How is $h_{p}=\left[I_{p}\right] \omega$ obtained?

Consider a body (collection of particles) in 3-D

The moment of momentum, h_{p} for a collection of particles is given by:

$$
\begin{equation*}
h_{p}=\sum_{i}\left(r_{i}-r_{p}\right) \times M_{i} r_{i} \tag{P}
\end{equation*}
$$

If the point P is stationairy and at the origin then $r_{p}=0, \quad \dot{r_{p}}=0$
The angular velocity of the body can be expressed as $\quad \omega=\omega_{1} i+\omega_{2} j+\omega_{3} k$
The velocity of particle, i is given by $\quad \dot{r}_{i}=\omega \times r_{i}$
Substituting this into equation (P) along with the fact that $r_{p}=0$ gives

$$
h_{p}=\sum_{i} m_{i} r_{i} \times\left(\omega \times r_{i}\right)
$$

Using the vector triple product the above can then be written as

$$
h_{p}=\sum_{i} m_{i}\left[\left(r_{i} \cdot r_{i}\right)-\left(r_{i} \cdot \omega\right) r_{i}\right]
$$

If r_{i} is expressed as $r_{i}=x_{i} i+y_{i} j+z_{i} k$ and substituted into the above equation this gives

$$
h_{p}=\sum m_{i}\left[\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)\left(\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right)-\left(x_{i} \omega_{1}+y_{i} \omega_{2}+z_{i} \omega_{3}\right)\left(\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right)\right]
$$

Putting this into matrix form gives

$$
h_{p}=\left[\begin{array}{ccc}
\sum m_{i}\left(y_{i}^{2}+z_{i}^{2}\right) & -\sum m_{i} x_{i} y_{i} & -\sum m_{i} x_{i} z_{i} \\
-\sum m_{i} y_{i} x_{i} & \sum m_{i}\left(x_{i}^{2}+z_{i}^{2}\right) & -\sum m_{i} y_{i} z_{i} \\
-\sum m_{i} z_{i} x_{i} & -\sum m_{i} z_{i} y_{i} & \sum m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)
\end{array}\right]
$$

Using the fact that

$$
\begin{aligned}
& I_{x y}=\int x y d m \quad I_{x x}=\int\left(y^{2}+z^{2}\right) d m=m k_{x}^{2} \\
& I_{x z}=\int x z d m \text { and } I_{y y}=\int\left(x^{2}+z^{2}\right) d m=m k_{y}^{2} \\
& I_{y z}=\int y z d m \quad I_{z z}=\int\left(x^{2}+y^{2}\right) d m=m k_{z}^{2}
\end{aligned}
$$

h_{P} Can also be expressed as $h_{p}=\left[I_{p}\right] \omega$

