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Engineering Part IB          P8 – Elective (2) 

Engineering for Renewable Energy Systems 

Wind Turbines  - Vibration and Noise 

Dr Michael Sutcliffe 

Aims of this course 
•  Apply Part I vibration theory to wind turbine design 

•  Understand causes of vibration and critical vibration modes 

•  Outline principal sources of noise for wind turbines 

Selected bibliography 
Guidelines for Design of Wind Turbines, DNV/Risoe Publication, ISBN 8755028705 
Aerodynamics of Wind Turbines, MOL Hansen, James and James, 2000 
Mechanical vibration analysis and computation, DE Newland, Longman, 1989 
 
1  Introduction 
 
- Principals 
- Sources of non-steady loading 
 
2 Modelling of Wind Turbines vibrations 
 
- Continuous beam model – application to tower 
- Equivalent lumped mass model – application to tower  
- Tjaereborg tower example 
 
- Blade vibration – example of multi-degree of freedom model 
- Variable mass and stiffness blade model 
- Blade modelling of torsional/edgewise vibration – Tjaereborg example 
 
3  Noise – background reading handout 
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1 Introduction 
 
Need to consider vibration of the tower, blades, torsion of the shaft, coupled modes…  
 
Critical frequencies: 1P is the rotation frequency of                        , 3P is the   
 passing frequency (for three blade design). Need also to consider harmonics (2P, 4P…) 
 
Guidelines (DNV/Risoe) 
Blades: as a minimum the two lowest frequencies of the blade in the flapwise and 
edgewise direction should be considered and the operating frequency should not be 
within 12% of these frequencies.  
 
For the tower the lowest frequency should not be within 10% of the rotor and blade 
passing frequencies (1P and 3P). 
 

 
Moment time series at bottom of tower 

 
 
Power spectrum of moment at bottom of tower    [Risoe/DNV] 
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Drive train: similar considerations apply. 
 
Dampers may be introduced to reduce vibration at resonance.  
 
May need to be able to pass through resonant modes during start-up/slow down.  
 
At operating/peak load certainly need to avoid resonances. 
 
Fixed speed operation reduces challenge in vibration avoidance, while variable speed 
operation (to optimise power production) gives more difficulties.  
 
 
Campbell chart plots the resonant frequencies as a function of rotor speed. Need to 
avoid resonances at operating frequencies.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[Eggleston and Stoddard, 1987] 
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1.1 Sources of non-steady loading 
 
Unsteady wind conditions – a broad spectrum of frequencies with some contribution 
in the critical range down to a few Hertz, e.g. due to  
(see typical wind variation, Materials handout). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[Walker and Jenkins] 
 
 

 gives 1P loading on blades and 3P loading on tower 
 
Out-of-balance in mass and pitch giving 1P loading on tower 
 
Self-weight gives 1P loading on blade. 
 
Tower shadow effects – 1P loading on blade and 3P loading on tower, plus 
harmonics. May not be important for upwind configuration. 
 
Aeroelastic and flutter effects. 
 
Vortex shedding. 
 
 

 

Average profile: 
wind shear 

Unsteady 
wind 
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2. Modelling of wind turbine vibrations 
 
• Application of single and multi-degree-of-freedom models to wind turbine. 

• Explain by example. Start with simpler tower models and then move on to more 
complex blade models, though all models applicable to blade and tower. 

• Compare continuous with discrete models. 

• Need to consider changes in cross-sectional geometry and area giving changing 
stiffness and mass along structure. Does shape matter? 

 
2.1 Continuous beam model 
 
Uniform cross section, bending stiffness EI, mass per unit length m 

 
Governing equation for beams (neglecting shear): 
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Analytical/numerical solutions are available for simple cases.  
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Application to tower 
 
Consider tower of height L, constant circular cross section, wall thickness t  much 
less than diameter D, density ρ and Young’s Modulus E. 
 

I= tD3
8
π , ρπDtm =  

For the fundamental mode 
ρπ 82

52.3
2

E
L
Df =    

 
Note how increasing the wall                                  doesn’t change the vibration 
frequency. As rotation speed will roughly scale inversely with tower height, we need 
D to scale with height to retain frequency relative to 1P and 3P. 
 
2.2 Equivalent lumped mass model – application to tower 
 
To model more complicated geometries it is helpful to think of the structure as a 
series of lumped                            connected via         
 
For the tower sway the simplest model is to have a lumped mass αM equal to a 
proportion of the tower mass at the tip of the tower, with a spring element at the base 
which provides a moment resisting rotation.  
 
 
 
 
 
 
 
 
 
 
 
Restoring couple C provided by spring = kφ 
 
Taking moments about the base 
 

02
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To calculate an appropriate k for the tower, consider a beam in bending with end load W  
 

Clamped cantilever beam model:
EI

WL
3

3
=δ  

From the spring model:  
 
 
and   
 
 

Hence 
L
EIk 3

=  

 
 

Hence the model predicts 3
3

2
1

ML
EIf

απ
=    

To match the exact solution 42
52.3

mL
EIf

π
=  (noting that M = mL) choose α = 0.24. 

