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Abstract
Bell ringing is popular worldwide, especially in churches.In change ringing, especially popular in the UK, as
many as twelve bells swing bodily through360◦ and the mass of the heaviest bell is typically well in excess
of 1000 kg. Such bells are generally located some way up a belltower and the horizontal forces generated
by their swinging can cause substantial—and often damaging—levels of vibration at frequencies typically
around 2 Hz. Even small amplitudes of vibration, say 2 mm, areknown to create difficulties because of
the precise timing required to ring changes to a given “method”. In addition, a peal lasts roughly 3 hours
20 minutes and energy to vibrate the tower is energy extracted from the bell ringers’ muscular effort leading
more rapidly to exhaustion.
This paper outlines a new method for analysing the motion of atower during bell ringing. Traditionally
it has been considered sufficient to keep odd harmonics of thefundamental period of the bell away from
resonances of the tower and to avoid placing bells high up in towers with low-damped resonances in the
vicinity of 1–2 Hz. The new method is much more precise than this and it examines the forces of all bells
as they progress through a given method. Based on some simpledata measured from the tower it is possible
to compute the amplitude of tower motion with some considerable accuracy. It is found that even harmonics
excite tower motion significantly and that this is related tothe size of the handstroke gap. It is also found
that total peal time has a big influence on tower motion. The paper presents a case study on the vibration of
the bell tower in Great St Mary, Cambridge, which has been home to bell ringing since 1724 — the second
oldest ringing society at any church in the world with a continuous history of its ringing.

1 Introduction

Many churches, both new and old, are fitted with rings of bellsand Frost [1] gives an excellent account of the
history of bell ringing in England. If rung in the “English Style” bells swing full-circle and the acoustical and
dynamical characteristics of the bell tower are tested to their limits. In early times bells were swung gently,
through a small arc, in a haphazard sequence. But by the 17th century in England it was common to find bells
capable of swinging through360◦ in a well-defined and musical sequence. Many bell towers had not been
designed for the large horizontal forces that are generatedand to this day bells in some towers cannot be rung
for fear of serious damage or collapse. Frost gives a good account of the nature of the forces produced by
swinging bells and of the resulting tower oscillation, but this account is insufficient for detailed design of bell
towers and bell installations. A complete analysis of the forces generated is given by Heyman and Threlfall
[2] but this treatment does not account for the motion of the tower. Bachmann et al. [3] give a mathematical
account of the motion of bells and towers and they emphasise the importance of higher harmonics in the
excitation of the tower. However their analysis concludes that the third harmonic is of greatest importance.
This may be so for bell ringing in continental Europe, but forringing in the English style it is the 7th, 9th,
11th and even the 13th harmonic of the fundamental swinging frequency that is driving the motion of the bell
tower. Robinson and Windsor [4] give a description of the full analysis required to determine this motion



and they recognize fully the importance of the higher harmonics. They also recognize the need to make
good measurements of tower properties. Yet no simple procedure exists to compute the motion of a tower
throughout the full three-hour-twenty-minute duration ofa “peal”. The procedures proposed until now have
been complex, involving the time-domain solution of non-linear equations. This paper takes the Robinson–
Windsor procedure to a logical conclusion by proposing a complete solution for bell-tower motion based on a
fully-linear analysis where the tower is considered to be subject to a sequence of impulses. The computation
time for a complete analysis is modest.

2 Equations of motion

A bell can be treated as a compound pendulum,1 pivoting freely on gudgeon pins, which are positioned
in bearings attached firmly to a frame. In this model, the frame is assumed not to move relative to the
tower; however, the effect of tower sway is included by treating the tower as a damped oscillator moving
horizontally.

The equations of motion of this system are readily found fromthe Lagrangian via the principle of least
action. The tower’s kinetic energy isTT = 1

2Mẋ2, and its potential energy,UT = 1
2κx2, wherex is the

horizontal displacement of the tower,M the effective mass of the tower (including the mass of the bells),
andκ its spring constant. Treating the tower as a closed system, the Lagrangian is

LT = TT − UT = 1
2Mẋ2 − 1

2κx2. (1)

An application of the Euler-Lagrange equation, givesMẍ + κx = 0, the familiar equation for simple
harmonic motion with frequencyω2

T = κ/M . Clearly, a church tower is actually a damped system, and is
expected to exhibit damped harmonic motion with damping constantλ,

ẍ + 2λẋ + ω2
T x = 0. (2)

To handle damped motion in Lagrangian mechanics, the usual approach (see, for example,§25 of [5]) is to
add a dissipative term to the Euler-Lagrange equation,

d

dt

∂L

∂ẋ
−

∂L

∂x
= −

∂F

∂ẋ
, (3)

whereF is the dissipative function. (Physically,F is half the rate of energy loss of the system.) By setting
F = Mλẋ2, the equations for damped harmonic motion can be derived.

