieved

Conclusions

• Many science applications fit the SIMD model
• GPUs are commodity SIMD chips
• Good speedups (10x – 100x) can be achieved

• GPGPU is evolving (Owens, UC Davis):
1. Making it work at all (graphics APIs)
2. Doing it better (high level APIs)
3. Doing it right (portable, modular building blocks)

Conclusions

• Many science applications fit the SIMD model
• GPUs are commodity SIMD chips
• Good speedups (10x – 100x) can be achieved

• GPGPU is evolving (Owens, UC Davis):
1. Making it work at all (graphics APIs)
2. Doing it better (high level APIs)
3. Doing it right (portable, modular building blocks)

Acknowledgements and info

• Research student: Tobias Brandvik (CUED)
• Donation of GPU hardware: NVIDIA

http://dx.doi.org/10.1109/JPROC.2008.917757

http://www.gpgpu.org

http://www.oerc.ox.ac.uk/research/many-core-and-
reconfigurable-supercomputing

http://dx.doi.org/10.1109/JPROC.2008.917757
http://www.gpgpu.org/
http://www.oerc.ox.ac.uk/research/many-core-and-reconfigurable-supercomputing
http://www.oerc.ox.ac.uk/research/many-core-and-reconfigurable-supercomputing

	Acceleration of scientific computing using graphics hardware�
	Coming up...
	Part 1: Background
	Whittle Lab
	Whittle Lab
	Turbomachinery
	Engine calculation
	CFD basics
	CFD basics
	Approximate compute requirements
	Approximate compute requirements
	Graham’s coding experience:
	Graham’s coding experience:
	Part 2: CPUs and GPUs
	Moore’s Law
	Moore’s Law
	Was Moore right?
	Was Moore right?
	Was Moore right?
	Feature size
	Clock speed
	Power – the Clock speed limiter?
	Power – the Clock speed limiter?
	What to do with all these transistors?
	Parallel computing
	Today’s commodity MIMD chips: CPUs
	Today’s commodity SIMD chips: GPUs
	CPUs vs GPUs
	CPUs vs GPUs
	Graphics pipeline
	Graphics pipeline
	GPUs and scientific computing
	GPUs and scientific computing
	Part 3: Programming methods
	3 Generations of GPGPU (Owens, 2008)
	3 Generations of GPGPU (Owens, 2008)
	3 Generations of GPGPU (Owens, 2008)
	3 Generations of GPGPU (Owens, 2008)
	GPU – Programming for graphics
	GPGPU programming (“old-school”)
	NVIDIA G80 hardware implementation
	NVIDIA G80 hardware implementation
	NVIDIA’s CUDA programming model
	Kernels, grids, blocks and threads
	Kernels, grids, blocks and threads
	Kernels, grids, blocks and threads
	Kernels, grids, blocks and threads
	Kernels, grids, blocks and threads
	CUDA implementation
	Part 4: An example – CFD
	Distribution function
	Boltzmann equation
	Lattice Boltzmann Method
	Lattice Boltzmann Method
	Macroscopic flow
	Solution procedure
	Solution procedure
	Solution procedure
	CPU code: main.c
	GPU code: main.cu
	CPU code – collide.c
	GPU code – collide.cu – kernel wrapper
	GPU code – collide.cu - kernel
	GPU code – stream.cu – kernel wrapper
	GPU code – stream.cu – kernel
	CPU / GPU demo
	Results
	3D stencil operations
	Stencil operations
	CUDA stencil kernel
	Typical grid – CUDA partitioning
	Typical grid – CUDA partitioning
	3D results
	Part 5: NVIDIA – the only show in town?
	NVIDIA
	AMD
	ClearSpeed
	IBM Cell BE
	Chip comparison (Giles 2008)
	Too much choice!
	Big picture – all devices, all problems?
	Forget the big picture
	Tackle the dwarves!
	The View from Berkeley (7 “dwarves”)
	The View from Berkeley (13 dwarves?)
	The View from Berkeley (13 dwarves?)
	SBLOCK (Brandvik)
	SBLOCK kernel definition
	SBLOCK – CPU implementation (C)
	SBLOCK – GPU implementation (CUDA)
	Benefits of SBLOCK
	Part 6: Conclusions
	Conclusions
	Conclusions
	Conclusions
	Acknowledgements and info

