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Abstract

Deployable structures are structures which can fold, either for transportation or for
storage. The main application of deployable structures is for use in space. Launch
vehicles are limited in size, while large structures are required for many current
and proposed uses of space. Because of the high cost of failures, however, the space
industry is conservative in its use of deployable structures. This dissertation is an
attempt to inject new ideas into the field of deployable structures.

Three concepts for deployable structures are presented. Two of the concepts
are new, a generic class of foldable cylinders, and a new solid surface deployable
reflector. The third concept is an old idea for folding a membrane, which has
been re-analysed and extended. Some analysis is done for each of these concepts
to prove their viability.

Foldable cylinders are triangulated cylinders which fold axially into a compact
stack of plates. The concept of foldable cylinders is introduced, and a geometric
approach to their folding is pursued. This provides valuable insights into the
folding process. Folding is also modelled computationally, which explains the
behaviour observed during experiments. A number of these cylinders have been
manufactured and tested.

Folding a membrane by wrapping it around a central hub was first proposed in
the 1960’s. Most recently it has been suggested as a method of folding a space-sail.
Previous work on this concept is reviewed, and a new analysis of the fold pattern
is presented. This corrects a number of errors in previous work, and suggests ways
in which the concept can be extended.

A solid surface deployable antenna is presented. This is a new method of fold-
ing an antenna, suggested by the wrapping fold pattern. It improves on previous
concepts, as it both shows a large reduction in size when folded, and requires no
complex mechanical components. The folding of the antenna is modelled with
a new technique, using dual quaternions to represent rigid body displacements.
This analysis is used to optimise the design of the antenna to minimise deforma-
tion during folding. A simple proof of concept model of the antenna has been
manufactured and tested.

Keywords

Deployable structure, Deployable antenna, Folding, Membrane folding, Finite Dis-
placements, Finite rotations, Quaternions
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1. INTRODUCTION

Deployable structures are structures that can be easily reduced in size for trans-
portation or storage. A number of everyday structures could be classed as deploy-
able; tents and umbrellas are two simple examples.

Current interest in deployable structures arises mainly from their potential
in space. Many space applications, both current and proposed, require large
structures in space. Typical examples include satellites for communications, earth
observation, astronomy, and space exploration. However, launch vehicles, such as
NASA’s space shuttle, are, and for the foreseeable future will continue to be,
limited in size. '

The space industry, because of the high cost of failures in space, tend to be
conservative in their use of deployable structures. This dissertation is an attempt
to inject new ideas and concepts into the field of deployable structures. These
concepts may suggest new, and better, ways of doing old tasks, or make possible
new applications for spacecraft.

The dissertation is split into three parts. Each part introduces a concept, and
gives some general analysis concerning the shape and unfolding characteristics of
that concept. The three concepts are: a method for folding a cylinder; a method
for folding a membrane; a method for folding an antenna with a rigid surface. Of
these concepts, the first and the third are completely new. The second concept,
the method of folding a membrane, has been suggested a number of times before,
but this dissertation gives the first correct analysis of the fold pattern, which also
suggests a number of ways that the folding concept can be extended.

The dissertation proceeds as follows. Chapter 2 gives a brief overview of pre-
vious work in deployable structures, and goes into more depth on other work
relevant to each of the three concepts developed.

Chapters 3, 4, and 5 make up Part I of the dissertation, the work on fold-
able cylinders. Chapter 3 introduces foldable cylinders, and pursues a geomet-
ric approach to understanding the range of their potential configurations, and
their folding properties. Chapter 4 presents a more detailed computer analysis of
the cylinders, which explains a number of features observed during their folding.
Chapter 5 describes the construction and test of a number of practical foldable
cylinders, and also makes some additions to the computer model to further explain
some of the observed experimental behaviour.

Chapler 6 makes up Parl II of the dissertation. Il explains an established
concept of wrapping a membrane about a central hub. It presents a new analysis
of this fold pattern, and suggests a number of new ways of extending Lhe coucept.

Chapters 7, 8, and 9 make up Part III of the dissertation, the development of a
new solid surface deployable antenna. This antenna was inspired by the wrapping
fold pattern of Part II. Chapter 7 develops a theory, based on the use of dual
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quaternions, which can analyse systems of rigid bodies undergoing finite rotations
and displacements; this is an essential precursor to the work on designing the
antenna. Chapter 8 describes the design process for the antenna, and Chapter 9
describes a model that was made and tested to prove this concept.

Chapter 10 concludes the dissertation, and describes a number of ways in
which each of the concepts could be advanced further.



2. REVIEW OF PREVIOUS WORK

This chapter reviews previous work that is relevant to this dissertation. The
first section gives a brief overview of the field of deployable structures, showing
examples of why deployable structures are required, and some typical deployable
structure concepts. The aim of this section is to establish the reasons for doing
the work in this dissertation, and to set that work in context. It is not meant as
a complete review of work on deployable structures; there are many alternative
sources where such reviews may be found (NASA, 1984; Roederer & Rahmat-
Samii, 1989; Hedgepeth, 1989; Kwan, 1997; Pellegrino, 1994).

The remaining three sections of the chapter go into more depth on work specif-
ically relevant to each of the three concepts developed later in the dissertation.

2.1. Deployable Structures

The main reason for recent interest in deployable structures has been their po-
tential application in space. Launch vehicles which put satellites into space are
limited in size. The largest presently in use is NASA’s space shuttle; it has a
cargo bay 4.6 m in diameter, and 18.3m long. Many present and proposed space
missions require structures larger than this.

One way of making a structure fit into the limited space available for launch
is to fold it, and then to automatically deploy it once in space. Another option is
to use erectable structures that are taken to space in pieces, and put together in
orbit, either by man, or by robots. However, it has been realised that using men in
space is not only dangerous, but also expensive, because extra safety precautions
are required. Robots are not sufficiently advanced to be able to autonomously
erect a complex structure in space. This leaves deployable structures as the only
viable option for almost all large space structures.

Another reason for using deployable (or erectable) structures in space is the
high loads due to vibration experienced by a structure during launch. By using a
deployable structure, a lightweight structure can be safely packaged and protected
during this critical time.

There are a large number of possible applications which require large structures
in space. These structures may be required for astronomy, earth observation,
communications, or to provide solar power.

A common use of deployable structures is as deployable solar panels to provide
the power requirements of modern satellites. The solar panels of the Hubble Space
Telescope are a well-known example (Cawsey, 1982).

An example of a proposal to use large structures in space for astronomy has
been the QUASAT project (Jordan et al., 1984). This satellite is proposcd to
form part of a Very Long Baseline Interferometer, which would be used to study

3
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high-energy astronomical events such as quasars. The project requires an antenna
on the spacecraft with a diameter of 15-20m.

Large antennae are also proposed for many communication satellites (Knouse
& Weber, 1984). The advantage of a large antenna in space is that it enables the
earth-based receivers and transmitters to be smaller in size, and to require less
power. This is an obvious advantage for, e.g., a satellite-based mobile communi-
cation systems.

A large number of concepts have been proposed, and some used, as deployable
structures. These concepts can generally be split into one-, and two-dimensional
deployable structures.

One-dimensional deployable structures are typically used to move payloads
away from the main body of the spacecraft, or as actuators in larger systems.
Concepts for one-dimensional deployable structures include coilable masts (which
will be mentioned in more detail in Section 2.2), thin shell masts such as STEM
(Rimrott, 1967), and pantographic structures (Kwan et al., 1993).

Two dimensional deployable structures include solar arrays and antennae. An-
tennae will be considered in more detail in Section 2.4. Concepts for solar arrays
include those based on solid panels, e.g. de Kam (1984), and others where the
arrays are made of furlable blankets, e.g. Cawsey (1982).

Although this overview has concentrated on space applications, there is scope
for using deployable structures on earth. Generally, most rapidly assembled struc-
tures on earth may be considered as erectable (e.g. Bailey Bridges). However,
deployable structures are used for a number of applications. Examples include re-
tractable covers for space-stadia (O’Conner, 1992), or pneumatic structures (Dent,

1980).

2.2. Previous Work Relevant to Foldable Cylinders

Part I of this dissertation introduces a class of foldable cylinders. This is a new
concept, and there is little previous work which is directly relevant to it. There are,
however, two areas which have certain similarities, and so are worth mentioning.

