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Abstract

Bell ringing is popular worldwide, especially in churchéschange ringing, especially popular in the UK, as
many as twelve bells swing bodily through0° and the mass of the heaviest bell is typically well in excess
of 1000 kg. Such bells are generally located some way up advedr and the horizontal forces generated
by their swinging can cause substantial—and often damagiegels of vibration at frequencies typically
around 2 Hz. Even small amplitudes of vibration, say 2 mm,kai@vn to create difficulties because of
the precise timing required to ring changes to a given “nathdn addition, a peal lasts roughly 3 hours
20 minutes and energy to vibrate the tower is energy extidoben the bell ringers’ muscular effort leading
more rapidly to exhaustion.

This paper outlines a new method for analysing the motion tiweer during bell ringing. Traditionally

it has been considered sufficient to keep odd harmonics ofutdamental period of the bell away from
resonances of the tower and to avoid placing bells high upwets with low-damped resonances in the
vicinity of 1-2 Hz. The new method is much more precise thas dhnd it examines the forces of all bells
as they progress through a given method. Based on some giatpleneasured from the tower it is possible
to compute the amplitude of tower motion with some consideraccuracy. It is found that even harmonics
excite tower motion significantly and that this is relatedhe size of the handstroke gap. It is also found
that total peal time has a big influence on tower motion. Theeparesents a case study on the vibration of
the bell tower in Great St Mary, Cambridge, which has beenéhtimbell ringing since 1724 — the second
oldest ringing society at any church in the world with a contius history of its ringing.

1 Introduction

Many churches, both new and old, are fitted with rings of kaatid Frost [1] gives an excellent account of the
history of bell ringing in England. If rung in the “Englishy@” bells swing full-circle and the acoustical and
dynamical characteristics of the bell tower are tested ¢o thmits. In early times bells were swung gently,
through a small arc, in a haphazard sequence. But by the éiithry in England it was common to find bells
capable of swinging througb60° in a well-defined and musical sequence. Many bell towers loadeen
designed for the large horizontal forces that are generatddo this day bells in some towers cannot be rung
for fear of serious damage or collapse. Frost gives a gooouat®f the nature of the forces produced by
swinging bells and of the resulting tower oscillation, thistaccount is insufficient for detailed design of bell
towers and bell installations. A complete analysis of theds generated is given by Heyman and Threlfall
[2] but this treatment does not account for the motion of tveetr. Bachmann et al. [3] give a mathematical
account of the motion of bells and towers and they emphakisé@riportance of higher harmonics in the
excitation of the tower. However their analysis concludest the third harmonic is of greatest importance.
This may be so for bell ringing in continental Europe, butrioging in the English style it is the 7th, 9th,
11th and even the 13th harmonic of the fundamental swingeguency that is driving the motion of the bell
tower. Robinson and Windsor [4] give a description of thé &malysis required to determine this motion



and they recognize fully the importance of the higher hargsnThey also recognize the need to make
good measurements of tower properties. Yet no simple ptweeekists to compute the motion of a tower
throughout the full three-hour-twenty-minute duratioredfpeal”. The procedures proposed until now have
been complex, involving the time-domain solution of narelr equations. This paper takes the Robinson—
Windsor procedure to a logical conclusion by proposing aplete solution for bell-tower motion based on a
fully-linear analysis where the tower is considered to bdgext to a sequence of impulses. The computation
time for a complete analysis is modest.

2 Equations of motion

A bell can be treated as a compound pendutupivoting freely on gudgeon pins, which are positioned
in bearings attached firmly to a frame. In this model, the #amassumed not to move relative to the
tower; however, the effect of tower sway is included by irgathe tower as a damped oscillator moving
horizontally.

