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Engineering SECOND YEAR 
Part IB Paper 8: Elective (2)      

Wind Turbines 
Examples Paper 2 Solutions  

 

Guest lecture 
1. (a) Micro (<2m) are for top-up charging of boat batteries, roadside electronics, sign 
illumination and non-power-hungry applications.  No use for domestic applications, except 
for very-low-power homes.  A 1m-diameter micro turbine typ 200W (i.e. (1/5)2 * 5kW , 
power proportional to area) but low height == low wind speeds = low capacity.  Expect 
annual average yield of 20W.  Small (2 to 10m) can feed a typical home.  Around 5kW with a 
capacity factor of 0.2 gives an annual average yield of 1kW.  Rule of thumb: spend £1000 a 
year on electricity = annual average power of 1kW.  Sounds good for homes, but 5m rotor 
needs to sit on a 12m tower for decent winds, and 100m away from the nearest tall obstacles.  
Not for the average back yard.  Large (>10m) utility turbines definitely not for the back yard.  
Scaling by area, 50m turbine gives 100 times the power of a 5m turbine, i.e. 500kW – but will 
give more being taller and sited in an especially-windy place.  Expect 100kW, with a higher 
capacity factor.  A sensible way to extract wind energy, but some think they’re ugly and 
noisy. 
(b)   In very high winds need to protect the turbine from over-speeding.  Mechanical or 
electrical brakes ok up to a modest level, but the power that needs to be extracted goes as V3, 
so in 60mph winds things get nasty.  Best to spoil the aerodynamics, done in various ways. 
Stall the blades – ie pitch control.  Tilt the blades so that a high angle of attack causes stall.  
Lift is poor, drag is high.  Power delivery is low, torque is low.  Passive pitch control the 
blades tilt under the action of centrifugal and aerodynamic forces alone.  OK for small 
turbines.  Large turbines are more vulnerable because of their sheer size and unwieldiness 
(compare operation of a small yacht with an ocean liner).  Large utility turbines have 
actuators at the blade root to control blade pitch in response to electricity demand and wind 
speed. 
Reduce the projected area Furling and Coning, also spoil the aerodynamics.  Furling, the 
turbine rotates about is yaw axis, the rotor does not face square to the wind.  Coning: the 
blades tilt back to sweep a cone. Both generally passive, controlled by aero/centrifugal forces. 
Brakes – either mechanical or electrical.  The electrical brake option is good because the 
generator itself can be used.  A short circuit with low resistance can offer an enormous 
torque.  Dangerous if applied suddenly – the inertia loads will cause blades to break.  Disc 
brakes are a useful backup.  They operate just like car brakes.  Best used on the fast-moving 
generator shaft (if there is a gearbox) because lower torque is needed, i.e. smaller brakes. 

(c) Noise issues can be subjective, but 100m from neighbours (who don’t like noise) is a 
rule of thumb for small wind. Noise generated by blades creating turbulence and by moving  
parts (e.g. bearings, generator and gearbox). Can use isolators to reduce vibration and noise. 
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Materials 

 

2. (a) Need to consider manufacture, structures, materials, operational factors. For example 
the blade needs to have relatively low weight to keep the dynamic loads down, while its 
aerodynamic design dictates a complex shape with a good surface finish. Moreover the blades 
have significant fatigue strength and stiffness constraints. These factors make composites 
attractive, and in particular GFRP with its lower cost. Finally the good corrosion resistance of 
GFRP is advantageous. 
 
The tower, however, is static, so weight is not so much of an issue. Steel or concrete are 
obvious choices, the former easier to make into a slender tower while concrete might benefit 
from better corrosion properties offshore. It seems that lattice structures are not so preferred 
for aesthetic reasons, these would tend to dictate a metallic construction. 
 