The first of these areas is coilable masts, a common type of deployable struc-
ture. The best known example of this type of structure is the Astromast (Eiden
et al., 1984), but coilable masts have also been developed in Japan, the Simplex,
and the Hingeless masts (Okazaki et al., 1986). An example of an Astromast
during deployment is shown in Figure 2.1. The way these coilable masts fold
is similar to the way foldable cylinders fold. In particular, in coilable masts a
transition zone is formed between the stowed and the extended parts of the mast.
This behaviour is very similar to the formation of a transition zone in foldable
cylinders, which is studied in more detail in Chapter 4.

The second area of work relevant to foldable cylinders is the buckling of thin-
walled cylinders under axial compression. A common post-buckled shape for these
cylinders is a diamond mode, where the surface is broken into well-defined triangles
connected by inward folds around the circumference of the cylinder, and outward
folds running helically around the cylinder. This is often known as the Yoshimura
pattern (Yoshimura, 1955), and can be seen in many text books on buckling, e.g.
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deployed A
mast

transition
zone

Figure 2.1. An Astromast during deployment. Diagonal bracing cables
have been omitted for clarity. '
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Timoshenko and Gere (1980, page 469).

At first sight, the Yoshimura pattern appears similar to foldable cylinders.
Both are developable surfaces where the surface is split into triangles, connected
by fold lines. However, the important new feature of foldable cylinders is that the
fold pattern possesses a second inextensional configuration where all the triangles
fold on top of one another. In contrast, any Yoshimura pattern gives a unique
configuration, so changing the configuration requires a change of fold pattern.

2.3. Previous Work on Folding Membranes

Part II of this thesis is concerned with folding a membrane by wrapping it around
a central hub. Unlike the other concepts in this dissertation, this is not a new
idea. A number of people since the 1960’s have considered folding thin sheets in
this way. The idea can first be found, very much in an embryonic form, in a patent
by Huso (1960). Huso invented a sheet reel for compactly folding the tarpaulin
cover of a car. His device consists of a fixed part, connected to the car roof, and a
rotatable hub connected to the tarpaulin: when the hub is rotated the tarpaulin
is gradually wound onto it. Huso (1960) shows a sketch of the expected folding
pattern: each fold appears to start tangential to the hub.

A similar, but more refined folding pattern was introduced in two patents by
Lanford (1961; 1963). He patented the folding apparatus shown in Figure 2.2,
where the regular spacing of hill and valley folds is achieved by means of guiding
wires tensioned by weights. This produces a fully-folded sheet with a regular saw
tooth edge. The fold lines, sketched in Figure 2.2(a), are not straight; they were
described as of helical shape by Lanford.

A third contribution was made in a patent by Scheel (1974). Scheel’s fold
pattern is shown in Figure 2.3. Three different types of folds are identified in the
patent: a set of major folds approximately tangent to the hub, a set of intermediate
folds bisecting the major folds, and a set of minor folds parallel to the major folds.
Scheel’s fold pattern is very similar to Lanford’s; its major differences are that
the hub in the folded configuration is at one end of the packaged membrane, and
that the minor folds limit the height of the folded package. It will be shown in
Section 6.2.3 that Scheel’s major and intermediate folds can be obtained as a
degenerate case of a general fold pattern based on Lanford’s fold pattern.

A similar method of folding a membrane was used for the folding of a mesh
antenna (Wade & McKean, 1981), where the mesh and a number of ribs are
wrapped around a central hub.

The most recent advance on the idea of wrapping a membrane around a hub
was made by Temple and Oswald (1989). They realised that the fold lines on the
deployed membrane could not be straight. Instead of relying on folding devices to
fold their membrane, and thus to form the fold lines, they derived an approximate
equation for the fold lines and, having made a template, pre-formed the folds in
a membrane before folding it. A number of simple paper models which could be
easily folded and unfolded were made in this way.

An alternative method of folding a membrane was put forward by Miura (1980),
(Miura et al., 1980). Miura’s fold pattern is a variation on the fold pattern often
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() (b)

Figure 2.2. Lanford’s folding apparatus: (a) Before folding. (b) After
folding (by rotation of the central hub).

minor folds

Figure 2.3. Scheel’s fold pattern. Valley folds are shown by dashed lines.
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used to fold a map, where all the folds in one direction are formed initially, and
this package is then folded in the perpendicular direction. The fold pattern formed
in this way is shown in Figure 2.4(a). The fold lines intersect at 28 inner vertices:
at each vertex there are two pairs of collinear folds. Figure 2.4(b) shows Miura’s
variation on this pattern. The standard pattern has been changed so that the
fold lines meeting at an inner vertex are no longer perpendicular to each other.
What is apparently a small change to the fold pattern drastically changes the way
the membrane folds. Instead of the sheet being sequentially folded, first in one
direction and then in the perpendicular direction, the folding is now coupled so
that one motion will open or close the membrane. Miura’s pattern also has the
advantage that none of the folds has to form around several layers of previously
formed folds, which tends to stress the membrane. This advantage is shared by

the wrapping fold pattern.

2.4. Previous Work on Deployable Antennae

Deployable antennae are probably the most important element in deployable struc-
tures research. The maximum diameter of launch vehicles limits solid reflectors
to no more than approximately 4 m in diameter, but antennae larger than this are
required for earth observation, astronomy and communications.

Deployable antennae can broadly be split into two categories, those with a
furlable reflector surface, and those with a solid reflector surface. Furlable an-
tennae are antennae where the surface itself can be folded; when deployed, their
shape is maintained by some external structure or force. This category can be
further subdivided into mesh antennae, and inflatable antennae.

The main functional difference between the unfurlable and solid-surface anten-
nae is the accuracy of the reflecting surface they can form. Typically, a reflector
surface has to have an r.m.s. accuracy of A/100-A/25, depending on the appli-
cation, where A is the wavelength of the signal. For frequencies of 20-30 GHz,
this implies a surface accuracy of 0.1-0.6 mm r.m.s., which can only be achieved
by a solid-surface antenna. Even at frequencies somewhat below this, achieving
sufficient accuracy with a furlable antenna requires a complex structure, and a
great deal of care and fine adjustment, and a solid surface antenna may prove to
be more suitable. At much lower frequencies however, e.g. 1 GHz, furlable anten-
nae are certainly appropriate. Part III of this dissertation is concerned with solid
surface antennae, but a brief overview of furlable antennae will be given first.

A furlable antenna does not always require a continuous reflective surface.
For frequencies up to 30 GHz a fine metallised mesh can be used instead. Most
deployable antenna concepts have been mesh antennae. The reasons for this are
two-fold. Firstly, the need for large antennae is greatest at low frequencies. High
frequencies can transmit the same power using a smaller reflector. Secondly, mesh
antennae are much easier to fold than solid surface antennae.

Most mesh antennae consist of two elements. The mesh itsell is usually sup-
ported on a cable network; this cable network is then supported and tensioned by
a deployable backbone. Examples of this type include Miura’s Tension Truss An- -
tenna-(Miura & Miyazak, 1989), You and Pellegrino’s Deployable Mesh Reflector
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Figure 2.4. (a) Standard fold pattern. (b) Fold pattern from Miura et al.,
(1980), fully extended. (c) Same pattern, fully folded. Valley folds are

shown by dashed lines.
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(You & Pellegrino, 1994), and the Harris Corporation’s Hoop Column Antenna
(Campbell et al., 1988) L

Mesh antennae generally fold well. For example, a 15 m diameter Hoop Column
has been built which packages into a cylinder 0.9 m in diameter, and 2.7 m long.
A typical reported accuracy for mesh antennae is the 1.55 mm r.m.s. error for this
antenna (Campbell et al., 1988). This was achieved after fine adjustments to the
surface.

The other type of furlable deployable antennae are inflatable antennae. In-
flatable antennae manufactured by L’Garde have successfully lown (Roederer &
Rahmat-Samii, 1989). ESA and Contraves have developed an inflatable antenna
that can be cured by sunlight, i.e. it hardens after inflation (Bernasconi, 1984).
A 10m version of the antenna is designed to achieve an r.m.s. accuracy of 2mm
(Rusch, 1992). However, there have been difficulties in maintaining an accurate
shape during curing.

Although most interest in deployable structures has been in furlable antennae,
there is also a need for large antennae which can operate at higher frequencies.
A range of projects that would require such precision reflectors has been given by
Hedgepeth (1989).

