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ABSTRACT

Symmetry can simplify the form-finding process for tensegrity structures; and this paper will describe
one technique. Our method is based on the commonly used force density method, but the calculations
are done using a symmetry-adapted coordinate system. The standard force-density method assumes a
known connectivity for the structure. A tension coefficient (tension divided by length) must then be
found for every member so that an equilibrium solution is possible. Finding the nodal coordinates is
straightforward once a suitable set of tension coefficient is found: but finding suitable tension coefficients
may be non-trivial. In this paper we simplify the correct choice of tension coefficients by the use of
symmetry — in addition to the connectivity of the structure, we assume that the structure has certain
symmetry properties, greatly reducing the difficulty of finding possible configurations. The paper will
show simple examples of the method where a simple analytical solution gives all possible symmetric
tensegrities with a given connectivity.

1. INTRODUCTION

Tensegrity structures are rigidized by self-stress. The key step in design of these structures is form-finding,
the determination of a self-stressed equilibrium configuration. Here, a simple technique for tensegrity
form-finding is described based on the commonly used force density method, but the calculations are
done using a symmetry-adapted coordinate system.

The standard force-density method, presented in [1], assumes a known connectivity for the structure. A
tension coefficient (tension divided by length) must then be found for every member so that an equilibrium
solution is possible. Finding the nodal coordinates is straightforward once a suitable set of tension
coefficient is found: but finding suitable tension coefficients may be non-trivial. We will show that using
symmetry can help.

2. EQUILIBRIUM AND STABILITY OF TENSEGRITY STRUCTURES

In the force-density method, the equilibrium of the structure is written using a stress matrix, S (often
known as the force density matrix), which is defined as follows. Consider two nodes i and j, possibly
connected by a member ij which carries a tension coefficient t̂ij . The coefficients of the stress matrix are

Sij =





−t̂ij if i 6= j,∑
t̂ik if i = j : summation over all nodes k connected to node i
0 if i and j are not connected

(1)

If the unknown nodal coordinates are written as three vectors, x, y and z, and applied nodal forces in
the x, y and z directions are written as px, py, and pz, then unloaded equilibrium configurations are
solutions of the equations.

Sx = px = 0

Sy = py = 0

Sz = pz = 0
(2)

In order for a three-dimensional structure to exist, the equilibrium equations (Eq. 2) must have three
independent solutions, which themselves must be independent of the uniform vector [1, 1, ...1]T, which
will always be in the nullspace of any properly defined stress matrix. Thus the tension coefficients in
the members must be chosen such that S has a nullity of 4, i.e. it is rank-deficient by 4. In addition, to
guarantee that the structure is stable, we require S to be positive semi-definite.

In this paper we simplify the correct choice of tension coefficients by the use of symmetry. In addition to
the connectivity of the structure, we assume that the structure has certain symmetry properties. We then
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Figure 1: Example tensegrity structure with D3 symmetry. (a) Isometric view, showing the node and
element numbering scheme used. Tension members are shown by thin lines, compression members
by thick lines. (b) Plan view, showing the top triangle by dotted lines, bottom triangle by solid
lines, and the location of three C2 rotation axes, a, b, c, each of which lies at half height in the
structure.

write the stress matrix, S using a symmetry-adapted coordinate system that is defined by the irreducible
representations of the symmetry group to which the structure belongs: the resultant stress matrix S̃ is
similar to S, but has a block-diagonal form. The nullity of the whole matrix is now simply the sum of
nullity of each the sub-blocks of S̃, and hence finding the required nullity of 4 is simplified.

3. SIMPLEX TENSEGRITY

Consider the example tensegrity shown in Fig. 1: we will assume that it has a totally symmetric state
of self-stress where the tension coefficients are given by T̂d for the diagonal struts (members 10, 11, and
12), T̂h for the horizontal cables (members 1–6), and T̂v for the vertical cables (members 7, 8, and 9).
The stress matrix (defined in Eq. 1) is then

S =

2
66666664

2T̂h + T̂v + T̂d −T̂h −T̂h −T̂d 0 −T̂v

−T̂h 2T̂h + T̂v + T̂d −T̂h −T̂v −T̂d 0

−T̂h −T̂h 2T̂h + T̂v + T̂d 0 −T̂v −T̂d

−T̂d −T̂v 0 2T̂h + T̂v + T̂d −T̂h −T̂h

0 −T̂d −T̂v −T̂h 2T̂h + T̂v + T̂d −T̂h

−T̂v 0 −T̂d −T̂h −T̂h 2T̂h + T̂v + T̂d

3
77777775

(3)

Note that the stress matrix does not depend on the actual configuration of the structure.