With the tower at rest, the kinetic energy of the bell is straightforward,TB = 1
2Iθ̇2 + 1

2mr2
c θ̇

2, whereI is
the moment of inertia of the bell about its centre of mass,m is its mass,rc is the distance from the gudgeons
(pivot) to the centre of mass, andθ the angular displacement of the bell from vertically down. It is convenient
to rewrite inertial term in terms of the radius of gyration,rg, via the definitionI = mr2

g . The potential energy
is UB = −mgrc cos θ, whereg is the acceleration due to gravity. This gives a Lagrangian for the bell as a
closed system of

LB = TB − UB = 1
2mr2

g θ̇
2 + 1

2mr2
c θ̇

2 + mgrc cos θ. (4)

Applying the Euler-Lagrange equation (Eqn. 3) to this givesm
(

r2
g + r2

c

)

θ̈ + mgrc sin θ = 0, the familiar
equation of motion of a pendulum with effective length,

l =
r2
g + r2

c

rc
. (5)

1The term compound pendulum is sometimes misused to refer to adouble or multiple pendulum. The term is used here in its
more common meaning of a rigid body on a pivot, rather than a point mass on a massless string.



If the tower is not at rest, the kinetic energy of the bell gains a horizontal contribution from the tower motion,
1
2mr2

c θ̇
2 → 1

2mr2
c θ̇

2 + mrcθ̇ẋ cos θ + 1
2mẋ2. Combining the two Lagrangians (Eqns. 1 and 4) with this

coupling term gives the Lagrangian for the whole system,2

L = 1
2Mẋ2 − 1

2κx2 + 1
2mlrcθ̇

2 + mrcθ̇ẋ cos θ + mgrc cos θ. (6)

As before, application of Euler-Lagrange (Eqn. 3) gives theequations of motion, of which this time there are
two, one forx and one forθ.

ẍ + 2λẋ + ω2
T x = −

mrc

M

(

θ̈ cos θ − θ̇2 sin θ
)

, (7)

lθ̈ + g sin θ = −ẍ cos θ. (8)

These equations are governed by six3 parameters: three describing the tower,M , λ andκ; and three describ-
ing the bell,l, rc andm.

3 Measurement of parameters

The three parameters describing the dynamics of a bell are:

m The mass of the bell
rc The distance from the bell’s pivot to its centre of mass
l The effective length of the bell when treated as a pendulum

The mass of each of the bells at Great St Mary’s is recorded in [6]. The distance to the centre of mass of the
bell can be determinted from the the wheel radius, measured out to the centre of the rope,rw, together with
the angular deflection,α, of the bell when a known weight,W , is on the rope. Resolving the torque on the
wheel gives,

mgrc sinα = W rw. (9)

The final parameter,l, can be determined from the bell’s small swing period,τ0 = 2π/ω0 = 2π
√

l/g.

Bell m rc τ0 ω0 l rg I

(kg) (mm) (s) (s−1) (mm) (mm) (kg m2)

1 264 348 1.56 4.03 605 299 23.57
2 315 336 1.57 3.99 615 306 29.54
3 278 407 1.59 3.95 628 300 24.95
4 303 405 1.64 3.84 665 325 32.01
5 345 417 1.64 3.84 665 322 35.73
6 369 429 1.69 3.71 712 349 44.87
7 411 417 1.74 3.61 752 374 57.43
8 518 428 1.78 3.52 790 394 80.27
9 659 403 1.86 3.38 856 427 120.31

10 731 438 1.89 3.32 887 444 143.91
11 1030 451 1.99 3.16 984 490 247.49
12 1376 559 2.03 3.09 1027 511 360.04

Table 1: The parameters of the bells at Great St Mary’s

The three parameters describing the dynamics of a tower are:

2A similar example is given in§5 of [5].
3Seven if the acceleration due to gravity,g, is included; but unless ringing on the Moon is of interest,g will not vary significantly.