The equations of motion of this system are readily found fith Lagrangian via the principle of least
action. The tower’s kinetic energy B = %MﬁcQ, and its potential energy/r = %mﬂ, wherez is the
horizontal displacement of the towe¥/ the effective mass of the tower (including the mass of thé&shel
andrk its spring constant. Treating the tower as a closed systei,dgrangian is

[,T = TT — UT = %Mi‘z — %lim‘z. (1)

An application of the Euler-Lagrange equation, gives: + xz = 0, the familiar equation for simple
harmonic motion with frequency? = /M. Clearly, a church tower is actually a damped system, and is
expected to exhibit damped harmonic motion with dampingstaot),

i+ 20 4+ wha = 0. 2)

To handle damped motion in Lagrangian mechanics, the uppabach (see, for examplg25 of [5]) is to
add a dissipative term to the Euler-Lagrange equation,

doL oL _ oF

dt 0x  Ox O’
whereF is the dissipative function. (Physicallg, is half the rate of energy loss of the system.) By setting
F = MM\i?, the equations for damped harmonic motion can be derived.

®3)

With the tower at rest, the kinetic energy of the bell is gtéforward, T = 3162 + Lmr262, wherel is
the moment of inertia of the bell about its centre of masss its massy.. is the distance from the gudgeons
(pivot) to the centre of mass, afidhe angular displacement of the bell from vertically dowtris tonvenient
to rewrite inertial term in terms of the radius of gyratiey, via the definition/ = mrg. The potential energy
is Ug = —mgr.cosf, whereg is the acceleration due to gravity. This gives a Lagrangarttfe bell as a
closed system of

Lp=Tp—Up= %mr?ﬂa + %mr?éZ + mgr. cos 6. (4)

Applying the Euler-Lagrange equation (Eqn. 3) to this gimeérg + rg) 0 + mgr.sin@ = 0, the familiar
equation of motion of a pendulum with effective length,
rg + T’Z

Te

= (®)

The term compound pendulum is sometimes misused to refedtmlale or multiple pendulum. The term is used here in its
more common meaning of a rigid body on a pivot, rather thaniiat paass on a massless string.



If the tower is not at rest, the kinetic energy of the bell gaarhorizontal contribution from the tower motion,
Imr20? — Imr20% + mr.0i cos @ + $mi®. Combining the two Lagrangians (Eqns. 1 and 4) with this
coupling term gives the Lagrangian for the whole sysfem,

L= %M:bz — %m:z + %mlrcé2 + mrebi cos 0 + mgre cos 6. (6)

As before, application of Euler-Lagrange (Egn. 3) givesaheations of motion, of which this time there are
two, one forz and one foif.

.. . 2 o _mrc N o A2 .
T4 2\¢ + wpx = U (0 cos ) — 0 sin 9) ) @)
16 + gsinf = —i cosb. (8)

These equations are governed by’ siarameters: three describing the tower, A andx; and three describ-
ing the bell,l, . andm.

3 Measurement of parameters

The three parameters describing the dynamics of a bell are:

m The mass of the bell
Te The distance from the bell’'s pivot to its centre of mass
l The effective length of the bell when treated as a pendulum

The mass of each of the bells at Great St Mary's is recorde@]infhe distance to the centre of mass of the
bell can be determinted from the the wheel radius, measwethdhe centre of the rope,,, together with
the angular deflectiony, of the bell when a known weight}/, is on the rope. Resolving the torque on the
wheel gives,

mgre sina = W ry,. 9)

The final parametet, can be determined from the bell's small swing periad= 27 /wy = 274/1/g.

Bell m Te T0 wo l Tq 1
(kg) (mm) (s) €1 (mm) (mm) kgm?)

1 264 348 156 4.03 605 299 23.57
2 315 336 157 3.99 615 306 29.54
3 278 407 159 3.95 628 300 24.95
4 303 405 1.64 3.84 665 325 32.01
5 345 417 1.64 3.84 665 322 35.73
6 369 429 169 3.71 712 349 44.87
7 411 417 174 3.61 752 374 57.43
8 518 428 1.78 3.52 790 394 80.27
9 659 403 1.86 3.38 856 427 120.31
10 731 438 1.89 3.32 887 444  143.91
11 1030 451 199 3.16 984 490 247.49
12 1376 559 2.03 3.09 1027 511 360.04

Table 1: The parameters of the bells at Great St Mary’s

The three parameters describing the dynamics of a tower are:

2A similar example is given if5 of [5].
3Seven if the acceleration due to gravijyjs included; but unless ringing on the Moon is of intergstjll not vary significantly.