 
(b)   Growth exponent n (Ln)  
Cross-sectional area A ~ L2 2 
Mass ~ ρAL 3 
Second moment of area I ~Ad2 4*  
Aerodynamic load  ~ pL2 2 (where p is pressure) 
Aerodynamic root moment  ~ pL2×βL 3 (where β depends on the shape of the load) 
Self-weight root moment ~ weight × γ L 4 (where γ depends on the weight distribution) 
Aerodynamic stress  ~ dM/I ~L×L3/L4 0 
Self weight stress ~ dM/I ~ L×L4/L4 1 
 
*assuming t << d, (although this will scale with L4 even if t isn’t much less that d ) 
 
Dimensional analysis  
Aerodynamic stress σ (Nm–2) = fn(L, p, and shape e.g. d, c etc. ): σ/p = constant 
Self weight stress σ (Nm–2) = fn(L, ρ, g, and shape e.g. d, c etc. ): σ/(ρgL) = constant 
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(L> 150 m  ⇒  stiffness limited) 

4.  (a) See notes 

(b) 2-3, 3-3a, 4-5. 5-5a, 6-7, 7-7a, 1-8, 8-13, 9-10, 10-12b, 11-12, 12-12a, 13-14 
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5.  For each entry in the table identify the average stress range value S and average mean 
stress value Sm  . 
Obtain equivalent values of stress range 0σΔ  using Goodman’s rule:   

S =
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with σts = 200 MPa. 
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Total life is 1/α, with a factor 1000 to account for numbers of cycles being quoted in 
thousands, and a factor of 12 to convert to years. See spreadsheet below for calculation. 
 

300 300 200 Number of cycles ('ooo per month) 
200 300 200     
200 200 100     

       
10 20 30 Mean stress   
10 20 30     
10 20 30     

       
20 20 20 Alternating stress   
30 30 30     
40 40 40     

       
21.1 22.2 23.5 Effective stress range - Goodman's rule 
31.6 33.3 35.3     
42.1 44.4 47.1     

       
3.227E+11 1.984E+11 1.186E+11 Number of cycles to failure - Nfi 
8.394E+09 5.160E+09 3.085E+09     
6.302E+08 3.874E+08 2.316E+08     

       
9.297E-07 1.512E-06 1.687E-06 Miner's rule - lifetime used up - N/Nfi 
2.383E-05 5.814E-05 6.484E-05     
3.173E-04 5.162E-04 4.317E-04     

       
Sum N/Nfi Life (months) Life  (years)     

1.416E-03 706.1 58.8     
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7.  (a) (i) tonnes196== tDLM ρπ  
(ii) Effective mass = 0.24 M = 47 tonnes.  
Effective stiffness given by matching cantilever and mass on spring stiffnesses: 

Clamped cantilever beam model:
EI

WL
3

3
=δ . From the spring model: Lφδ =  and  φkWL =  

Hence 
L
EIk 3

= =
L

tDEk
8

3 3π
= =2.91×109 Nm 

(iii)  
ML

kf 224.02
1
π

= = 0.51 Hz.  

(b) Simply replace 0.24M by 0.24M + Mh. 
( )hMML

kf
+

=
24.02

1
2π

= 0.29 Hz 

(c) Simply add extra term 3xM hβ , where β changes with each equation. 

Moments about C to tip: 
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== tDLM ρπ 78, 67  and 54 tonnes for the three sections M1, M2 and M3 
Now for the element we need to use 11 2 EIk = , 22 EIk =  and 33 EIk =  with 

83tDI π=  to give k1=13.8×109 Nm, k2=4.24×109 Nm, k3=2.37×109 Nm 
Putting these numbers into a small Matlab code gives a natural frequency of 0.37 Hz 
%vestas v80 tower examples paper question 
E=210e9; rho=7840;LL=78; L=LL/3;t=0.034 
D=[4 3.4 2.8]; EI=pi/8*E*D.^3 .*t;D=[3.6 3.1 2.5] ; mm=rho*pi*D.*t 
k1=2*EI(1)/L;k2=EI(2)/L;k3=EI(3)/L; 
m1=mm(1)*L;m2=mm(2)*L;m3=mm(3)*L;mh=100e3; 
mmatrix=[0 m3 m3+4*mh;m2 (m2+3*m3) 3*m3+8*mh;(m1+3*m2) (3*m2+5*m3) 
5*m3+12*mh]*L/4; 
kmatrix=[k3 -2*k3 k3;-2*k2 k2 0 ;k1 0 0]/L; 
[v d]=eig(kmatrix,mmatrix);f=sqrt(d)/(2*pi) 
 