λ The damping constant of the tower
κ The spring constant of the tower
M The effective mass of the tower

Measuring the parameters of the tower requires setting up accelerometers in the tower, level of the bells, and
taking measurements while the bells are rung. This has been done on two occasions, first by Windsor, and
then independently by the authors. Both sets of measurements used similar methodologies: steadily ringing
a bell up or down and recording the tower deflection in order tolocate the resonant frequency of the tower,
ωR; and recording the speed at which the tower oscillations dieaway to determineλ.

When the tower is resonating, it is necessary to identify which resonance is occuring. Assuming several
resonances identified, which resonances were found rapidlybecomes apparent from the ratio of the speeds
at which be the bell is being rung; for example, if the bell’s time periods,τ , are in the ratio 5 : 7 : 9, then the
5th, 7th and 9th harmonics were found. The tower’s resonant frequencyfR is thenn/τ .

In exponential decay, the time taken to decay toe−1 of the original value isλ−1. This can be measured
straightforwardly from the acceleratormeter data. Because the tower is buttressed by the nave to the east, it is
stronger in that direction. Consequently, each parameter potentially has different values for E–W movement
and N–S movement. The values taken in the two sets of tower measurements are shown in Table 2.

Source fR ωR λ−1 Q
(Hz) (s−1) (s)

N–S W 1.71 10.7 6.5 35
A 1.68 10.6 7 37

E–W W 1.95 12.3 3.6 22
A 1.91 12.0 4 24

Table 2: The frequency andQ-factor of the tower as measured by Windsor (‘W’) and by the authors (‘A’).

4 Motion of the bell

The term on the right of the equation of motion forθ (Eqn. 8) is the force that causes a bell to drop or fly
unexpectedly over the balance. However, despite being of considerable relevance, it will be ignored for the
moment. This can be physically justified by asserting that a sufficiently competent ringer will apply an equal
and opposite force to the bell so that the bell will sound at the intended moment, despite tower motion. As
such, whilst removing the term is an approximation, it is likely a better approximation to leaving it in. This
leaves an homogeneous second order differential equation,

d2θ

dt2
+ ω2

0 sin θ = 0, (10)

whereω0 =
√

g/l, the small amplitude frequency. The solution to this equation is well known (see e.g.
§2.571 of [7]),

ω0t =

∫ φ

π/2

dϕ
√

1 − k2 sin2 ϕ
= F (φ, k) − K(k) (11)

whereF (φ, k) is the incomplete elliptic integral of the first kind,4 K(k) is the corresponding complete
elliptic integral, andk andφ are the result of substitutions,sin θ/2 = k sinφ andk = sin θ0/2. The lower

4There are many of alternative definitions and notions for elliptic integrals in common usage. (See§17.2 of [8].) The form used
here is Legendre form,

F (φ, k) =

Z φ

0

dϕ
p

1 − k2 sin2 ϕ
.



limit of the integral corresponds to the boundary conditionof the bell being at an angleθ0 at t = 0 and gives
rise toK(k) term.

The integral equation (Eqn. 11),u = F (φ, k) whereu = ω0t + K(k), can be inverted to expressφ in terms
of u by using the fact that elliptic functions are inverses of elliptic integrals,5

sin φ = sn(u, k). (12)

The time period ofsn u is τ = 4K/ω0, or equivalently, the angular frequency isωB = πω0/2K.
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Figure 1: Angle of bell throughout a whole cycle for various values ofθ0.

In the limiting case of very small swings,θ0 → 0 and thereforek → 0. Applying a small angle approxima-
tion, φ = sn(u, k) ≈ sin u, restores the familiar small angle formula,θ = θ0 cos ω0t. As the bell is rung
right up to the balance,θ0 → π, k → 1 andK(k) → ∞. This means that by ringing the bell closer to the
balance, it can be made to ring arbitrarily slowly, as is indeed the case. This can been in the flattening of the
graphs for largerθ0 in Figure 1.

