skip to primary navigation skip to content

Dr Mark D Ainslie, CEng

Royal Academy of Engineering Research Fellow

Junior Research Fellow, King's College

Image of
Dr Ainslie

BE(Elec) & BA(Japanese) University of Adelaide 2004
ME University of Tokyo 2008
PhD University of Cambridge 2012

Tel: +44 1223 339838
Email: mark.ainslie@eng.cam.ac.uk

Mark is a Research Fellow in the Bulk Superconductivity Group, part of Division C (Mechanics, Materials and Design) of the Department of Engineering. He is also a Junior Research Fellow at King's College.

He is currently funded by the Royal Academy of Engineering and is working on engineering interactions of conventional, magnetic and superconducting materials for electrical applications. This project is focused in particular on the design of an axial gap, trapped flux-type superconducting electrical machine.

News/Media

10/3/2014: Royal Society - Awarded Royal Society International Exchange Scheme grant for a two year project with Prof. Hiroyuki Fujishiro of Iwate University to investigate "Flux dynamics of (RE)BCO bulk superconductors for pulsed field magnetisation"

27/6/2013: Institution of Engineering and Technology (IET) - Awarded IET Travel Award to travel to Japan to visit Kyoto University, Iwate University and Tokyo University of Marine Science and Technology

Summer 2013: King's College, Cambridge - Interview in King's Parade magazine as newly elected Junior Research Fellow

18/5/2013: 2013 Association of British Turkish Academics (ABTA) Doctoral Researcher Awards - Invited speaker (Tips for PhD Success & Moving On) & judge

28/8/2012: Cambridge Network - News - Dr Mark Ainslie awarded a Royal Academy of Engineering Fellowship

15/8/2012: University of Cambridge - Engineering Department - News & Features - Dr Mark Ainslie awarded a Royal Academy of Engineering Fellowship

6/6/2012: University of Adelaide - Adelaide onLION - Alumni on the Move - Mark Ainslie adds Cambridge PhD to list of achievements

24/5/2012: 2012 Association of British Turkish Academics (ABTA) Doctoral Researcher Awards - 1st Place - Engineering & Physical Sciences

13/10/2011: European Society for Applied Superconductivity (ESAS) Prize Winner - Large Scale Applications

Publications

You can see a list of Dr Ainslie's publications here.

Curriculum Vitae

You can see Dr Ainslie's experience, skills and expertise, and prizes and awards via his LinkedIn profile:

View Mark Ainslie's profile on LinkedIn

Research Interests

Superconductor Modelling

Investigating and modelling the electromagnetic behavior of superconductors is crucial to the design of superconductor-based electrical devices. In order for these devices to be cost- and performance-competitive with conventional devices, the use of superconducting materials and the associated cooling system must be shown to possess improved properties in comparison to its conventional counterpart. Dr Ainslie is currently investigating methods to develop accurate axisymmetric and 3D finite element models of superconducting coils and bulks. He is also involved in the design and build of experimental facilities to verify such models experimentally.

Engineering Interactions of Conventional, Magnetic and Superconducting Materials

Research carried out to date on the electromagnetic properties of superconductors operating within complex geometries has produced a number of interesting results; in particular, how the use of hybrid combinations of magnetic materials and superconductors can affect the superconductor's electromagnetic properties. There is significant promise for magnetic materials to be used together with superconducting materials to further enhance the remarkable properties of these materials, and indeed a great deal of research has been carried out at the nanoscale level by Materials Scientists. However, there is a lack of such research on a macro-scale/engineering level, such as the reduction of AC loss in coils made from superconducting tape, which can be problematic in applications where a time-varying current and/or magnetic field is present, and shaping and enhancing the trapped magnetic field in bulk superconductors.

Superconducting Electric Machine Design

The use of superconducting materials can improve the overall electrical system efficiency, and in addition, superconducting materials are able to carry much larger current densities than conventional materials such as copper. In electric machines, in particular, increasing the current and/or magnetic flux density increases the power density, which leads to reductions in both size and weight of the machine. The expected improved performance and efficiency, as well as smaller footprint, in comparison with conventional devices has seen continued interest in introducing superconducting materials to not only electric machines, but also to other electric power applications, such as transformers and cables. Dr Ainslie is applying the results of the preceding investigations to an electric machine design, in order to produce a prototype design of an optimised superconducting electric machine with reduced AC loss (which means higher efficiency), high torque, and reduced weight and size. A major component of this research is the development of in-situ magnetisation techniques for magnetising the bulk superconductors in such a machine.

Current Student Projects

Mr Di Hu, PhD student, Properties of high temperature superconducting (HTS) tape for electric machines

Miss Jin Zou, PhD student, Magnetisation properties of high temperature superconducting (HTS) bulk materials for electric machines

Mr Zejun Shen, Visiting PhD student from Tsinghua University, China, Computation of the field in an axial gap, trapped flux-type superconducting electric machine

Current PhD Vacancies

Dr Ainslie is currently seeking interested students for PhD projects related to the following areas:

  • No current vacancies

A strong undergraduate (or Master's degree) background in physics or engineering is required, and prior research experience is an advantage. Relevant experience, such as low temperature experimentation, electrical machine design or control, or electromagnetic modelling, is also preferred.

For more information on fees and costs, funding schemes, immigration, and so on, please visit here.

The Department of Engineering's website provides detailed information for prospective students, including how to apply, and further information about the department here.

Keywords

Electrical engineering, superconductivity, electrical machines, electrical machine design, finite element modelling, electromagnetic analysis, high temperature superconductors, low temperature experimentation, power system protection, energy storage, energy efficiency analysis