A The damping constant of the tower
K The spring constant of the tower
M The effective mass of the tower

Measuring the parameters of the tower requires setting cglerometers in the tower, level of the bells, and
taking measurements while the bells are rung. This has be® ah two occasions, first by Windsor, and
then independently by the authors. Both sets of measursmesat similar methodologies: steadily ringing
a bell up or down and recording the tower deflection in orddotate the resonant frequency of the tower,
wg; and recording the speed at which the tower oscillationsadi@y to determineg.

When the tower is resonating, it is necessary to identifyctwhiesonance is occuring. Assuming several
resonances identified, which resonances were found rapatigmes apparent from the ratio of the speeds
at which be the bell is being rung; for example, if the beilsd periods;, are inthe ratio 5 : 7: 9, then the
5th, 7th and 9th harmonics were found. The tower’s resomaguéncyfr is thenn /.

In exponential decay, the time taken to decay:td of the original value is\~!. This can be measured
straightforwardly from the acceleratormeter data. Beedls tower is buttressed by the nave to the east, itis
stronger in that direction. Consequently, each parametengally has different values for E-W movement
and N—S movement. The values taken in the two sets of towesumaaents are shown in Table 2.

Source fgr wp AL Q

(Hz) )

N-S W 1.71 10.7 6.5 35
A 1.68 106 7 37
E-W W 1.95 123 36 22

A 1.91 120 4 24

Table 2: The frequency and-factor of the tower as measured by Windsor (‘W) and by thinhaxs (‘A).

4 Motion of the bell

The term on the right of the equation of motion #(Eqn. 8) is the force that causes a bell to drop or fly
unexpectedly over the balance. However, despite beingrifiderable relevance, it will be ignored for the
moment. This can be physically justified by asserting thatfiicgently competent ringer will apply an equal
and opposite force to the bell so that the bell will sound atittended moment, despite tower motion. As
such, whilst removing the term is an approximation, it ielka better approximation to leaving it in. This
leaves an homogeneous second order differential equation,

d*0 )

w75} + w% sinf = 0, (20)
wherewy = +/g/I, the small amplitude frequency. The solution to this equets well known (see e.g.
§2.571 of [7]),

wot = /¢ W k) - K (11)
7/2 /1 — k2sin® ¢ 7

where F(¢, k) is the incomplete elliptic integral of the first kifd/< (k) is the corresponding complete

elliptic integral, andk and¢ are the result of substitutionsin /2 = ksin ¢ andk = sin /2. The lower

“There are many of alternative definitions and notions faptt! integrals in common usage. (S&7.2 of [8].) The form used

here is Legendre form,
¢ d
Pk = [ o=t
0 1—k2sin” ¢



limit of the integral corresponds to the boundary conditiéthe bell being at an angl at¢ = 0 and gives
rise toK (k) term.

The integral equation (Egn. 1%),= F(¢, k) whereu = wyt + K (k), can be inverted to expressin terms
of u by using the fact that elliptic functions are inverses adpétt integrals®

sin ¢ = sn(u, k). (12)

The time period ofn v is 7 = 4K /wy, or equivalently, the angular frequencyg = mwy/2K.
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Figure 1: Angle of bell throughout a whole cycle for variowues oft.

In the limiting case of very small swing8y — 0 and thereforéd: — 0. Applying a small angle approxima-
tion, ¢ = sn(u, k) ~ sinu, restores the familiar small angle formuta= 6, coswpt. As the bell is rung
right up to the balance)y — w, k — 1 and K (k) — oo. This means that by ringing the bell closer to the
balance, it can be made to ring arbitrarily slowly, as is @atlthe case. This can been in the flattening of the
graphs for largeé, in Figure 1.