5 Motion of the tower

With no force from a bell, the tower acts as a damped harmonic oscillator (Eqn. 7, with the right hand side
removed),

d2x

dt2
+ 2λ

dx

dt
+ ω2

T x = 0. (13)

This has solution
x = Ae−λt sin(ω′

T t + δ) (14)

whereω′2
T = ω2

T − λ2. (In practice,λ ≪ ωT soω′
T ≈ ωT .) A, the amplitude, andδ, the phase shift, are con-

stants of integration. With a forcing function included, the equation of motion becomes the inhomogeneous
equation derived earlier (Eqn. 7) which can be expressed,

d2x

dt2
+ 2λ

dx

dt
+ ω2

T x =
f(t)

M
, (15)

wheref(t) is the force applied to the tower by the bell’s motion,

f(t) = 2kf0

(

1 + 4k2 − 6k2 sn2 u
)

sn u dnu. (16)

and wheref0 = mrcω
2
0.

5It is customary to omit the second argument,k, to elliptic functions when it is clear from context—that issn(u, k) is often just
written snu. Similarly K(k) is often abbreviated toK.
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Figure 2: Driving force as a function of time for various values ofθ0.

For small swings,snu ≈ sinu anddn u ≈ 1 making the force cosinusoidal:f = f0θ0 cos ω0t = f0θ.
At t = 0, the bell is at maximum angle, and the force is at a maximum too. From Figure 2 it can be seen
that when the bell swings through larger angles the initial force is small (compared to later in the cycle)—
intuitively, when the bell is slowly moving near the balance, it will produce very little force on the tower.

Further analysis (such as in§4 of [4]) allowsf to writen as a complex Fourier series

f(t) = f0

∞
∑

n=−∞

cneinωBt, (17)

with coefficients,

cn = (1 − (−1)n)
πin

K

(

inπ

2K

)3 qn/2

1 + qn
, (18)

and whereq = exp(−πK ′/K). Clearly this vanishes for evenn, and for oddn the coefficient is real valued.
Also, ascn = c−n, the complex exponential Fourier series can be converted into a cosine Fourier series,

f(t) = f0

∞
∑

n=0

2c2n+1 cos(2n + 1)ωBt, (19)

Numeric evaluation ofcn requires care ask → 0◦ and ask → 180◦, asK ′ andK diverge as those limits
are approached. Figure 3 shows that asθ0 → 180◦, more terms in the Fourier series become relevant. For
example, atθ = 120◦ the 3rd harmonic dominates, with significant contributionsfrom the 1st and 5th.

6 Tower–bell resonance

With the forcing function expressed as a Fourier series, theequation of motion (Eqn. 15) can now be solved
in terms of the Fourier components.

x =
∞
∑

n=0

2f0 c2n+1

ω2
T M

Ω2n+1 S2n+1 (20)

where
Sn = sin(nωBt + δBn) −

ωT

ω′
T

e−λt sin(ω′
T t + δTn), (21)
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Figure 3: The relative magnitudes of first five Fourier coefficients.

and

Ωn =
ω2

T
√

(ω2
T − n2ω2

B)2 + 4λ2n2ω2
B

. (22)

The exact values of the phase shifts,δBn andδTn are not relevant to this analysis.

The second term in Eqn. 21 decays exponentially over time (due to thee−λt term), and therefore reflects
some transient resulting from the initial boundary condition, ẋ = x = 0 at t = 0. When considering the
steady state effect of ringing a bell continuously, this term vanishes. After the transients have died away, the
frequency-dependence of the amplitude for a given harmonicis given almost entirely6 by Ωn.

Q = 50
Q = 25
Q = 10

nωB/ω
T

Ω
n

1.21.151.11.0510.950.90.850.8

50

45

40

35

30

25

20

15

10

5

0

Figure 4: Amplitude at various frequencies around resonance.

The amplitude,Ωn, reaches a maximum whennωB = ωR, whereωR is the resonant frequency of the tower,
ω2

R = ω2
T − 2λ2. This is shown in Figure 4 for several values ofλ, whereλ is expressed in terms of the

dimensionlessQ-factor,Q = ωT/2λ. From this graph it is apparent that at resonance,Ωn ≈ Q. It can be
verified that whennωB = ωT (i.e. very near to, but not at, the resonance peak) this approximation is exact.

