Information Theory, Inference and Learning Algorithms David J. C. MacKay  
More Details

Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes — the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

0521642981
Mathematical Physiology James Keener, James Sneyd  
More Details

Mathematical Physiology provides an introduction into physiology using the tools and perspectives of mathematical modeling and analysis. It describes ways in which mathematical theory may be used to give insights into physiological questions and how physiological questions can in turn lead to new mathematical problems.
The book is divided in two parts, the first dealing with the fundamental principles of cell physiology, and the second with the physiology of systems. In the first part, after an introduction to basic biochemistry and enzyme reactions, the authors discuss volume control, the membrane potential, ionic flow through channels, excitability, calcium dynamics, and electrical bursting. This first part concludes with spatial aspects such as synaptic transmission, gap junctions, the linear cable equation, nonlinear wave propagation in neurons, and calcium waves. In the second part, the human body is studied piece by piece, beginning with an introduction to electrocardiology, followed by the physiology of the circulatory system, blood muscle, hormones, and kindeys. Finally, the authors examine the digestive system and the visual system, ending with the inner ear. This book will be of interest to researchers, to graduate students and advanced undergraduate students in applied mathematics who wish to learn how to build and analyze mathematical models and become familiar with new areas of applications, as well as to physiologists interested in learning about theoretical approaches to their work.

Mathematical Reviews, 2000: "This is neither a physiology book nor a mathematics book, but it is probably the best book ever written on the interdisciplinary field of mathematical physiology, i.e. mathematics applied to modelling physiological phenomena. The book is highly recommended to anybody interested in mathematical or theoretical physiology."

0387983813
Learning and Memory: From Brain to Behavior Mark A. Gluck, Eduardo Mercado, Catherine E. Myers  
More Details

Gluck, Mercado and Myers’s Learning and Memory is the first textbook developed from its inception to reflect the convergence of brain studies and behavioral approaches in modern learning and memory research incorporating findings both in animals and humans. Each chapter integrates coverage of both human memory and animal learning, with separate sections specifically devoted to behavioral processes, brain systems, and clinical perspectives.

0716786540
Introduction To The Theory Of Neural Computation, Volume I John A. Hertz, Anders S. Krogh, Richard G. Palmer  
More Details

Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest. DLC: 1. Neural computers.

0201515601
Neural Networks and Brain Function Edmund T. Rolls, Alessandro Treves  
More Details

This book describes the types of computation that can be performed by biologically plausible neural networks and shows how they may be implemented in different systems of the brain. It is structured in three sections, each of which addresses a different need. The first introduces and analyzes the operation of several fundamental types of neural networks. The second discusses real neural networks in several brain systems, and shows how it is becoming possible to construct theories about the way different parts of the brain work. This section also analyzes the various neuroscience and neurocomputation techniques that need to be combined to ensure further progress in understanding the mechanism of brain processes. The third section, a collection of appendices. introduces the formal quantitative approaches to many of the networks described. Neural Networks and Brain Function is an accessible, clear introduction for researchers and students in neuroscience and artificial intelligence to the fascinating problems of how the brain works and how behavior is determined.

0198524323
Sequential Monte Carlo Methods in Practice Arnaud Doucet, Nando de Freitas, Neil Gordon  
More Details

Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

1441928871
Vision: A Computational Investigation into the Human Representation and Processing of Visual Information David Marr  
More Details

David Marr's posthumously published Vision (1982) influenced a generation of brain and cognitive scientists, inspiring many to enter the field. In Vision, Marr describes a general framework for understanding visual perception and touches on broader questions about how the brain and its functions can be studied and understood. Researchers from a range of brain and cognitive sciences have long valued Marr's creativity, intellectual power, and ability to integrate insights and data from neuroscience, psychology, and computation. This MIT Press edition makes Marr's influential work available to a new generation of students and scientists. In Marr's framework, the process of vision constructs a set of representations, starting from a description of the input image and culminating with a description of three-dimensional objects in the surrounding environment. A central theme, and one that has had far-reaching influence in both neuroscience and cognitive science, is the notion of different levels of analysis—in Marr's framework, the computational level, the algorithmic level, and the hardware implementation level. Now, thirty years later, the main problems that occupied Marr remain fundamental open problems in the study of perception. Vision provides inspiration for the continuing efforts to integrate knowledge from cognition and computation to understand vision and the brain.