Solid surface deployable antenna can be split into two categories: antennae
with a supporting structure, and antennae without a supporting structure. There
are good reasons for building antennae where the surface is supported by a truss
structure. Missions have been proposed, such as for NASA’s Large Deployable
Reflector (LDR), which require extremely accurate reflectors, in this case for an
infrared telescope. LDR would require a 20m antenna with an r.m.s. surface
accuracy of 2 um. This is well beyond the sort of accuracy that would be pos-
sible without a supporting structure (compare the accuracies given below), and
would probably require an active structure. A number of concepts have been
put forward for such an antenna, e.g. the Sequentially Deployed Precision Reflec-
tor (Hedgepeth, 1989), or the Precision Segmented Reflector (Bush et al., 1991).
However, all of these either require some extremely complex deployment mech-
anism, or some erectable components. In order to have a simple, autonomous,
deployment mechanism, structures without a supporting truss have to be consid-
ered. These structures fill the gap between what mesh antennae can reasonably
be expected to achieve, and the sort of accuracies required for some large and
expensive science missions.

Two concepts for thin panel, solid surface antennae, without a supporting
structure, have previously been proposed. These will be examined in more depth,
as it is this type of antenna which is developed in Part III. A comparison of the
packing efficiencies of the various concepts considered below is given in Table 9.1,
comparing them with the concept developed in this dissertation.

The first, and simplest, concept is the TRW Sunflower (Archer & Palmer,
1984), shown in Figure 2.5. It has a particularly simple way of folding, but does
not achieve a great reduction in size. It is reported to be capable of achieving an
r.m.s. surface accuracy of 0.13mm for a 10 m antenna.

An extension of the Sunflower is shown in Figure 2.6 (Hedgepeth, 1989). How-
ever, it is not clear from the literature how this concept works. It appears to lose
the elegant simplicity of the original Sunflower, but achieves a much improved

10
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Figure 2.5. TRW Sunflower: (a) Fully deployed, plan view. (b) Fully
folded.

11
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(b)

(a)

Figure 2.6. TRW Extended Sunflower: (a) Fully deployed, plan view. (b)
Fully folded.

packing efficiency

A recent concept is ESA/Dornier’s DAISY antenna. This concept has been
used for two different antenna designs. The first design, for infrared astronomy, is
the FIRST antenna, shown folded in Figure 2.7. It unfolds in a similar way to the
MEA reflector considered next. Note that each panel has its own supporting truss
structure. It has been designed to achieve an extremely high surface accuracy of
8 pm for an 8 m antenna (Kwan, 1991).

The other design based on the DAISY concept is the ESA /Dornier MEA re-
flector (Specht, 1990). This antenna is considered in some detail, as it is the most
recent thin panel, solid surface antenna developed. The antenna is split into a
central hub, surrounded by 24 folding panels. In order to fold, each panel rotates
inward, and also twists, about its connection with the central hub. A computer
simulation of the MEA reflector deploying is shown in Figure 2.8.

The deployment mechanism is shown in more detail in Figure 2.9. Each of
the folding panels is attached to the central hub by two revolute joints, one of
which allows rotation about a radial axis (the turning hinge), and the other about
a tangential axis (the folding hinge). These two hinges are connected by a fold-
ing/turning bracket. Deployment is driven by a central disk which rotates, and is
connected by 24 driving struts to the folding/turning brackets, causing simulta-
neous rotation about the folding hinge of all 24 panels. Neighbouring panels are
connected by coupling struts at the outer rim of the antenna, and this couples

12
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Figure 2.7. FIRST Antenna, fully folded.

the folding and twisting motions. Full deployment is achieved by a single motor
rotating the driving disk through a range of 54°.

The MEA reflector is designed for communications at 20-30 GHz. It has a
4.7m diameter, and is designed to achieve a 0.2mm r.m.s. surface accuracy. A
full-size model of the antenna has been manufactured and tested.

13
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Figure 2.8. MEA Antenna, computer simulation of deployment.

14
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direction of rotation
to fold antenna

- axis of turning hinge

axis of folding hinge
driving disk
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(rest of mechanism
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(connected by
spherical joints)
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Figure 2.9. MEA Antenna, schematic of deployment mechanism: (a) Plan
view, with hub removed for clarity. (b) Side view.
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Foldable Cylinders
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3. GEOMETRIC CONSIDERATIONS

The work on foldable cylinders described here was inspired by a cardboard model
of a triangulated cylindrical shell made by C.R. Calladine during an investiga-
tion of the mechanics of biological structures. This model consisted of identical
triangular panels on a helical strip, and had a small-displacement internal inex-
tensional mechanism. It was decided to explore the possibility of transforming
this small-displacement mechanism into a large-displacement motion by which a
triangulated cylindrical shell could be folded down to a compact stack of plates.
A number of arrangements have been found that allow this; only small strains,
whose magnitude can be made as small as required by choosing suitable design
parameters, are imposed during folding. A general way of approaching the prob-
lem has been discovered which considers all possible triangulated cylinders of this
generic type. In all the cylinders considered it has been assumed that the plates
have negligible thickness.

This chapter describes the general configuration of a triangulated cylinder
based on one or more helical strips, and identifies those particular configurations
which are suitable for folding. Estimates of strain levels in the plates during folding
are found, based on the simplifying assumptions that the folding process is uniform
and that only one side of each triangle can change its length. In Chapter 4 these
assumptions are removed and the folding of some particular cylinders is simulated.

The chapter is organised as follows. Section 3.1 introduces foldable tubes by
describing some examples which have a particularly simple geometry, and showing
how simple models can be made. Section 3.2 introduces a general configuration
in terms of three sets of helices lying on a cylindrical surface. The intersection
of these helices define the corners of the triangles forming the faceted cylinder.
General expressions for the side lengths of the triangles are derived in terms of
the parameters defining these helices. With these tools, Section 3.3 examines the
folding properties of a range of cylinders. Section 3.4 draws some conclusions from
the chapter, and Section 3.5 explores an interesting and paradoxical configuration
of foldable cylinder.

3.1. Some Simple Examples

Figure 3.1 shows photographs of the folding of a particular triangulated cylinder
when a flat plate on the top is gradually pushed down. In Figure 3.1(a) the model
is nearly fully extended; only a few triangular plates have been packaged. Then,
as a small axial force is applied to the top plate, more and more triangles become
part of the prismatic stack at the top of the cylinder and, in Figure 3.1(c), only
a few triangles are still extended. The packaged configuration of this particular
cylinder is a heptagonal prism. All foldable cylinders made from isosceles triangles,

17
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Figure 3.1. Folding sequence of a triangulated cylinder with m = 1,
n=28, /l, =1, 1/, =1.802 (parameters defined in Section 3.2). This
model is made of Al-alloy plates connected by flexible plastic hinges; its
fully-extended height is approximately 250 mm.

like this one, fold down to prisms. They are a special case for which the general
parameter n, defined in Section 3.2, becomes equal to one plus the number of sides
in the packaged configuration. Hence, the triangulated cylinder of Figure 3.1 has
n =38.

Figure 3.2 shows line drawings of triangulated cylinders with n = 6, 7 and 8.
As for all cylinders considered in this chapter, they are strain free both in their
fully extended and fully folded configurations. In each cylinder all triangles are
identical, and their sides are denoted by a, b and ¢. These particular cylinders are
made from isosceles triangles and hence their geometry is quite casy to analyse.
For example, for n = 7 all corners of the triangles in the packaged configuration
coincide with the corners of a hexagon, as shown in Figure 3.2(b.ii). Thus, the
lengths of sides a and b, [, = [,, arc rclated to the length of side c, I, by the

relationship
T 7T s
= 2sin [ = — [, =2sin | = =v3l :
L. 2s1n(2 n-—l)a sm(3)/a V31, (3.1)

A simple model of this cylinder can be made from a single sheet of thin card-
board, prepared as shown in Figure 3.3. Three sets of parallel lines are scored
on this sheet: the a- and b-lines are equidistant and intersect at an angle of 7/3;
the c-lines (scored on the reverse of the sheet) pass through these intersections.
The sheet is then folded along these lines, the a- and b-lines forming hill folds,
and the c-lines forming valley folds. Finally, the opposite edges of the sheet are

18
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b
a
(a.i) (c.i)
(a.ii) (b.ii) (e.ii)

Figure 3.2. Triangulated cylinders with m =1 and (a) n =6, (b) n =7,
and (c) n = 8. (i) Fully extended, side view. (ii) Fully folded, plan view.
All cylinders have /1, = 1.

glued together (in Figure 3.3 sides A-A, B-B etc.) to form the cylinder shown in
Figure 3.2(b.i). A number of cardboard models have been made in this way, not
only for n = 7, but also for n = 6 and n = 8. The axial force required to fold
these models is quite small, and the strains induced are sufficiently small that the
models can survive substantially undamaged a small number of folding/unfolding
cycles. However, it quickly becomes clear that the strains imposed by folding be-
come lower as the the value of n is increased. This observation has been confirmed
by detailed computations in Chapter 4.