Away from resonance, asωB → ∞ (i.e. for much higher harmonics),Ωn → 0; and asωB → 0 (i.e. for lower
harmonics),Ωn → 1. The amplitude of a given harmonic is given by

An =
2f0 |cn|Ωn

Mω2
T

, (23)

6There is also frequency dependency incn as it depends onk and hence indirectly onωB ; this introduces a very small correction
to the resonant frequency. The correction is small becausecn is a much flatter function ofωB thanΩn is.



and the overall amplitude isA =
∑

n A2n+1. For resonance to be a significant physical effect, one one
particularAn (the resonant amplitude) must dominate this sum. This requiresQc2n+1 to be significantly
larger than the other coefficients.
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Figure 5: The first nine resonances for a bell swinging atθ0 = 175◦ in a tower withQ = 25.

The only time-dependence inx comes fromSn,

S2n+1 = sin(ωBnt + δBn) −
ωT

ω′
T

e−λt sin(ω′
T t + δTn). (24)

At resonance, withQ ≫ 1, both phase shifts (δTn and δBn) are approximately the same; similarly, for
physically realistic systems,ωT , ω′

T andωR are all approximately the same. This means that at resonance,
whennωB = ωR, Sn can be simplified to

Sn = (1 − e−λt) sin(ωT t + δ) + O(Q−2). (25)
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Figure 6: Initial transients at resonance withQ = 25. The dotted line is the envelope±(1 − e−λt).

An alternative way of studying the tower transients, at least at the resonance harmonic, is to look at the
impulse response from one half cycle of the bell,

Rne−λt sin(ωT t + δ). (26)

The transients while resonance is building up is then the series,

Sn =

⌊2t/τ⌋
∑

r=1

(−1)r Rne−λ(t−rτ/2) sin
(

ωT (t − rτ/2) + δ
)

. (27)



The physical interpretation of this is as a superposition ofimpulse responses at intervals ofτ/2 at the end
of every half cycle of the bell (corresponding to every time the bell strikes).7 The impulse in one half of the
cycle is equal and opposite to the impulse in the other half, hence the(−1)r.

It was established in§5 that resonance only occurs at the odd harmonics. This can also be seen from Eqn. 27
by noting thatrτωT/2 = rnπ. This means that for oddn, consecutive impulses superpose constructively.

Summing the series then gives,8

Sn = Rn
1 − e−λt

1 − e−λτ/2
sin(ωT t + δ) (28)

and by comparison with Eqn. 25,

Rn = 1 − e−λτ/2 = 1 − e−nπ/2Q. (29)

n 1 3 5 7 9 11

N–S 24.3 8.44 5.28 3.92 3.18 2.70
E–W 15.7 5.58 3.57 2.71 2.24 1.94

Table 3: The first few values ofR−1
n

7 Impulse responses

The impulse from a single bell struck at timet = 0 will cause the tower to oscillate in damped simple
harmonic motion,

x = ξ e−λt sin ωT t (30)

whereξ is the initial amplitude. The cumulative effect of a single bell ringing steady blows with period12τ
(i.e. whole pulls with periodτ ) has the amplitudeR−1

n ξ To analyse the effect of a single bell, the authors
measured the tower displacement,x, while a bell was gradually rung faster and faster (i.e. it was slowly rung
down). At various points, the frequency at which the bell wasbeing rung would reach a resonance with the
tower motion and significantly larger oscillations were detected. From this,ξ can be calculated.

Bell x7 (mm) ξ (mm) x5 (mm) ξ (mm)

11 0.62 0.16 0.76 0.14
10 0.44 0.11 0.57 0.11
7 0.27 0.07 0.30 0.06
3 0.25 0.06 0.31 0.06
2 0.19 0.05 0.26 0.05
1 0.18 0.05 ———

Table 4: North–south oscillation amplitudes

For north–south oscillations, the two values ofξ calculated per bell are in moderately good agreement; this
is slightly less true for east–west oscillations, especially for the 5th harmonic. In both cases, the lower

7The reason for putting the impulse at the end of the bell’s half cycle is so that the tower motion is alway underestimated rather
than overestimated. Whether this is the correct decision will depend on its intended use.

8Eqn. 27 is only exactly equal to Eqn. 28 whenλτ/2 · ⌊2t/τ⌋ = λt which is true whent = rτ/2 for integerr.



Bell x9 (mm) ξ (mm) x7 (mm) ξ (mm) x5 (mm) ξ (mm)

12 0.37 0.17 0.45 0.17 ———
9 0.22 0.10 0.21 0.08 0.14 0.04
8 0.17 0.08 0.22 0.08 ———
6 0.16 0.07 ——— 0.10 0.03
5 ——— 0.13 0.05 ———
4 ——— 0.16 0.06 ———

Table 5: East–west oscillation amplitudes

harmonics result in smaller values ofξ. This is to be expected as the bell is lower down for the lower
harmonics, and thus has less energy available to drive oscillations in the tower.