The effective mass is less than the actual mass because the mass is not all at the end.   
 
Consider adding a tower head mass MH to the top of the tower.  
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Note the very significant effect of tower head mass in reducing the frequency.   
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2.3 Tjaereborg Tower example: 
Turbine 
 2 MW 
 Rotor speed constant at 22.36 rpm at rated power (1P=0.37 Hz, 3P = 1.11 Hz) 
 Three GFRP blades 
Dimensions 
 Blade diameter 61.1 m 
 Tower height 57m  
 Hub height 61 m 
Masses 
 Blade mass 9 tonnes 
 Hub 22.1 tonnes 

Tower mass 665 tonnes 
 Towerhead mass (i.e. blades, nacelle…) 
                                224 tonnes 
 Total mass 890 tonnes 
Tower details  

Reinforced concrete, 
 Wall thickness 0.25 m 
 Diameter tapering from 7.25m at base to 4.25m near top 
 Assume Young’s modulus of 50 GPa 
 

== tDI 3
8
π 18.7 m4 using an average diameter of 5.75m 

 

Exact solution for tower alone: =
××

××
== 33
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Measured frequency of tower sway is  

Ball park figure is right, but more accuracy needed to be sure.  
 
Very significant effect of towerhead mass. 
 
These numbers are similar to 1P and 3P, so it is important to get them right! 
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 2.4 Blade vibration – example of multiple degree-of-freedom model 
 
In this section we consider a three degree-of-freedom beam model to model 
vibrations, using the blade as an example problem. Here the distribution of mass and 
stiffness along the blade will be critical. This method is also applicable for towers 
(see examples paper). 
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This equation, of the form [ ][ ] [ ][ ] 0=+ xkxm �� , has harmonic solutions which satisfy 
the                                        problem  
 
[ ] [ ][ ] [ ]xxkm 21 ω=−  where the eigenvalues give the square of the resonant 
frequencies, and the eigenvectors give the                  
 
To calculate an appropriate k for the beam                                        (rather than entire 
beam), consider a beam section in bending with constant moment M 
 

From the beam model:
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From the spring model: M=kφ 
 
 

Hence 
A

EIk =  

 
 
 
 
Check on model 

Putting 3321 MMMM === , 
A

EIk 21 = , 
A

EIkk == 32 , L=3A 

gives the lowest two frequencies as: 
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giving good agreement with the analytical values of the constants of 3.52 and 22.0.  
 
See code below; note that the Matlab  command eig(k,m) (or Octave command 
qz(k,m)) solves the relevant eigenvalue problem with k and m the stiffness and mass 
matrices.  
  
L=1/3 
mm=[1 1 1]/3; 
EI=[1 1 1]; 
k1=2*EI(1)/L;k2=EI(2)/L;k3=EI(3)/L; 
m1=mm(1);m2=mm(2);m3=mm(3); 
mmatrix=[0 m3 m3;m2 (m2+3*m3) 3*m3;(m1+3*m2) (3*m2+5*m3) 5*m3]*L/4; 
kmatrix=[k3 -2*k3 k3;-2*k2 k2 0 ;k1 0 0]/L; 
[v d]=eig(kmatrix,mmatrix) 
%octave[aa bb q z v ww d]=qz(kmatrix,mmatrix)%ww are eigenvectors, d are eigenvalues 
f=sqrt(d)/(2*pi) 
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Variable mass and stiffness blade model 
 
For the Tjaereborg blade, model the 30 m blade by three masses at distances 5, 15 
and 25 m from root, and three springs with effective EI values at 2.5, 10 and 20 m 
from root. The following very approximate mass and EI distributions are quoted in 
Hansen, page 100.  
 

Distance from root 
(m) 

mass/unit length 
(kg/m) 

EI (flapwise) 
(MNm2) 

2.5  1700 
5 400  
10  240 
15 200  
20  20 
25 90  

 
 

 
 
 
 
 
 
 
 
 

Putting L = 30 m, A= 10 m, M = m×A, 
A

)5.2(21
mEIk = , 

A
)m10(

2
EIk = ,

A
)m20(

3
EIk =  

gives a lowest natural frequency of 1.05 Hz, compared with the measured value of  
 
A good estimate – though really a more sophisticated model is needed with the rather 
dramatic change in                                 properties. 
 