Having used these specific examples for illustration, the next section goes on
to formulate a general framework for considering all cylinders of this generic type.

3.2. A Geometric Framework

A general description of triangulated cylinders made from identical triangular
plates arranged on helical strips, like those of Figures 3.1 and 3.2, can be based
on the observation that the sides of the triangles form discretised versions of three
sets of helices. The nodes of the triangulated cylinders lie on the intersection of
these helices, as shown in Figure 3.4. The sets of helices are described by the sides
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4

a-line b- line c -line

/

ya |
////////

Hill folds (score on this side)

............... Valley Folds (score on reverse)

A-A,B-Betc. Sides to be joined.
Figure 3.3. How to make a foldable cylinder withm =1,n =7, I/l, = 1.

of the triangles which form the discretised helices, i.e. they are called the a-, b-,
and c-helices.

All helices in one set are identical, apart from a rotation about the axis of the
helix. A full set can be defined as a single helix with multiple starts, and hence
can be described by the following three parameters (Coxeter, 1980):

1. The number of helices in the set, i.e. the number of starts of the helix (for
example, in Figure 3.1 the a-helix has one start, the b-helix seven starts,
and the c-helix eight starts).

2. The radius, which has the same value for all helices of Figure 3.4 since they
all lie on the same circular cylindrical surface.

3. The angle that the helix makes with a plane perpendicular to the axis of the
helix. This angle can be greater than 7 /2 for a left-handed helix.

T’he positions of the nodes, and hence the configuration of a triangulated
cylinder, are fully defined by any two of the three helices described above, as the
third has to pass through the intersections of the other two. The a- and b-helix
will be used to describe a triangulated cylinder, thereforce it is nccessary to give
the parameters defining these helices. They are:

r {he radius;
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(a) (b) (c)

Figure 3.4. Description of a triangulated cylinder in terms of three sets of
helices shown in side and plan views: (a) Single-start a-helix, m = 1. (b)
Seven-start b-helix, n = 7. (c) Eight-start c-helix, m + n = 8. The first
start of all helices is at (r,0,0) in the coordinate system shown in (a).

21




FOLDABLE CYLINDERS GEOMETRIC CONSIDERATIONS

Figure 3.5. Coordinate cylinder and parameters defining a- and b-helices.

a, B the angles that the a- and b-helices, respectively, make with a plane perpen-
dicular to their axis;

m, n the number of starts of the a- and b-helices, respectively.

The parameters r, a, B are shown in Figure 3.5. The a-helix has the equation
z = rftan(a) (3.2)
Similarly, the first start of the b-helix is defined by

z = r@tan(f) (3.3)

and the second start by
27

z=r (0 - ;) tan(B) (3.4)

which gives z = 0 when § = 27 /n. Note that in equations 3.2-3.4, 0 < § < 00: a
complete turn of a helix corresponds to an increase in the value of § by 2x.

A node numbering system is defined where nodes are numbered along the
a-helices: node (z, 7) is the j-th node on the i-th start of the a-helix.

The next task is to obtain the coordinates of enough neighbours of node (1, 1)
to be able to calculate the three side lengths of the triangles. The cylindrical
coordinate system to be used, O, r, 8, z, is defined in Figure 3.4(b): node (7, j) has
coordinates (r, 6; ;, 2 ;). 0;; is defined such that 0 < 6; ; < 27 and hence suitable
multiples of 27 will be added to it when it is substituted into equations 3.2-3.4.
Node (1, 1) has coordinates (r, 0, 0).

For simplicity, the case m = 1 is considered first. Figure 3.6(a) shows that the
coordinates required to calculate the three side-lengths are those of nodes (1, 2),
(1, n+1), and (1, n + 2). The #-coordinates of these nodes are calculated: the
r-coordinate is constant, and the z-coordinates can be found from equation 3.2.
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{a)
(b)

Figure 3.6. Neighbours of node (1,1) for a triangulated cylinder with (a)
m =1 and (b) m = 2. The c-helices are not shown.

At node (1, 2) the a-helix and the second start of the b-helix intersect and so,
from equations 3.2 and 3.4

rfz2tan(a) =r (01,2 - 2n_7r) tan(B)
which gives |
¢ o= 27 (3.5)
1,2 — n(l . q) :
here
v _ tan(a) 3.6
77 tan(B) 0

At node (1, n + 1) the second turn of the a-helix and the first start of the b-helix
intersect and so, from equations 3.2-3.3

(01,41 + 27) tan(a) = rb; n41 tan(B)

(Note that 27 has been added to #; ,4; on the Lh.s. as the intersection is on the
second turn of the a-helix.) This gives

2qT .
g (3.7)

91,n+1 =

From Figurc 3.6(a), 0; ny2 = 612+ 0,4y and therefore

_ 2(1 + gn)w |
01,042 = n(l—q) (3.8)
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For cases where m > 1 the nodes connected to node (1,1) are those shown in
Figure 3.6(b), i.e. nodes (1, 2), (2, 1) and (2, 2). This is true for any m > 1. The
expression for 6, ; remains that of equation 3.5. The expression for 6, 541 does
not change either, but it is now 6,; which is required, and so from Figure 3.6(b)

_ 01,n+1 . 2qnm
021 = m - m(l—g) (3.9

Similarly to before, 8;2 = 6,3 + 02,1, giving

_2(m4nq)r |
22 = 0 —q) (3.10)

All relevant #-coordinates are now defined. The final step is to calculate the
side lengths [/;, I}, and [, in terms of the parameters defining the helices. In general,
the distance [ between node (1, 1) and a node with coordinates (r, 8, z) is

= ron(3))

For node (1, 2), l = ,, 8 = 6, 3, and from equation 3.2, z = rf; 2 tan(c). Hence

I, = \J (2r sin (n(%q)))z + (%5 tan(c;))z (3.11)

The equations for /, and [, are the same if m = 1 or m > 1, but are arrived at by
a different route. To calculate 4, if m = 1, node (1, n+ 1) with 6 = 6, 41 is used,
or if m > 1, node (2, 1) with § = 0, is used. The z-coordinate in both cases is

n n
2= —np = ;ral,z tan(a)

and /;, again for both cases, is

= J (21' sin (E(I‘I—T_T)))z + (m({‘;;:q) tan(a))2 (3.12)

Similarly, to calculate I, if m = 1, node (1, n + 2) with 6 = 0, »4, is used, or if
m > 1, node (2, 2) with 6 = 6, , is used. For both cases

Z=(1+£)21,2=
m

o= (o (b)) (2 )

Given the parameters which define the helices of a triangulated cylinder, it
is possible to work out the sizes of the triangular panels from equations 3.11-
3.13. Equally, it is possible to work backwards and, given a set of side lengths
la, I, and I, and the topological parameters m, n, work out the parameters of a
corresponding set of helices.

m-+n

’I‘01,2 tan(a)

and
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3.3. Folding Properties

The results of Section 3.2 can be used to select particular layouts of triangulated
cylinders which are suitable for folding, i.e. where both the extended and folded
configurations are strain free. They can also be used to investigate the folding
process, with the assumption that the folding process is uniform. The triangular
plates are allowed to deform, but each must deform by the same amount so they
remain identical to one another. This assumption may appear rather restrictive,
particularly because Figure 3.1 shows clearly that the deformation pattern in
any partially packaged configuration is not uniform: it consists of a fully-folded
region at the top of the cylinder, a fully-extended region at the bottom, and an
intermediate transition region. This transition region would then be expected to
accommodate any strain induced. This localisation cannot be captured if it is
assumed that all triangles remain identical. However many useful insights into
the folding process can be obtained. This restriction has been removed in the
more detailed calculations contained in Chapter 4.