For the remainder of this analysis, the values ofξ derived from the highest harmonics given in Tables 4 and
5 are used. These are summarised in Table 6. The sign ofξ in this table indicates the relative directions in
the bells swing. For example, the 10th and 11th swing in opposite directions. The actual choice of sign is
arbitrary.

Bell 1 2 3 7 10 11

ξ +0.05 +0.05 +0.06 −0.07 −0.11 +0.16

Bell 4 5 6 8 9 12

ξ +0.06 +0.05 +0.07 −0.08 +0.10 +0.17

Table 6: Values ofξ used for the following analysis

8 Modelling ringing rounds

The effect of change ringing can be simulated by superposingdamped sine waves (Equation 30) for each blow
made by a bell, with a factor of±1 depending on whether it is at handstroke or backstoke. When considering
ringing rounds onN bells, the bells are assumed to sound perfectly rhythmically in the ascending order of
size (from 1 to 12) with a spacing ofτ/(2N + δ) between bells whereδ is the size of the handstroke gap.9 In
ordinary ringing,δ is usually reckoned on being 1, and when ‘cartwheeling’,δ = 0; unless otherwise stated,
δ = 1. The north–south and east–west oscillations are summed independently, and are then combined to get
the magnitude,

|x| =

√

(

∑

xNS

)2
+

(

∑

xEW

)2

Figure 7 show the results of numerical calculatio for eight whole pulls of rounds at peal speeds of 3h20. The
peal speed is the length of time taken to ring 5000 “changes”—i.e. to ring each bell 5000 times. Interestingly,
the tower sway is not the same at handstroke and at backstroke—once the oscillations have settled into a pat-
tern, the graph indicates magnitudes of around 0.6–0.7 mm for the first half of each whole turn (handstroke),
but only of around 0.3–0.4 mm in the second half (backstroke). This asymmetry can only be explained by
the presence of the open handstroke lead, and a simulation with closed handstroke leads (Figure 8) no longer
exhibits this asymmetry.

9The handstroke gap is a small pause left after each bell has rung twice; it acts as a form of musical phrasing.
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Figure 7: Magnitude of tower sway for eight whole pulls of rounds with open handstroke leads
at a peal speed of 3h20
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Figure 8: Magnitude of tower sway for eight whole pulls of rounds with closed handstroke leads
at a peal speed of 3h20
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Whilst the variation in tower sway during a whole pull is of interest, the most important detail is the maximum
sway. This is plotted in Figure 9.
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Figure 10: North–south and east–west components of tower sway at different speeds with closed
handstroke lead

The peak at 3h41 (τ = 5.30 s) can be explained as excitation of the 9th north–south harmonic at τ =
9/(1.7 Hz) = 5.29 s; and Figure 10 confirms that this peak is primarily due to north–south motion. The
fact that the peak is more pronounced for smallerδ bears this out—odd harmonic resonance relies on the
handstroke and backstroke being equally spaced. The amplitude at the peak, 1.49 mm is also consistent
with this this. Table 3 gives the value ofR−1

9 = 3.18 and from Table 6,
∑

NS ξ = 0.50 mm. If the bells
were ringing at once, the amplitude of this peak would be expected to beR−1

9 ·
∑

ξ = 1.59 mm, plus a
small contribution from the east–west motion; in rounds, not all of the bells will be in phase with the tower
oscillations, and the peak should be slightly smaller because of this.

The other peak, at about 3h17 (τ = 4.72 s) is in the right position to be explained by the 9th east–west
harmonic atτ = 9/(1.9 Hz) = 4.74 s, but it is curious as it is stronger forlarger δ. With closed handstroke
leads (i.e.δ = 0), the amplitude of this peak is 0.53 mm, and a quick estimate from R−1

9 ·
∑

ξ gives a
prediction of a bit less than2.24 × 0.53 mm = 1.18 mm. This is not in particularly close agreement, but it
could be explained by the bells being further out of phase with the tower oscillation than for the 3h41 peak.
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Figure 11: Tower sway during rounds with different sized handstroke leads at 3h17 peal speed