In the Schoenflies notation [2] the structure has D3 symmetry—it is transformed into an equivalent
configuration by six symmetry operations: the identity, E, rotation by 120◦ (C3) or rotation by 240◦ (C2

3 )
about the vertical axis; twofold rotation about the three axes a (Ca

2 ), b (Cb
2), and c (Cc

2). The irreducible
representations of a symmetry group [3] shown in Table 1, provide the means to find a symmetry adapted
coordinate system, as described in [4]. Applying that method here gives an orthogonal transformation
matrix V, so that x̃ = VTx, p̃x = VTpx, where

A1 A2 E(1) E(2)

V = 1/
√

6

2
66666664

1 1 0
√

2
√

2 0

1 1
p

3/2 −1/
√

2 −1/
√

2 −
p

3/2

1 1 −
p

3/2 −1/
√

2 −1/
√

2
p

3/2

1 −1 0
√

2 −√2 0

1 −1 −
p

3/2 −1/
√

2 1/
√

2 −
p

3/2

1 −1
p

3/2 −1/
√

2 1/
√

2
p

3/2

3
77777775

(4)

V defines four symmetry subspaces. A1 is where loads, or coordinates, are totally symmetric—unchanged
by every symmetry operation; for A2, loads and coordinates are preserved by E, C3 and C2

3 , but reversed
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Table 1: Irreducible representations of symmetry group D3

D3 E C3 C2
3 Ca

2 Cb
2 Cc

2

A1 1 1 1 1 1 1
A2 1 1 1 -1 -1 -1

E

»
1 0
0 1

– » −1/2 −√3/2√
3/2 −1/2

– » −1/2
√

3/2

−√3/2 −1/2

– »
1 0
0 −1

– » −1/2 −√3/2

−√3/2 1/2

– » −1/2
√

3/2√
3/2 1/2

–

by Ca
2 , Cb

2 and Cc
2. E is a two-dimensional representation, whose symmetry subspace gathers anything

not in A1 or A2: it splits into E(1), quantities preserved by Ca
2 , and E(2), quantities reversed by Ca

2 .

The symmetry adapted S̃ where S̃x̃ = p̃x etc., can be written as

S̃ = VTSV (5)

which gives,

S̃ =

2
666666666664

0 0 0 0 0 0

0 2T̂v + 2T̂d 0 0 0 0

0 0 3T̂h + T̂v/2 + 2T̂d −(
√

3/2)T̂v 0 0

0 0 −(
√

3/2)T̂v 3T̂h + T̂v/2 + 2T̂d 0 0

0 0 0 0 3T̂h + T̂v/2 + 2T̂d −(
√

3/2)T̂v

0 0 0 0 −(
√

3/2)T̂v 3T̂h + T̂v/2 + 2T̂d

3
777777777775

(6)

Eq. 6 shows that the block-diagonalized stress matrix, S̃ consists of four independent sub-matrix blocks,
the A1, A2, E(1), and E(2) blocks — note that E(1) and E(2) are identical, which is a consequence of
the symmetry. We will now consider each of these blocks separately.

A1 block S̃
A1 = [0] (7)

The value of first (1×1) matrix, S̃
A1 must be zero (nullity = 1) for a properly configured stress matrix,

because the sum of any row (or column) is zero, by definition.
A2 block S̃

A2 = [2T̂v + 2T̂d] (8)
When

T̂v = −T̂d, (9)
the second block gives nullity 1.

E blocks S̃
E1 = S̃

E2 =
[

3T̂h + T̂v/2 + 2T̂d −(
√

3/2)T̂v

−(
√

3/2)T̂v 3T̂h + T̂v/2 + 2T̂d

]
(10)

In order to have a nullity of greater than zero for each E(1) and E(2) blocks, the determinant of S̃
E1 and

S̃
E2 should be zero. ∣∣∣∣

3T̂h + T̂v/2 + 2T̂d −(
√

3/2)T̂v

−(
√

3/2)T̂v 3T̂h + T̂v/2 + 2T̂d

∣∣∣∣ = 0

(
3T̂h + T̂v/2 + 2T̂d

)2

−
(
−
√

3/2T̂v

)2

= 0 (11)

To obtain a total nullity of 4, we need to satisfy equations (9) and (11), with non-zero tension coefficients.
The solutions are

T̂v/T̂d = −1

T̂v/T̂h = ±
√

3
(12)

These solutions result in S having a nullity of 4, and also being positive definite. There is choice in the
value of T̂v/T̂h; however, if we additionally require both horizontal cables and vertical cables to be in
tension, with T̂v and T̂h positive, then we must choose T̂v/T̂h = +

√
3. (T̂v/T̂h = −√3 is also a valid

structural configuration, but with the role of diagonal struts and vertical cables reversed.)
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Figure 2: Tensegrity structure with T symmetry. The outer net of members shown by thin lines are
cables in tension and the inner bars shown by thick lines are struts in compression.

T̂v/T̂d = −1 and T̂v/T̂h = +
√

3 determine the stress matrix for the structure (Eq. 3) apart from a
single parameter representing the overall magnitude of the state of self-stress. This parameter does not
affect the nullspace of S, and hence it is possible to find stable equilibrium configurations of the system
from the possible solutions of Eq. 2.

4. T GROUP TENSEGRITY STRUCTURES

As a second example, the structure shown in Fig. 2 will be analysed. It is a structure with point group
symmetry T , the symmetries of rotations, but not reflections, of a tetrahedron. Let the tension coefficients
due to the prestress be denoted by T̂t, T̂d and, T̂s, for the cables in the triangles, the cables connecting
the triangles, and the struts, respectively. The stress matrix, S can be set up in terms of only these three
tension coefficients.