5 Motion of the tower

With no force from a bell, the tower acts as a damped harmastdlator (Eqn. 7, with the right hand side
removed),

d*z dz 9
This has solution
x = Ae Msin(wit + 6) (14)

wherew? = w2 — A2. (In practice A < wr sow}, =~ wr.) A, the amplitude, and, the phase shift, are con-
stants of integration. With a forcing function includede tquation of motion becomes the inhomogeneous
equation derived earlier (Egn. 7) which can be expressed,

d*z dx f(t)
iR, § i 2y =227 15
T T S VI (19)

wheref(t) is the force applied to the tower by the bell’s motion,
ft) =2kf (1 + 4k? — 6k? sn? u) snu dnu. (16)

and wherefy = mr.w3.

®Itis customary to omit the second argumehtto elliptic functions when it is clear from context—thatsis(u, k) is often just
writtensn w. Similarly K (k) is often abbreviated té&.
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Figure 2: Driving force as a function of time for various veduof6,.

For small swingssnu ~ sinu anddnu = 1 making the force cosinusoidalf = fofcoswot = fob.
At t = 0, the bell is at maximum angle, and the force is at a maximum Ewom Figure 2 it can be seen
that when the bell swings through larger angles the initiatd is small (compared to later in the cycle)—
intuitively, when the bell is slowly moving near the balanitevill produce very little force on the tower.

Further analysis (such as id of [4]) allows f to writen as a complex Fourier series

o0

fO)=1fo > cae™rh, (17)
with coefficients, ,
no n/2
N L 1\n T mm q
o =0- % (57 ) o (18)

and where; = exp(—nK'/K). Clearly this vanishes for even and for oddn the coefficient is real valued.
Also, asc,, = c_,, the complex exponential Fourier series can be convertediinosine Fourier series,

f&) = fo Z 2¢9p41 cos(2n + 1)wpt, (19)
n=0

Numeric evaluation of,, requires care a8 — 0° and ask — 180°, asK’ and K diverge as those limits
are approached. Figure 3 shows that@s— 180°, more terms in the Fourier series become relevant. For
example, at = 120° the 3rd harmonic dominates, with significant contributifnesn the 1st and 5th.

6 Tower—bell resonance

With the forcing function expressed as a Fourier seriesetfuation of motion (Egn. 15) can now be solved
in terms of the Fourier components.

. 2fpc
0 C2n+1
T = Z T]\T Qony1 Sont1 (20)
n=0
where w
Sp = sin(nwpt + dpy,) — —767” sin(w/pt + 67n), (21)

wp
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Figure 3: The relative magnitudes of first five Fourier co@ffits.

and )
wr

\/(w% — n2w%)? + 422w
The exact values of the phase shiftg,, anddr,, are not relevant to this analysis.

Q, =

(22)

The second term in Eqn. 21 decays exponentially over time {duhee=** term), and therefore reflects
some transient resulting from the initial boundary comdifiz = z = 0 at¢ = 0. When considering the
steady state effect of ringing a bell continuously, thisteanishes. After the transients have died away, the
frequency-dependence of the amplitude for a given harmsmjiven almost entiref/by €,,.
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Figure 4: Amplitude at various frequencies around resomanc

The amplitudef?,,, reaches a maximum whenw = wg, Wherewp, is the resonant frequency of the tower,
w% = w2 — 2)%. This is shown in Figure 4 for several values)fwhere) is expressed in terms of the
dimensionless)-factor, @ = wr/2\. From this graph it is apparent that at resonafite~ Q. It can be
verified that whemwp = wr (i.e. very near to, but not at, the resonance peak) this appation is exact.

Away from resonance, asg — oo (i.e. for much higher harmonics),, — 0; and asvp — 0 (i.e. for lower
harmonics){2,, — 1. The amplitude of a given harmonic is given by

_ 2f0 ‘Cn’ Qn

A, = , 23
T (23)

5There is also frequency dependency:inas it depends ok and hence indirectly oms; this introduces a very small correction
to the resonant frequency. The correction is small becausgea much flatter function ab g than2,, is.



and the overall amplitude id = > As,,1. For resonance to be a significant physical effect, one one
particular A,, (the resonant amplitude) must dominate this sum. This regdj c2,,;1 to be significantly
larger than the other coefficients.

wr/wp

Figure 5: The first nine resonances for a bell swingin@yat 175° in a tower withQ) = 25.