The fact that the 3h17 peak grows in amplitude withδ is of particular interest. From Figure 11 it can be
seen that, whilst the peak atδ = 0 is primarily due to east–west motion (the 9th harmonic), theadditional



contribution whenδ > 0 is from north–south motion. Curiously, 3h17 (τ = 4.72 s) is also very close to
the 8th north–south harmonic atτ = 8/(1.7 Hz) = 4.71 s. Only odd harmonics were expected to occur;
however, this assumes entirely regular ringing—i.e. ringing with close handstrokes. Attributing the 3h17
peak to a combination of the 9th east–west harmonic and the 8th north–south harmonic would explain why
the 3h17 peak is present atδ = 0 and why it grows withδ.

N+δ
2N+δ

N
2N+δ

backstroke

handstroke

t/τ

10.80.60.40.20

Figure 12: An even harmonic exciting by open handstroke leads

Figure 12 shows the way in which an even harmonic can be excited. From this it is apparent that thenth
harmonic resonance (n even) occurs when the duration of the backstroke is one oscillation longer than the
handstroke.

δτ

2N + δ
=

1

f
δ =

2N

f
(

τ − 1
f

) =
2N

n − 1
(31)

9 Modelling plain hunt on twelve

1234567890ET
2143658709TE
241638507T9E
42618305T7E9
4628103T5E79
648201T3E597
68402T1E3957
8604T2E19375
806T4E291735
08T6E4927153
0T8E69472513
T0E896745231
TE0987654321
ET9078563412
E9T705836142
9E7T50381624
97E5T3018264
795E3T102846
7593E1T20486
57391E2T4068
537192E4T608
3517294E6T80
31527496E8T0
132547698E0T
1234567890ET

Figure 13:
Sequence of
bells in plain
hunt

The logical next step is to look at a simple method, such as plain hunt on twelve
bells (Figure 13;E, T represent bells 11 and 12). In this, bells spend most of
their time “hunting up” (ringing everyN +1 bells) or “hunting down” (ringing
everyN − 1 bells). Effectively plain hunt is the superposition of two separate
speeds of ringing. This results in two separate opportunities for exciting each
tower harmonic, and instead of occuring whenτ = n/f , they occur at

τ =
2N + δ

2N + δ ± 2

n

f
(32)

Table 7 gives the values ofτ for north–south resonances, with those corre-
sponding to peal speeds of between 3h00 and 3h50 shown in bold.

Figures 14 and 15 show the modelled tower sway during plain hunt at 3h15
and 3h24 speed respectively. At 3h15, although the rounds cause significant
sway, this quickly dies away during the plain hunt. At the slightly slower
speed, this is no longer true, and during the second half of the course, there
is significant tower sway. The second half of the course is when the 10th and
11th are hunting up and thus driving the 9th north–south harmonic resonance.

The maximum sway at various different peal speeds and sizes of handstroke
lead is plotted in Figure 16. The four peaks coincide to four of the five bold figures in Table 7. (The missing
one is theτ = 4.36 8th harmonic which is right on the edge of the region of study.) Interestingly, there are
no obvious east–west harmonics being excited.



n τup τdown

6 3.27 3.84
7 3.81 4.48
8 4.36 5.12
9 4.90 5.75

10 5.45 6.39
11 5.99 7.03

Table 7: Expected north–south resonances during plain huntwith δ = 1
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Figure 14: Eight whole pulls of rounds, followed by 48 changes of plain hunt on twelve, rung
at 3h15 speed
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Figure 15: Eight whole pulls of rounds, followed by 48 changes of plain hunt on twelve, rung
at 3h24 speed



10th NS (up)

8th NS (down)

9th NS (up)

7th NS (down) δ = 1.5
δ = 1.0
δ = 0.5
δ = 0.0
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Figure 16: Maximum tower sway during plain hunt on twelve at different speeds

10 Conclusions

The procedure described above can be used to predict accurately the motion of bell towers given the char-
acteristics of the bells, their alignment and the dynamic characteristics of the tower. All of these properties
are easy to measure or to calculate. Tower motion is found to be dependent on the method and the amplitude
varies significantly during the peal. Also of great importance is the peal time. A small change in peal time
can lead to significant changes in tower amplitude. Other factors found to be significant are the handstroke
gap. All of these can be analysed simply and accurately by assessing the response of the bell tower to a series
of carefully-timed impulses.
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