(d) Speed varying from 9 to 19 rpm corresponds to 1P varying from 0.15 to 0.32 Hz and 3P 
from 0.45 to 0.95 Hz. We need to avoid these frequencies, within 10%. The effective of the 
towerhead mass is very significant, and brings the frequency close to the maximum 1P 
frequency. Modelling the change in mass and section area with height in part (d) takes the 
lowest frequency in the safe area between 0.32 and 0.45 Hz, but more calculations would be 
needed to verify that.  
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8 (a)  Consider cylinder through which air of density ρ and velocity v flows, interacting with 
wind turbine blades of swept area A. In time T a mass of air given by  ρAvT will have 
interacted with the turbine blades, and given up a proportion of its kinetic energy (KE). That 
proportion has an upper limit given by the Betz limit of about 60%, but in practice is around 
40% for modern wind turbines. The proportionality factor is the power coefficient, Cp. Using 
KE = 0.5mv2, substituting for m and including the power coefficient gives the energy 
extracted in time T: 
 
KE = 0.5Cp ρAvTv2 and since power is KE/T this gives P =  0.5Cp ρAv3 

 
(b) Tip-speed ratio is give by λ=ωR/v in which ω is the turbine rotational speed, R is its blade 
radius and v is the wind speed. Thus, it is the ratio of the speed that the tip of the turbine 
blade moves at to the wind speed. A typical Cp vs λ characteristic is sketched below. It shows 
that there is an optimum tip-speed ratio for the turbine which maximises the power 
coefficient. So, to extract the maximum possible power from the wind, the tip-speed ratio 
should remain constant at its optimum value, λopt. For a given wind turbine, R and  λopt are 
fixed and so using the definition for λ it is easily seen that the turbine rotational speed ω 
should be maintained proportional to the wind speed v. This, of course, can vary greatly, 
hence the need for variable speed operation. 
 
(c) The 'cut-in' speed of a wind turbine is the wind speed above which it becomes worthwhile 
producing power. 'Rated' wind speed is the wind speed at which the turbine-generator 
produces its rated output power. 'Stall' wind speed is the wind speed above which it becomes 
unsafe to continue to operate the wind turbine, and so it is stalled. A typical power vs wind 
speed characteristic is sketched below. 
 

 
 
 
In the range of wind speeds between rated and stall the turbine must be controlled so that it 
develops no more than its rated power. This can be achieved by furling the blades (twisting 
them to reduce their power coefficient), by yawing the turbine to reduce the component of 
wind normal to the blades or by designing the blades to twist in winds which are greater than 
rated (passive control). 
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(d) (i) Turbine needs to produce 5MW when v = 14ms-1 and with power coefficient 0.45. 
Using power equation and taking ρ = 1.23 kgm-3: 
 
5×106 = 0.5×0.45×1.23×A×143 

 
giving swept area A = 6584m2 and diameter from A = πd2/4 as d = 91.6 m. 
 