The only time-dependence incomes froms,,,
s wr Xt . /
Son+1 = sin(wpnt + dpn) — e sin(wpt + o7y ). (24)
T

At resonance, with) > 1, both phase shiftsi(,, and dg,) are approximately the same; similarly, for
physically realistic systems;r, w/. andwp, are all approximately the same. This means that at resonance
whennwpg = wg, S, can be simplified to

S, = (1 — e M)sin(wrt + 8) + O(Q72). (25)
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Figure 6: Initial transients at resonance wigh= 25. The dotted line is the envelope(1 — e~ ).

An alternative way of studying the tower transients, attledashe resonance harmonic, is to look at the
impulse response from one half cycle of the bell,
Rpe M sin(wrt + d). (26)

The transients while resonance is building up is then theser

[2t/7]
Sy = Z (=1)" Rpe M=77/2) gin (wr(t —r7/2) +6). (27)
r=1



The physical interpretation of this is as a superpositioimgfulse responses at intervalsof2 at the end
of every half cycle of the bell (corresponding to every tithe bell strikes). The impulse in one half of the
cycle is equal and opposite to the impulse in the other hatich thg—1)".

It was established if5 that resonance only occurs at the odd harmonics. This sarbalseen from Eqn. 27
by noting that-rwy /2 = rnr. This means that for odd, consecutive impulses superpose constructively.

Summing the series then givés,

1— e—)\t

=By en

sin(wpt + 9) (28)

and by comparison with Eqgn. 25,

Ry=1—e /2 =1_¢"m/2Q (29)

n 1 3 5 7 9 11

N-S 243 844 528 392 318 270
E-W 15.7 558 357 271 224 194

Table 3: The first few values at;;*

7 Impulse responses

The impulse from a single bell struck at time= 0 will cause the tower to oscillate in damped simple
harmonic motion,

z=¢ e Msinwyt (30)

where( is the initial amplitude. The cumulative effect of a singkdiliinging steady blows with perioéf
(i.e. whole pulls with period-) has the amplituddz, *¢ To analyse the effect of a single bell, the authors
measured the tower displacementwhile a bell was gradually rung faster and faster (i.e. is wi@wly rung
down). At various points, the frequency at which the bell Wwasg rung would reach a resonance with the
tower motion and significantly larger oscillations wereeé¢d. From this can be calculated.

Bell z7; (mm) &(mm) x5 (mm) & (mm)

11 0.62 0.16 0.76 0.14
10 0.44 0.11 0.57 0.11
0.27 0.07 0.30 0.06
0.25 0.06 0.31 0.06
0.19 0.05 0.26 0.05
0.18 0.05 _

N W

Table 4: North—south oscillation amplitudes

For north—south oscillations, the two valuestafalculated per bell are in moderately good agreement; this
is slightly less true for east—-west oscillations, espécir the 5th harmonic. In both cases, the lower

"The reason for putting the impulse at the end of the bell'statle is so that the tower motion is alway underestimatéiera
than overestimated. Whether this is the correct decisidirdepend on its intended use.
8Eqn. 27 is only exactly equal to Eqn. 28 when/2 - [2t/7| = At which is true whent = r7 /2 for integerr.



Bell zg(mm) &(mm) 7 (mm) &(mm) x5 (mm) & (mm)
12 0.37 0.17 0.45 0.17

9 0.22 0.10 0.21 0.08 0.14 0.04
8 0.17 0.08 0.22 0.08

6 0.16 0.07 _— 0.10 0.03
5 —_ 0.13 0.05 _

4 _— 0.16 0.06 _—

Table 5: East—west oscillation amplitudes

harmonics result in smaller values &f This is to be expected as the bell is lower down for the lower
harmonics, and thus has less energy available to drivdatsmils in the tower.