The simplest way of approaching the problem is to investigate the geometric
configurations of cylinders with l,/l, = constant. This is equivalent to assuming
that all deformation can be modelled in terms of changes of /. only. With these
hypotheses, the folding properties of any particular type of triangulated cylinder,
defined by !;/1,, m, and n can be effectively investigated on a plot of the variation
of I./1, with £, where
as shown in Figure 3.5. Note that [, is being used as an overall scaling factor.
Obviously 0 < ¢ < =: configurations with { = 0 have zero height and will be
referred to as fully folded. All plots presented in this section have been obtained
by solving numerically the non-linear system of four equations, 3.11, 3.12, 3.13
and 3.14 for the four unknowns r/l,, a, B, and l./l,. The values of l;/l,, m, n, and
¢ are fixed for each solution. The function fsolve, in the Optimisation Toolbox
of the programming language MATLAB (MathWorks, 1992), has been used. A
closed-form solution has not been searched for.

There is an upper limit on the value of /,/l, for practical foldable tubes. This
comes about because the inner edges (the c-sides) of the triangles cannot cross the
z-axis without penetrating one other. This condition is most severe when ¢ = 0.
Geometry in this folded shape then shows that the limit is

b sin (5205)
la - sin (fm_-ﬂk)

2(m+n)

(3.15)

An equality sign would correspond to the c-sides lying along diameters of the
coordinate cylinder.

Figure 3.7(a) shows a plot of I./l, vs. £ for triangulated cylinders with m =1,
n = 7 and for three different values of /,/l,. Consider initially the case l;/l, = 0.5.
The figure shows that [, decreases monotonically as ¢ increases. Indeed, this is
the type of behaviour that would be expected if all triangles were in a plane,
rather than being wrapped in a tube. Within obvious limits, any value of /. /[,
is associated with a unique configuration of the cylinder. The case ly/l, = 1
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(isosceles triangles) is more interest}ng, since now l./l, initially increases with ¢
and then, having reached a maximum, starts decreasing. This is the because the
curvature of the cylindrical surface, on which all corner nodes lie, is becoming
significant. In this case any triangulated cylinder with I./l, > /3 admits two
different, totally unstrained configurations. In particular, I./l, = /3 gives one
configuration where { = 0 and one where ¢ = 0.867. This is the same cylinder
which has been analysed, by much simpler means, in Section 3.1. The third curve
in Figure 3.7(a), for the case l/l, = 1.5, shows similar behaviour, but now with
a more marked maximum. This curve shows that triangulated cylinders with
Iy/l, = 1.5 and l./l, = 1.800 are strain free both when £ = 0 and when ¢ = 1.587,
but going from one configuration to the other requires large deformations.

Similar considerations apply to other triangulated cylinders. For example,
Figure 3.7(b) shows similar curves for the case m = 2, n = 7. Note that the three
curves in this figure refer to lower values of /1, than in the case m = 1 because
the upper limit on I/l,, equation 3.15, is lower.

A more general way of plotting data for the case m = 1, n = 7 is a contour
plot of I./l, for the full range of ¢ and l;/l,, Figure 3.8(a). A broken line marks
those configurations of the cylinder which also admit a strain-free folded config-
uration with £ = 0, and hence can be folded flat. The value I,/I, = 0.788 is the
lowest possible for fully foldable cylinders. Note that the contour I./l, = 1.75, for
example, indicates that cylinders with l;/l, = 1.039 require fairly small strains
to go from £ = 0 to £ = 0.940. The contour {./l, = 1.64 (not shown) is even
flatter, thus allowing ¢ to vary in the range 0-0.4 with less than 0.1% variation
in I/l,. Finally, note that the upper limit on ly/l, is 1.497, from equation 3.15.
Figure 3.8(b) plots the corresponding values of r/l,: folding, i.e. decreasing £,
always implies a reduction of 7.

3.4. Conclusions

The general geometric formulation of Section 3.2, together with the sample plots
of the type presented in Section 3.3 are very powerful tools for the design of
foldable cylinders. With this approach it is possible to go well beyond the fairly
intuitive foldable cylinders presented in Section 3.1, all of which had m =1 and
l,/l, = 1. Having the freedom to alter these two parameters can be very useful
in the design of foldable cylinders that have to meet some specified requirements.
With the hypothesis that I, and [/, remain constant during folding, while I, varies,
preliminary estimates of strains during folding are easy to obtain.

3.5. A Cylinder with an Infinitesimal Mechanism?

An interesting feature of the plots in Figure 3.7 is that they identify some special
triangulated cylinders whose [./l, is an analytical maximum. For example, the
special configuration of a cylinder withm = 1, n = 7 and {; /I, = 1.5 occurs for { =
0.839 and hence I./l, = 2.162, see Figure 3.7(a). Any cylinder made to be strain-
free in such a configuration can change its £ by an infinitesimal amount without
any first-order changes of length in the triangular panels. Indeed, Calladine’s
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Figure 3.7. Plots of I./l, vs. ¢ for triangulated cylinders with (a) m =1
and (b) m = 2. n =7 in both cases.
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Figure 3.8. Coutour plots of (a) l./l, and (b) r/l, for triangulated cylin-
ders with m =1 and n = 7.
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model, referred to in the introduction to the chapter, had this property and the
analysis in this chapter has produced a whole group of cylinders with the same
property as a by-product.

It is well known, see Calladine (1978) for example, that special, singular con-
figurations of an assembly of pin-jointed bars are obtained when the length of one
bar, or a group of bars, is a maximum. It might be expected that the configu-
rations corresponding to the maxima of Figure 3.7 should have such a property.
However, careful calculations using the truss model described in Chapter 4 show
that they do not. There is no reduction in the rank of the equilibrium matrix for
these particular configurations.

The reason why the special configurations are not singular configurations is
because only uniform configurations were considered in the analysis leading to
the plots in Figure 3.7. The maxima of I./I, are, indeed, the largest when this
constraint is enforced. However, if this constraint is removed, non-uniform con-
figurations with larger I./l, can be obtained.

A paradox, however, remains. Cylinders in these special configurations obvi-
ously have a mechanism corresponding to £ varying by a small amount, but do
not show the normal characteristics of an infinitesimal mechanism. The paradox
can be solved by looking closely at the finite mechanisms within the cylinder.
All foldable cylinders have two finite mechanisms; they are not important in the
folding process, and normally remain localised to the end of the cylinder. For a
cylinder at the special configuration, however, these mechanisms involve move-
ment of all the nodes within the cylinder. A particular combination of the two
mechanisms produces a uniform change within the cylinder which corresponds to
a change in . Thus, what appears to be an infinitesimal mechanism is a finite
mechanism which, for a small part of its path only, produces a uniform change in
the cylinder’s configuration.
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4. COMPUTATIONAL MODELLING OF THE
FoLDING PROCESS

Chapter 3 introduced foldable cylinders, and gave some preliminary estimates of
the strains imposed in the cylinder during folding. These estimates were based on
the simplifying assumption that folding was uniform throughout the cylinder. In
this chapter a computational approach is outlined which looks in more detail at the
folding process of some particular cylinders. Attention is restricted to cylinders
that, in terms of the geometric parameters introduced in Chapter 3, have m =1
and l;/l, = 1, and hence can be packaged into prismatic stacks of plates. Three
cylinders of this type are considered, with n = 6, 7, and 8. The way they fold
when pressed down by a flat plate is analysed. Of prime interest is the level of
straining induced by this process and the force required to fold the cylinder. Also
of interest is the shape of the transition region immediately ahead of the fully
packaged region, and the decay pattern of the strain field. Such information is
needed for the design, manufacture and testing of foldable cylinders. Indeed, only
after obtaining results from this investigation was it possible to manufacture the
cylinders described in Chapter 5.

In Section 4.1 a simple computational approach is set out which can handle
the inherent non-linearities of the cylinder. The results from this approach for the
three different cylinders are presented in Section 4.2, and these results and the
assumptions of the method are discussed in Section 4.3.