S =

»
S11 S12

S21 S22

–
(13)

where,

S11 =

2
6666666664

2T̂t + T̂d + T̂s −T̂t −T̂t 0 −T̂d 0

−T̂t 2T̂t + T̂d + T̂s −T̂t 0 0 −T̂d

−T̂t −T̂t 2T̂t + T̂d + T̂s −T̂d 0 0

0 0 −T̂d 2T̂t + T̂d + T̂s 0 0

−T̂d 0 0 0 2T̂t + T̂d + T̂s 0

0 −T̂d 0 0 0 2T̂t + T̂d + T̂s

3
7777777775

,

S12 =

2
6666666664

−T̂s 0 0 0 0 0

0 −T̂s 0 0 0 0

0 0 −T̂s 0 0 0

0 −T̂t 0 −T̂t 0 −T̂s

0 0 −T̂t −T̂s −T̂t 0

−T̂t 0 0 0 −T̂s −T̂t

3
7777777775

, S21 =

2
6666666664

−T̂s 0 0 0 0 −T̂t

0 −T̂s 0 −T̂t 0 0

0 0 −T̂s 0 −T̂t 0

0 0 0 −T̂t −T̂s 0

0 0 0 0 −T̂t −T̂s

0 0 0 −T̂s 0 −T̂t

3
7777777775

and
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S22 =

2
66666664

2T̂t + T̂d + T̂s 0 0 −T̂d 0 −T̂t

0 2T̂t + T̂d + T̂s 0 −T̂t −T̂d 0

0 0 2T̂t + T̂d + T̂s 0 −T̂t −T̂d

−T̂d −T̂t 0 2T̂t + T̂d + T̂s 0 0

0 −T̂d −T̂t 0 2T̂t + T̂d + T̂s 0

−T̂t 0 −T̂d 0 0 2T̂t + T̂d + T̂s

3
77777775

The symmetry group T has three irreducible representations, the one-dimensional A, the two-dimensional
E, and the three-dimensional T. It is straightforward to find a symmetry transformation matrix to find
the block-diagonalized stress matrix S̃, which has the structure

S  =  
~

~
S
T(3)

~
S
T(2)

~
S
T(1)

~
S
E(2)

~
S

E(1)

~
S
A

(14)

S̃ is a (12×12) matrix; S̃
A

is (1×1); S̃
E(1)

and S̃
E(2)

are (2×2); S̃
T(1)

, S̃
T(2)

, and S̃
T(3)

are (3×3). S̃
A

is

guaranteed to have a nullity of 1 for any properly constructed stress matrix. S̃
T(1)

, S̃
T(2)

, and S̃
T(3)

are
guaranteed to be similar to one another, and hence if the nullity of S̃

T(1)
= 1, then the total nullity of

S will be at least the required 4. Thus, we require
∣∣∣S̃T(1)

∣∣∣ = 0 (15)

For convenience, S̃
T(1)

can be written as

S̃
T(1)

= T̂tA + T̂dB + T̂sC (16)

and A, B, and C are found to be

A =

2
4

3.0000 0.0000 0.0000
0.0000 0.0372 −0.3319
0.0000 −0.3319 2.9628

3
5 , B =

2
4

1.0000 0.8757 −0.4829
0.8757 1.2332 0.4229

−0.4829 0.4229 1.7668

3
5 and C =

2
4

2.0000 0.0000 0.0000
0.0000 1.5337 −0.8457
0.0000 −0.8457 0.4663

3
5

The overall magnitude of stress is not important, so we can write Eq. 15 as

∣∣∣A + (T̂d/T̂t)B + (T̂s/T̂t)C
∣∣∣ = 0 (17)

The solutions to Eq. 17 are plotted in Fig. 3. Requiring S to be positive semi-definite, with cables carrying
tension and struts compression gives a single line of possible solutions. Assuming suitable values on this
line, say T̂d/T̂t = 2.0 and T̂s/T̂t = −0.759, gives a positive semi-definite stress matrix with the required
nullity 4. The nullspace of this stress matrix dictates possible coordinates for this structure, of which one
set gives the tensegrity structure shown in Fig. 2. This is not the only possible configuration, but any
other configuration must be a stretched and rotated version of the structure shown.
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Figure 3: Solutions of Eq. 17, |S̃T(1)| = 0. The solutions lie on three lines, which split the plot into

4 regions. Requiring S, and hence S̃
T(1)

to be positive semi-definite implies that we are interested in
the solution between regions (1) and (2). Additionally requiring T̂d/T̂t positive, and T̂s/T̂t negative,
gives solutions marked by crosses.

5. CONCLUSION

In this paper, it is shown using the stress matrix that for a three-dimensional structure to exist, the
stress matrix must have nullity of four. The nullspace of the stress matrix then gives the configuration
of the tensegrity. Using a symmetry adapted coordinate system makes it easy to check the right nullity.
Furthermore, it also helps to find a set of tension coefficients that achieve equilibrium configurations of
tensegrity structures which are prestress stable and hence greatly reduces the difficulty of finding possible
configurations.
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