%Tjaereborg blade 
LL=30 
EI=[1700 240 20]*1.e6%EI1 flapwise 
mm= [400 200 90] 
L=LL/3; 
k1=2*EI(1)/L;k2=EI(2)/L;k3=EI(3)/L; 
m1=mm(1)*L;m2=mm(2)*L;m3=mm(3)*L; 
mmatrix=[0 m3 m3;m2 (m2+3*m3) 3*m3;(m1+3*m2) (3*m2+5*m3) 5*m3]*L/4; 
kmatrix=[k3 -2*k3 k3;-2*k2 k2 0 ;k1 0 0]/L; 
[v d]=eig(kmatrix,mmatrix) 
%octave[aa bb q z v ww d]=qz(kmatrix,mmatrix)%ww are eigenvectors, d are eigenvalues 
f=sqrt(d)/(2*pi) 
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Blade modelling of torsional/edgewise vibration 
 
                             modes of the hub couple with                               deflection of the 
blades. Consider a four degree-of-freedom model of this system. 
 

Geometry:  
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Tjaereborg example: 
 m = 9000 kg at a radius R = 8.57 m 
Choose k to match natural edgewise frequency of blade (2.3 Hz) ⇒k= 138 MNm 
J = 6×104 kg m2 

 

Frequency (Hz) 13.4 2.3 0 2.30 2.30 
x1 1 –1 –1 0.015 –1.985 
x2 1 0.5 –1 0.985 1.985 
x3 1 0.5 –1 –1 0 
θ –3.85 0 –0.12 0 0 

k 
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Modes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13.4 Hz 
Coupled mode 

2.3 Hz (A) 
Asymmetric blade 
mode (hub stationary)  

2.3 Hz (2×A+B) 
Symmetrical mode 
(hub stationary) 
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Introduction

Colin Kestell

Senior Lecturer
School of Mechanical Engineering
The University of Adelaide

Engineering Manager until 1997

PhD (Active control of sound in a small single engine 
aircraft cabin with virtual error sensors) in  2000

Teach Engineering Design
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Sound

0dB
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20dB
30dB
40dB
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Important to state 
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Pain

350m away

4

Types of noise

Tonal Noise
440Hz

1000Hz

10000 Hz

Random Noise
White Noise

Pink Noise

Time domain Time averaged
(s) Frequency domain (Hz)

Time (s) Frequency (Hz)

Measuring Sound
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Instrumentation - sound

A Sound Level Meter

A Microphone

A windsock

Conditioning amplifier

Spectrum Analyser

Measuring Sound

6

Vibration

Measured in terms of

Displacement

Velocity

Acceleration – sometimes in terms of ‘g’ (gravity)

dB also used … or

absolute units on either a logarithmic or linear scale

Be careful of units!

All this and more covered in Part IIA 3C6 Vibration
and Part IIB 4C6 Advanced Linear Vibration

Measuring Vibration
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Wind turbines

8

Wind Turbine Noise
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What generates the noise in wind 
turbines ?
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Wind Turbine Noise
1. Blades
2. Rotor
3. Pitch
4. Brake
5. Low speed shaft
6. Gear box
7. Generator
8. Controller
9. Anemometer

13. Yaw drive
14. Yaw Motor
15. Tower

10. Wind Vane
11. Nacelle
12. High speed shaft
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Note, much larger gearbox and 
hence many more moving parts

12

Aerodynamic Noise
Blade passes through turbulent, often gusty flow

Blade motion causes turbulence

Wing tip vortices
cause turbulence

Turbulence
creates sound
(broadband audible
pressure perturbations)

Turbulence higher as
each blade passes tower

Consider a 3 blade, 26 RPM rotor
will have a BPF of  1.3 Hz
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Aerodynamic Noise

A 3 blade, 26 RPM rotor will have a tower BPF of  
1.3 Hz, or a periodic time of 0.77 seconds 

0.77s

14

Shaft noise unbalanced

bent shafts

non-concentric alignment

60
)(

RPM
Hzfrequency =
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Gear Noise

F1

F2
Drive speed

Probable 14 tooth 
gear issue

16

Normal spur gears – cost effective

Helical gears – smoother mesh,
more expensive, produce an axial
force component as well as a tangential

Herring bone gears (far more expensive)
realign the resultant force

Gear Noise
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Bearing Noise http://www.vibanalysis.co.uk/

18Generator Noise

A typical 3-phase generator will have

3 pairs of (6) opposing wound coils

4 rotating permanent magnets

Producing 12 pulses per revolution



Vibration isolation
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Increased damping

Increase mass or
decreased stiffness

m

c k

20

Examples
Vesta V52-850 kW, 3 Blade, 26 RPM 

Psycho-acoustic characters of relevance for annoyance of wind turbine noise.
K. Persson Waye and E. Og Hrstrog M. journal of sound and vibration (2002) 250(1), 65-73
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Wind turbines and sound: Review and
best practice guidelines. HGC Engineering

Acoustic model of
typical wind turbine
sound propagation

Examples

22

Many claim that the noise is worse at night 
or in the early hours of the morning.

Less masking
(other noises
covering it up)

Physiological issues

Thermal inversion
layers

Noisy or quiet?
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Noisy or quiet?

Normal conditions

24

Warmer air thermal inversion layer

One of a few meteorological effects

Noisy or quiet?


	vibrations14gaps.pdf
	Noise_2012.pdf