4.1. Computational Model

A simple analytical model of a triangulated cylinder is a truss structure having
linear-elastic bars of equal cross-section along the edges of the triangles. The bars
are connected by frictionless pin-joints at the nodes of the cylinder. There are
three types of bars, a, b, ¢, lying on the edges labelled thus in Figure 3.4. The
bottom 7 nodes of the structure are fully fixed. The structure is compressed by a
frictionless, rigid plate which is connected to a rigid foundation at a single point.
To simulate the folding process, this point is gradually drawn towards the bottom
end of the structure. For simplicity, the thickness of the triangular plates making
up the cylinder is neglected. 7he coruptetinss moctd bl Ln fgre oL

The model is greatly simplified. However, it will be shown later that it can
capture key aspects of the folding process that have been observed experimentally.
It also proves useful to make comparisons between triangulated cylinders with
different parameters.

The algorithm to simulate the folding process that is presented here is based
on a Force Method approach. This requires that the overall equilibrium, com-
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(b)

Figure 4.1. Triangulated cylinder with m = 1, n = 7, /I, = 1, and
I./l, = V/3, folded by moving down a rigid plate: (a) Fully extended
configuration. (b) Partially folded configuration. The bottom n nodes of
the cylinder are fully restrained. The co-ordinate system O, z, y, z has
the z-axis aligned with the axis of the cylinder; the bottom node lies in
the z — y plane.
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Figure 4.2. (a) Forces acting on the loading plate. (b) The corresponding
forces on the top k nodes of the cylinder.

patibility and flexibility matrices are available for any given configuration of the
cylinder. These matrices are obtained by assembling the basic matrices of two
types of elements, the pin-jointed bars and the rigid loading plate. There is no
difficulty in setting up the matrices for a pin-jointed bar (Livesley, 1975). The
loading plate, however, is not a standard element, and so a brief explanation is
given on how to set up the three matrices required, based on the hypothesis that
all forces acting on the loading plate are orthogonal to it.

Consider the loading plate shown in Figure 4.2(a), whose current configuration
is defined by the position of point P and by the unit normal vector u. The plate
is acted upon by k interaction forces between the plate and the k joints of the
cylinder in contact with it. Equal and opposite forces act upon the top k joints of
the cylinder, as shown in Figure 4.2(b). The plate is also acted upon by a force
of magnitude R and a couple of magnitude @, applied to it by the foundation
through the connecting hinge at P. All of these forces, as well as the vector
representing (), are orthogonal to the plate, i.e. parallel to u. In addition to point
P, the k points on the plate which are in contact with nodes of the cylinder are
defined as P, ...Py; an interaction force of magnitude R; passes through point P;.
Initially, only compressive values of R;, i.e. opposite to those shown in Figure 4.2,
are physically meaningful. Later in the folding process, when plates have stacked
on top of one another, some tensile R;’s may be possible. No restrictions on the
signs of R; will be imposed in this study in the spirit of simplicity. The small
effect this is likely to have on the results is discussed later. '

In general, there are six independent equations of equilibrium for a rigid body.
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However, the plate is under the action of a system of parallel forces and so two
equations of force equilibrium are identically satisfied. Hence, only the equilibrium
of forces in the u-direction, and the equilibrium of moments about any point has
to be considered. Equilibrium of forces gives the simple matrix equation

R,
(1 11) R =0 (4.1)
Rk

Moment equilibrium is taken about a set of axes parallel to z, y, and z (defined in
Figure 4.2(b)) and passing through P. This particular choice is made because of its
kinematic implications, which will be seen later. The three moment components
of the interaction force at P; are ((P; — P) x u)R;, hence the three equations of
moment equilibrium for the plate can be written in the form

Ry
) 0
((Pl—P)xu o (Pr—=P)xu u) Iék = g (4.2)

Q

The right hand sides of equations 4.1 and 4.2 have been set directly equal to
zero because there are no external forces acting on the plate. Note that the reac-
tions R and @ have been put among the internal forces as values to be calculated.

By assembling together equations 4.1 and 4.2 a system of four equations in
k + 2 generalised stresses is obtained; the 4 by k + 2 coefficient matrix is the
equilibrium matrix A, for the plate:

. R
1 1 10 . 0
0 : 0

P,-P)xu --- (Pr—P)xu 0 u R | =10 (4.3)
0 R 0

Q

The transpose of A, relates the kinematic variables corresponding to the static
variables in equation 4.3 (Livesley, 1975). The k + 2 generalised strains, corre-
sponding to the vector on the left hand side of equation 4.3, are the extensions e;
of the connectors between the plate and the top k joints of the cylinder, together
with the displacement of point P in the u-direction, ép,, and the plate rotation ¢
about the u-axis. The four generalised displacements, corresponding to the vector
on the right hand side of equation 4.3 are ép,, o, B, v. The variable ép, appears
both as an internal and external variable, and so it should be no surprise that the
corresponding kinematic equation is a simple identity. The variables «, 3, v are
the small rotations of the plate about the z-, y-, and z-axis, respectively. The
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system of kinematic equations is

1 ((P,—P)xu)T .

: : e, :

1 (Pe—-P)xu)® |17 [ =] o (4.4)
1 000 . 8p,

0 u’ )

The third matrix required by the Force Method is straightforward: because
the plate and its foundation are rigid, all entries in the k + 2 by k + 2 flexibility
matrix Fp must be zero. '

The above formulation, with four external variables, is not the most compact
possible. Two equilibrium equations, force equilibrium perpendicular to the plate,
and moments in the plane of the plate, are obviously identically satisfied. There-
fore only two external variables are needed. Also the internal variables R and @
could be removed and calculated separately. Thus the size of all three matrices
for the plate could be reduced by two rows and two columns, but this would in-
volve more complex computations for updating the plate position, and separately
calculating R.

The matrices derived above are assembled together with the matrices for the
pin-jointed bars to form the overall matrices for the cylinder. Let N be the
total number of nodes in the cylinder and B the total number of bars. Because
the bottom n nodes are fully fixed to a rigid foundation, the corresponding 3n
equilibrium equations need not be considered. At the top of the cylinder the &
nodes in contact with the rigid plate do not need any special treatment, apart from
noting that each of these joints is subject to an interaction force of magnitude R;,
as shown in Figure 4.2(b), as well as to the axial forces in the bars connected to
it. Hence, there are 3(N — n) + 4 equilibrium equations in B + k + 2 generalised
stresses o, and the overall equilibrium matrix A has size 3(N—n)+4 by B+k+2.
Similarly, the generalised strain vector € has size B + k + 2, while the generalised
displacement vector d has size 3(N — n) + 4. The flexibility matrix F has size
B+k+2by B+ k+2.

With these matrices, the folding of a triangulated cylinder can be analysed.
Initially the cylinder is set up in its fully-extended configuration, as in Section 3.2,
but using the Cartesian coordinate system defined in Figure 4.1(a). The loading
plate is set initially parallel to the z — y plane and the connection point P has
co-ordinates P = (0,0, zp), where zp is also the z-coordinate of the top node of
the cylinder. Initially, this is the only node which is in contact with the loading
plate, hence k = 1.

To compute the folding sequence, the value of zp is decreased in small steps;
o, the overall shortening of the cylinder, shown in Figure 4.1(b), is equal to the
difference between the initial zp and its current value. In each step the starting
configuration is based on the shape of the cylinder computed at the end of the
previous step, only zp is changed. This imposes strains in the k connectors be-
tween the plate and the cylinder and, because these connectors are rigid, these
strains must be relieved through suitable displacements. If the imposed strains
arc compatible they can be relicved simply by a displacement from the current
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configuration. This is always the case at the beginning of the folding process
and, indeed, at this point the configuration of the loading plate is not uniquely
defined. In this formulation a unique configuration is selected by minimising the
generalised displacement. In general, however, the imposed strains have an incom-
patible component which sets up a state of self-stress in the system. Note that,
with this approach, the folding of the cylinder is achieved simply by moving one of
its boundaries, i.e. without applying any external forces. Because the force on the
loading plate is treated as an internal force, this analysis simulates a displacement
controlled test.

The cylinder is a highly non-linear system. The equilibrium matrix A is very
sensitive to small geometry changes in the bars close to the plate. A further source
of non-linearity is the variability in k, the number of nodes in contact with the
plate. Because of this non-linearity, the algorithm performs a series of Newton-
Raphson iterations to find the new shape of the cylinder, and the corresponding
value of R, for each imposed value of zp.