0262514621
Statistical Analysis of Circular Data N. I. Fisher  
More Details

This book provides a unified and up-to-date account of techniques for handling circular data, and will interest all who perform data analyses.

0521568900
An Introduction to Stochastic Processes in Physics Don S. Lemons  
More Details

This book provides an accessible introduction to stochastic processes in physics and describes the basic mathematical tools of the trade: probability, random walks, and Wiener and Ornstein-Uhlenbeck processes. It includes end-of-chapter problems and emphasizes applications.

An Introduction to Stochastic Processes in Physics builds directly upon early-twentieth-century explanations of the "peculiar character in the motions of the particles of pollen in water" as described, in the early nineteenth century, by the biologist Robert Brown. Lemons has adopted Paul Langevin's 1908 approach of applying Newton's second law to a "Brownian particle on which the total force included a random component" to explain Brownian motion. This method builds on Newtonian dynamics and provides an accessible explanation to anyone approaching the subject for the first time. Students will find this book a useful aid to learning the unfamiliar mathematical aspects of stochastic processes while applying them to physical processes that he or she has already encountered.

080186867X
Mathematical Foundations of Neuroscience G. Bard Ermentrout, David H. Terman  
More Details

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University. “This excellent 422 page hardcover publication is an accessible and concise monograph. … Mathematical Foundations is a timely contribution that will prove useful to mathematics graduate students and faculty interested in the application of dynamical systems theory to cellular and systems neuroscience. … welcome addition to the pedagogical literature. … For mathematics graduate students who are investigating the field of computational neuroscience, I would highly recommend Mathematical Foundations of Neuroscience as their first computational neuroscience text.” (Gregory D. Smith, The Mathematical Association of America, December, 2010)   "...it is a good substitute for a lengthy regime of abstract maths classes, but it is also well integrated into the field of neuroscience. Ermentrout and Terman's book conveys much of the advanced mathematics used in theoretical neuroscience today." (Vincent A. Billock, Nature)

038787707X
Hippocampal Microcircuits: A Computational Modeler's Resource Book Vassilis Cutsuridis, Bruce Graham, Stuart Cobb, Imre Vida  
More Details

Rich in detail, Hippocampal Microcircuits: A Computational Modeler’s Resource Book provides succinct and focused reviews of experimental results. It is an unparalleled resource of data and methodology that will be invaluable to anyone wishing to develop computational models of the microcircuits of the hippocampus. The editors have divided the material into two thematic areas. Covering the subject’s experimental background, leading neuroscientists discuss the morphological, physiological and molecular characteristics as well as the connectivity and synaptic properties of the various cell types found in the hippocampus. Here, ensemble activity, related to behavior, on the part of morphologically identified neurons in anesthetized and freely moving animals, lead to insights into the functions of hippocampal areas. In the second section, on computational analysis, computational neuroscientists present models of hippocampal microcircuits at various levels of detail, including single-cell and network levels. A full chapter is devoted to the single-neuron and network simulation environments currently used by computational neuroscientists in developing their models. In addition to the above, the chapters also identify outstanding questions and areas in need of further clarification that will guide future research by computational neuroscientists.

1441909958
Introduction to Algorithms Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein  
More Details

Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout. It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, substantial additions to the chapter on recurrence (now called "Divide-and-Conquer"), and an appendix on matrices. It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many new exercises and problems have been added for this edition. As of the third edition, this textbook is published exclusively by the MIT Press.

0262033844
Convex Optimization Stephen Boyd, Lieven Vandenberghe  
More Details

Convex optimization problems arise frequently in many different fields. A comprehensive introduction to the subject, this book shows in detail how such problems can be solved numerically with great efficiency. The focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. The text contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance, and economics.

0521833787
Perception as Bayesian Inference David C. Knill, Whitman Richards  
More Details

In recent years, Bayesian probability theory has emerged not only as a powerful tool for building computational theories of vision, but also as a general paradigm for studying human visual perception. This book provides an introduction to and critical analysis of the Bayesian paradigm. Leading researchers in computer vision and experimental vision science describe general theoretical frameworks for modeling vision, detailed applications to specific problems and implications for experimental studies of human perception. The book provides a dialogue between different perspectives both within chapters, which draw on insights from experimental and computational work, and between chapters, through commentaries written by the contributors on each other's work. Students and researchers in cognitive and visual science will find much to interest them in this thought-provoking collection.

052146109X