For the remainder of this analysis, the valueg derived from the highest harmonics given in Tables 4 and
5 are used. These are summarised in Table 6. The sigrinathis table indicates the relative directions in
the bells swing. For example, the 10th and 11th swing in oppakrections. The actual choice of sign is
arbitrary.

Bell 1 2 3 7 10 11
¢ 4005 +0.05 +0.06 -0.07 -0.11 +0.16
Bell 4 5 6 8 9 12

¢ +0.06 +0.05 +0.07 -0.08 +0.10 +0.17

Table 6: Values of used for the following analysis

8 Modelling ringing rounds

The effect of change ringing can be simulated by superpatangped sine waves (Equation 30) for each blow
made by a bell, with a factor af 1 depending on whether it is at handstroke or backstoke. Whesidering
ringing rounds onV bells, the bells are assumed to sound perfectly rhythryigalthe ascending order of
size (from 1 to 12) with a spacing ef/ (2N 4 ) between bells wher&is the size of the handstroke g&jn
ordinary ringing,0 is usually reckoned on being 1, and when ‘cartwheelings 0; unless otherwise stated,
0 = 1. The north—south and east—west oscillations are summegémdently, and are then combined to get
the magnitude,

= (o) (S’

Figure 7 show the results of numerical calculatio for eighblg pulls of rounds at peal speeds of 3h20. The
peal speed is the length of time taken to ring 5000 “changeé&’-te ring each bell 5000 times. Interestingly,
the tower sway is not the same at handstroke and at backstakee the oscillations have settled into a pat-
tern, the graph indicates magnitudes of around 0.6—0.7 mithédirst half of each whole turn (handstroke),
but only of around 0.3-0.4 mm in the second half (backstroiéjs asymmetry can only be explained by
the presence of the open handstroke lead, and a simulatibrchsed handstroke leads (Figure 8) no longer
exhibits this asymmetry.

9The handstroke gap is a small pause left after each bell mgstwice; it acts as a form of musical phrasing.
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Figure 7: Magnitude of tower sway for eight whole pulls of nds with open handstroke leads
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Figure 8: Magnitude of tower sway for eight whole pulls ofmds with closed handstroke leads
at a peal speed of 3h20
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Figure 9: Maximum tower sway during rounds at different sizee



Whilst the variation in tower sway during a whole pull is oférest, the most important detail is the maximum
sway. This is plotted in Figure 9.
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Figure 10: North—south and east—west components of towagr atndifferent speeds with closed
handstroke lead

The peak at 3h41r( = 5.30 s) can be explained as excitation of the 9th north—south haicnat 7 =
9/(1.7 Hz) = 5.29 s; and Figure 10 confirms that this peak is primarily due to mesbuth motion. The
fact that the peak is more pronounced for smallérears this out—odd harmonic resonance relies on the
handstroke and backstroke being equally spaced. The ahpldt the peak, 1.49 mm is also consistent
with this this. Table 3 gives the value &, ' = 3.18 and from Table 6" xq & = 0.50 mm. If the bells
were ringing at once, the amplitude of this peak would be etqueto beRg‘1 <> & = 1.59 mm, plus a

small contribution from the east—west motion; in roundg,aibof the bells will be in phase with the tower
oscillations, and the peak should be slightly smaller beeani this.

The other peak, at about 3h17 & 4.72 s) is in the right position to be explained by the 9th east—west
harmonic at- = 9/(1.9 Hz) = 4.74 s, but it is curious as it is stronger féarger §. With closed handstroke
leads (i.e.0 = 0), the amplitude of this peak is 0.53 mm, and a quick estimiam ngl -y € gives a
prediction of a bit less tha?.24 x 0.53 mm = 1.18 mm. This is not in particularly close agreement, but it
could be explained by the bells being further out of phash thi¢é tower oscillation than for the 3h41 peak.
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Figure 11: Tower sway during rounds with different sizeddsiroke leads at 3h17 peal speed