In each iteration the equilibrium matrix is calculated as outlined above, and
the strain vector g is assembled from the strains in the bars and the extensions
of the k£ connectors between the plate and the top nodes of the cylinder. The
strains in the bars are given by the difference between the current length and the
initial, unstrained length. The extensions of the k plate-cylinder connectors are
equal to the distance from the plate to the nodes in the u-direction. The negative
of the strain vector, —ey, is imposed on the cylinder in an attempt to return it to
its strain-free configuration. In general, however, —e, will have an incompatible
component, and so will set up a state of self stress within the structure. The
singular value decomposition of the equilibrium matrix is used to calculate the
stresses o and the displacements d induced by —e&q, following the method in
section 4 of Pellegrino (1993).

The final part of the iteration is to update the configuration of the cylinder.
This means updating not only the nodal coordinates, but also the orientation of
the plate, u. A check must be made to see if the (k+1)st node has passed through
(i.e. come into contact with) the plate. If so, k is increased by one. This completes
one Newton-Raphson iteration.

The iterations continue until both the displacement d imposed during the final
iteration is sufficiently small, and no new nodes were added to the plate during the
final iteration. This configuration is then correct, within the allowed tolerance,
for the particular value of zp imposed. The strain in the cylinder and the force R
are then found by performing another iteration, as explained above, but without
imposing the displacement vector d calculated (which should anyway be very
small).

4.2. Results

Results are first presented for the triangulated cylinder shown in Figure 4.1(a).
Ithasm = 1,n =1, /I, = 1, and I,/l, = +/3. According to Chapter 3, an
unrestrained cylinder with these parameters has two strain-free configurations,
one fully folded, the other fully extended. Figure 4.1(a) shows the fully extended
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-

configuration.
The cylinder is modelled as a pin-jointed truss, as discussed in_Section 4.1:

the total numbers of joints and bars are N = 36 and B = 86; bars joining two
fully restrained nodes have been removed. All bars have equal axial stiffness AF.
In the extended configuration node 1 (at the bottom of the cylinder) has z = 0,
while node 36 (at the top of the cylinder) has z = 4.175l,. The bottom n = 7
nodes are fully restrained: the z-coordinate of the last restrained node is 0.7161,.
Clearly the folding of the cylinder cannot go past this point. The rigid plate at
the top of the cylinder is set initially in contact with node 36, hence zp = 4.175/,
and k£ = 1. At this stage § = 0. Starting from this configuration the plate is
lowered by decreasing zp in steps of I,/100.

Results from a simulation involving approximately 300 steps are shown in
Figures 4.3-4.8. Figure 4.3 shows dimensionless plots of the force R, supplied by
the foundation to the top plate, and the strain energy U in the cylinder. The
cylinder begins to fold under zero force, hence remaining strain free, until £ = 4.
Then R starts increasing until, when k = 8, it reaches a peak, and then reduces.
Subsequently, R oscillates periodically around zero. The strain energy increases
considerably when k£ goes from 3 to 9, but then remains approximately constant.
The strain energy plots actually show a slow increase, due to end effects in the
top part of the cylinder, since the fully-folded region does not yet contain enough
bars to allow the natural decay of strain to take place.

Figure 4.4 shows some more details of the steady state regime; the periodic
variation of R is directly related to changes in k. R is negative, i.e. tensile,
just before a new node comes into contact with the plate. At this point there
is a sudden stiffness increase caused by the activation of an extra constraint,
corresponding to an increment in the value of k. As 6 is further increased, R
ihcreases until a limit point; it then decreases until the beginning of a new cycle.
Note that in this simulation R is negative at the beginning and end of a cycle,
which is incorrect, as the plate is only imposing a unilateral constraint. In practice
a small spring-back of the folded region is likely to occur.

The folding cylinder is a continuously softening system, with

d’R

W<0

wherever this quantity is defined, but the system is periodically stiffened as new
nodes come into contact with the top plate. Although unusual, this behaviour has
some similarities with the axial crushing of cellular materials (Gibson & Ashby,
1986).

Strain variation during steady state folding is considered next. For a clear
picture of strain distribution it is best to consider the axial strain €. in the 28
c-bars, plotted in Figure 4.5. Similar plots could be obtained for the a- or b-
bars. As the plate is pushed down, the most significant part of the strain field,
say €, > 1073, simply translales from right to left, i.e. from the top towards the
bottom of the cylinder. However, a region involving less significant compressive
strains gradually builds up in the wake of the shape-transition region and the
strain energy associated with it is responsible for the slow strain energy increase
during steady state folding discussed earlier.
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Figure 4.3. Folding of cylinders with m = 1, n = 7, /I, = 1, and
I./1, = /3. Plots of R and U in the cylinder.
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Figure 4.4. Folding of cylinders with m = 1, n = 7, /I, — 1, and
I./1, = /3. Detailed data for steady state phase.
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Figure 4.5. Folding of cylinders with m = 1, n = 7, [}/l, = 1, and
I./l, = /3. ., the strains in the c-bars, during steady state folding. Bars
take the number of their bottom node, and nodes are numbered going up
on the a-helix. Discrete values have been joined, for legibility.
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Figure 4.6. Folding of cylinders with m = 1, n = 7, /I, = 1, and
I./1, = v/3. Detail of changes in €. during one folding cycle.
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Figure 4.7. Folding of cylinders with m = 1, 1 =7, I,/l, = 1, and
I./1, = V3. Three components of u.

Ziotes

Figure 4.8. Fully extended view of cylinder with m =1, n =7, /1, = 1,
and [,/1, = V/3, followed by three views from the folding sequence.
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The most significant feature of Figure 4.5 is the peak strain attained: here
Ecmax = 8.7 X 1073, For the a- and b-bars, the (compressive) peak strains are
5.0 x 1073 and 6.9 x 1072 respectively.

Figure 4.6 shows strain plots, again for the c-bars only, (i) just after a node
has come into contact with the plate, (ii) when R reaches its peak, and (iii) just
before a new node comes into contact with the plate. Here, k¥ = 14 throughout.
Note that the peak strain remains essentially unchanged during this cycle.

Figure 4.7 shows the orientation of the loading plate by means of plots of the
z-, y-, and z-components of u. The plate normal essentially describes a small
conical motion about the z-axis. Figure 4.8 shows four views from the simulation
process, including the initial configuration.

Next, the behaviour of the three cylinders shown in Figure 3.2 are compared,
to gain further insight into the folding process. One of them is the triangulated
cylinder examined above, with m = 1, n = 7, §,/l, = 1, and I./l, = /3. The
two other cylinders also have m = 1 and [;/l, = 1: the first has n = 6 and
./l = 1.618; the second has n = 8 and [./l, = 1.802. Both of these cylinders
have been analysed by the technique described above.

For the cylinder where n = 6 a pin-jointed truss with N = 31 and B = 74 has
been considered. In the fully extended configuration zp = 4.912[,. To initiate the
correct folding pattern, the simulation has to start with three nodes in contact
with the plate. If a smaller number is chosen, the top plates start folding outwards
and quickly the process comes to halt. Figure 4.9 shows plots of the force R
and of the strain energy U during folding. As for n = 7, there is a large force
peak and a corresponding increase in strain energy soon after the beginning of
the process; afterwards, R oscillates around zero and U remains approximately
constant. Figure 4.10 shows the strain field in the c-bars; as in Figure 4.5 the most
significant part of the strain field simply translates from right to left. Qualitatively
these results are the same as for the earlier cylinder, but the key difference between
the cases n = 6 and n = 7 is in the magnitudes of forces and strains: Rp,, and
€cmax are respectively 14 and 4 times higher for n = 6 than for n = 7.

For the cylinder where n = 8 a pin-jointed truss with N = 49 and B = 122
has been considered. When fully extended it has zp = 2.818[,. Starting from
this position the plate has been lowered gradually: the folding behaviour of this
cylinder, see Figures 4.11 and 4.12, is essentially identical fo the earlier cases.
Note that the trend towards lower forces and strains continues: Rp.x and €.max
are respectively 150 and 17 times higher for n = 7 than for n = 8. The complete
set of values is available for comparison in Table 4.1.