(ii) Tip-speed ratio is 10 and from equation for tip-speed ratio, with R = d/2: 
 
10 = ω×45.8/14 giving  ω = 3.1 rads-1 = 29 rpm 
 
(iii) Discount wind speeds below cut-in and above stall since no power is produced at these. 
Power produced at 16 ms-1 wind speed is rated power of 5MW. At 7 ms-1 and 12 ms-1 wind 
speeds use fact that power scales with wind speed cubed, and the system produces 5 MW at a 
14ms-1 wind speed. Thus, power at 7 ms-1 wind speed is (7/14)3×5MW = 0.625 MW and at 12 
ms-1 wind speed is (12/14)3×5MW = 3.15 MW. Now complete table: 
 
Wind speed(ms-1) Power(MW)  Days Hours Energy (MWhr)  
7   0.625  185 4440 2775 
12   3.15  100 2400 7560 
16   5  50 1200 6000 
 
giving a total of 16335 MWhr = 16.3 GWhr 
 
The capacity factor is 16335/(365×24×5) = 0.373 
 
9. Large wind turbines rotate slowly, typically 20 - 30 rpm. Unless the output power of the 
generator is all processed by a power electronic converter, then the generator output will be 
connected directly to the grid. Thus, it must produce power matched to the grid frequency. 
The relationship between the generator speed and the frequency of the emfs it produces is ωs 
=  ω/p where p is the number of pole-pair of the generator. Building generators with 200 or 
more pole-pairs, which is what would be needed to produce 50 Hz electricity at a rotor speed 
of 30 rpm, is not feasible. Thus, a gearbox is needed to change the high torque, low speed 
output of the turbine to a high speed, low torque output suited to the generator. 
 
Find the turbine swept area from the power equation, and hence its blade radius: 
 
2.5×106 = 0.5×0.38×1.23×A×123 

 
giving swept area A = 6190m2 and diameter from A = πd2/4 as d = 88.8 m and R = 44.4 m 
 
Tip-speed ratio is 14 at 12 ms-1 wind speed giving:  
 
14 = ω×44.4/12 giving  ω = 3.78 rads-1 = 36 rpm 
 
Synchronous speed of a 10 pole generator connected to a 50 Hz grid is 60f/p = 3000/5 = 600 
rpm 
 
Thus, gearbox ratio is 600/36 = 16.7 
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10. (i) Synchronous speed ωs = ω/p = 2πf/p =  100π/4 = 78.54 rads-1.  
Actual speed  ωr = (1-s)ωs = (1-(-0.03))ωs = 1.03×78.5 = 80.86 rads-1 

Phase voltage is 3.3/√3 = 1.9 kV (star-connected) 
From equivalent circuit: 
 
I=V/((R1+R2'/s) + j(X1+X2')) = 1905/((0.8+0.65/(-0.03))+j(1.3+1.1)) = 90.7∟-1730 

 
T=3I2'2R2'/(sωs) = 3×90.72×0.65/(-0.03×78.54)=-6808 Nm 
 
(ii) Pout = 3VIcosφ = 3×1905×90.7cos(-1730) = -514 kW   
Qout = 3VIsinφ = 3×1905×90.7sin(-1730) = -63.2 kVAr   
 
Ploss = 3I2(R1 + R2') = 3×90.72×(0.8+0.65) = 35.8 kW 
 
Input mechanical power = Output electrical power + Power losses = 514 + 35.8 = 549.8 kW 
Check: Input mechanical power = Tωr = 6808×80.86 = 550.4 kW (agreement within 0.1%) 
 
η = Pout(elec)/Pin(mech)= 514/549.8 = 93.4 % 
 
(iii) The generator produces 514 kW of power at a slip of -0.03. Assuming that the power 
factor doesn't change greatly, then the generator current will increase by the factor 1./0.514 = 
1.94 and so the generator losses will increase by the factor 1.942 = 3.79. So, we now have 
input mechanical power given by: 
 
Pin(mech) = 1000 + 3.79×35.8 = 1136 kW 
 
Because of the steepness of the torque-speed characteristic the torque is approximately given 
by  
 
T = Pin(mech) /ωs = 1136/78.54 = 14.5 kNm 
 
On the steep part of the torque-speed curve, torque is proportional to slip and so new slip will 
be 14.5/6.81 times old slip of -0.03 = -0.0639. 
 
Speed = (1-s)ωs = (1-(-0.0639))×78.54 = 83.56 rads-1 
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