The fact that the 3h17 peak grows in amplitude witts of particular interest. From Figure 11 it can be
seen that, whilst the peak at= 0 is primarily due to east-west motion (the 9th harmonic),atditional



contribution wherny > 0 is from north—south motion. Curiously, 3h17 & 4.72 s) is also very close to
the 8th north—south harmonic at= 8/(1.7 Hz) = 4.71 s. Only odd harmonics were expected to occur;
however, this assumes entirely regular ringing—i.e. riggivith close handstrokes. Attributing the 3h17
peak to a combination of the 9th east—west harmonic and thed@th—south harmonic would explain why
the 3h17 peak is present@t= 0 and why it grows withs.
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Figure 12: An even harmonic exciting by open handstrokedead

Figure 12 shows the way in which an even harmonic can be excieom this it is apparent that theh
harmonic resonance: (even) occurs when the duration of the backstroke is onelatail longer than the
handstroke.

2]\;515_% 0= 2N1 :n2iV1 (31)
£(r-4)
9 Modelling plain hunt on twelve
The logical next step is to look at a simple method, such as plant on twelve 1234567890ET
bells (Figure 13E, T represent bells 11 and 12). In this, bells spend most of 34163850710
their time “hunting up” (ringing everyV + 1 bells) or “hunting down” (ringing 469810315E79
every N — 1 bells). Effectively plain hunt is the superposition of tweparate pypecimedl
speeds of ringing. This results in two separate opporesifidor exciting each Sootacsoiaae
tower harmonic, and instead of occuring whes- n/ f, they occur at Sl
TOE896745231
s N+ m (32) Ero078503412
IN+o£2 f O/ T50381624
Table 7 gives the values of for north—south resonances, with those corre- 795837102646
sponding to peal speeds of between 3h00 and 3h50 shown in bold §7391£274065
7192EAT
Figures 14 and 15 show the modelled tower sway during plaim ati3h15 g%g;ggggﬁ%
and 3h24 speed respectively. At 3h15, although the rounasecsignificant _Lszsirsostor
sway, this quickly dies away during the plain hunt. At thegistly slower
speed, this is no longer true, and during the second halfeotthurse, there Figure 13:
is significant tower sway. The second half of the course isrvthe 10th and Sequence  of
11th are hunting up and thus driving the 9th north—south baiaresonance. bells in plain

The maximum sway at various different peal speeds and sizeanalstroke hunt

lead is plotted in Figure 16. The four peaks coincide to fduhe five bold figures in Table 7. (The missing
one is ther = 4.36 8th harmonic which is right on the edge of the region of stutiyterestingly, there are
no obvious east—west harmonics being excited.



N Tup  Tdown
6 3.27 3.84
7 3.81 448
8 436 512
9 490 5.75
10 545 6.39

11 599 7.03

Table 7: Expected north—south resonances during plainvaitimty = 1

1.2 T T T T T T T
T=4.68s;6 =1

One course

0.8 | b

|x| /mm

20 25 30 35
t/T

Figure 14: Eight whole pulls of rounds, followed by 48 chasgé plain hunt on twelve, rung
at 3h15 speed

1.2 T T T T T T T
7T=4.89s;6 =1

One course

0.8 | b

0.6 i

|x| /mm

0.4 b

0.2 b

0 5 10 15 20 25 30 35
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Figure 15: Eight whole pulls of rounds, followed by 48 chasgé plain hunt on twelve, rung
at 3h24 speed
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Figure 16: Maximum tower sway during plain hunt on twelve iffedent speeds

10 Conclusions

The procedure described above can be used to predict aslgutae motion of bell towers given the char-
acteristics of the bells, their alignment and the dynamumratteristics of the tower. All of these properties
are easy to measure or to calculate. Tower motion is founé tiependent on the method and the amplitude
varies significantly during the peal. Also of great impodauris the peal time. A small change in peal time
can lead to significant changes in tower amplitude. Othe@ofadound to be significant are the handstroke

gap. All of these can be analysed simply and accurately Bsabgy the response of the bell tower to a series
of carefully-timed impulses.
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