Table 4.1. €max and R,y in cylinders with m =1 and /1, = 1.

n Iaalmax |Eblmax eclmax Rmax/AE |
6(20x107%2|27%x1072|3.6 x1072 | 2.6 x 102
7] 50x1073{6.9x1073[87x10"3|1.8x10"°
8 [ 3.5x10™* | 4.1 x 10 5.2 x 10~ 1.2 x 10~
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Figure 4.9. Folding of cylinders with m = 1, n = 6, /I, = 1, and
[./l, = 1.618. Plots of R and U in the cylinder.
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Figure 4.10. Folding of cylinders with m = 1, n — 6, l,/l, = 1, and
[./l, = 1.618. &, during steady state folding.
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8
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Figure 4.11. Folding of cylinders with m = 1, n = 8, I}/l, = 1, and
I./1, = 1.802. Plots of R and U in the cylinder.
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Figure 4.12. Folding of cylinders with m = 1, n = 8, /I, = 1, and
I./1, = 1.802. ¢, during steady state folding. .
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4.3. Discussion

Before discussing the results obtained in this chapter it is necessary to comment
on the validity of the assumptions behind the approach used, namely that a tri-
angulated cylinder can be modelled as a simple pin-jointed truss and that plate
thickness can be neglected. Although more complex models could be considered,
it would be pointless to do this in a purely conceptual study. More detailed
models would need to be firmly based on the mechanical features of a particular
triangulated cylinder. For example, in the model shown in Figure 3.1 the plates
are connected by thin plastic links which are very flexible in comparison with the
plates, and the deformation of such a system is concentrated in these connections.
If, on the other hand, more traditional mechanical hinges are used, the effects
of joint tolerance would have to be considered. One important inherent assump-
tion of the pin-jointed truss model is that the hinges have zero stiffness. Hinge
stiffness is considered in Section 5.3.1 as an explanation of observed experimen-
tal behaviour. It does not cause significant increases in the peak strains seen in
Table 4.1, but does change the force required to fold the cylinder. Regarding the
second assumption, plate thickness is unlikely to play a significant role because
its effects are not cumulative, unlike, for instance, the wrapping of a membrane
around a central hub which is considered in Chapter 6.

The simulations presented in Section 4.2 have revealed that the folding of a
triangulated cylinder consists of two phases. The first, unsteady, phase involves a
gradual build-up of strain energy under a large applied force, which might provide
an effective self-locking feature. During this phase a shape transition region from
the fully extended to the fully folded part of the cylinder is formed and, once
the energy barrier that prevents folding has been overcome, a second, steady
state phase of the process begins. During this phase the shape transition region
moves towards the bottom of the cylinder under almost zero force. These results
qualitatively explain many of the experimental results obtained in Chapter 5.

In the three cylinders which have been analysed in this chapter, both the peak
force, and the peak strain, decrease rapidly as n increases, as noted in Section 3.4,
but the role played by this particular parameter should not be over-valued. The
aim of this study was a characterisation of the general folding behaviour of tri-
angulated cylinders, for which three cylinders which fold down to simple prisms
were selected. Although a detailed investigation of the relative effects of varying
design parameters has not been attempted, it can be noted that the key factor
determining peak force and peak strain is the size of the geometric incompatibility
shown in, for example, Figure 3.7. The particular combination of the parameters
m, n, l/l,, and l./l, which leads to it is not very significant. Thus, for example,
a similar range of emay and R,y to that obtained here, forn =6, 7,8 and m =1
and lp/l, =1, could be obtained with constant n, by varying l/I,.

Finally, it is interesting to compare the present simulations of the folding
process with the approach pursned in Chapter 3. A comparison has heen made
in Table 4.2 for the case m = 1, n = 7, /I, = 1, and I./l, = v/3. The table
also gives modificd peak strains, estimated in the spirit of Chapter 3 but allowing
all bar lengths to vary simultaneously with constant ratios I./l, and l,/l,. Note
that these simplified estimates are higher than the predictions obtained with the
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Table 4.2. Predictions in for cylinders with m =1, n = 7, I/I, = 1, and

lc/la = \/§

r ” |5a Imax I |56|max l |€c|max |
Chapter 3 0 0 2.5 x 1072
Chapter 3 (modified) || 1.2 x 1072 [ 1.2 x 102 | 1.3 x 10~*
Chapter 4 50 %1073 [ 6.9x 1073 | 8.7 x 1073

present method, and are hence safe for the preliminary design of foldable cylinders.
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5. EXPERIMENTS

This chapter describes a number of foldable cylinders that have been designed,
manufactured and tested. These cylinders were either aimed at possible applica-
tions, or were designed simply to validate the theoretical work in chapters 3 and 4.
A summary of the geometry of the cylinders that were manufactured is given in
Table 5.1.

Two possible applications have been considered for foldable cylinders. One
is a collapsible fuel tank for hydrazine, a highly corrosive fuel used for satellite
thrusters. The tank would collapse as hydrazine was burnt. This would prevent
sloshing of the remaining fuel in the tank, and would make attitude control of the
spacecraft easier.

The other application considered is to use a foldable cylinder as a shroud to
protect thin walled booms, cabling or pipework from the space environment. This
would have been particularly apt for the Hubble Space Telescope, where thermal
shock on a thin walled deployable boom has been causing the spacecraft to vibrate.

Section 5.1 describes the manufacture of the models. The results of compres-
sion tests on the models are described in Section 5.2. These test show some char-
acteristics not predicted by the simulations in Chapter 4. The computer model is
therefore modified slightly, in Section 5.3, to explore several possible explanations
for the observed behaviour. Section 5.4 concludes this chapter, and also the work

on foldable cylinders. X
Table 5.1. Experimental Foldable Cylinders

| [ m [n]l(mm) [ §(mm) [ l(mm) |

Cu-Be and steel 1 (7] 124.8 104.7 205.3
Nylon-66 17| 80.0 67.1 131.6
Irathane and Al-alloy. Cylinderno. 1| 1 | 8 | 50.0 50.0 90.1
Irathane and Al-alloy. Cylinderno. 2 || 1 | 7| 50.0 50.0 86.6

5.1. Manufacture

5.1.1. Cu-Be and Steel Cylinder

A cylinder was manufactured using a copper beryllium alloy (Cu-Be) as a hinge
material. Cu-Be was used because it has a large elastic strain range when it
has been correctly heat-treated. This means that a thin strip of Cu-Be can be
elastically bent around a small radius. This feature is desirable so that the cylinder
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remains elastic during folding, and also has a compact folded shape. A Cu-Be
cylinder such as this would be suitable for an application such as the collapsible
hydrazine fuel tank.

The cylinder was made from a flat sheet, as described in Section 3.1, and
shown schematically in Figure 3.3. It was made from a 0.1 mm thick sheet of
Cu-Be, which was stiffened everywhere apart from the hinge-lines by sandwiching
the Cu-Be between triangles of 0.5 mm thick steel plate. These plates were then
spot-welded in place. The join between the two edges of the sheet to finally form
the cylinder was also made in this way, with the two edges of the Cu-Be sheet
running through the centre of the triangular plates. (Note that steel could not
be used for a hydrazine tank, as the steel and the hydrazine would react. Other
stiffening materials would be used instead).

A section of the Cu-Be sheet, stiffened by steel plates, but before forming into
a cylinder, is shown in Figure 5.1(a). The steel triangles were placed 6 mm apart
on the Cu-Be sheet to allow an elastic hinge to form. Also, the corners of the
steel plates were rounded, to increase the width of the unrestrained Cu-Be sheet
near the intersection of hinge lines. The hinges around a node are shown in the
extended and folded configuration of the cylinder in Figure 5.1(b,c). One problem
with this method of construction is the detail of folds around a node. Inevitably
there is an incompatibility where concave and convex folds meet. At this point
a crease forms in the Cu-Be sheet, causing plastic deformation. Thus the aim of
purely elastic folding was not entirely fulfilled.

The base of the cylinder was fully restrained by casting it into an epoxy base.
The cylinder is shown after manufacture, but before folding, in Figure 5.2.

5.1.2. Nylon-66 Cylinder

A cylinder was made from a 1 mm thick sheet of Nylon-66. Fold lines were formed
by removing material from the outside of folds, leaving a 0.35 mm layer of Nylon
to bend and form the hinge. The material was removed using a router, a portable
milling machine.

The fold pattern was formed on the sheet, as in Figure 3.3, except that again
the edge of the sheet occurred in the middle of a set of triangles rather than along a
hinge. The cylinder was formed by joining these two edges. The edges were joined
by removing material from both sides, overlapping these sections, and gluing them
using Evo-Stick. The base of the cylinder was fully restrained by casting it into
an epoxy base. The final forming of the cylinder was a difficult process, and after
manufacture it was noted that a number of the hinges had cracked.

The completed cylinder is shown in Figure 5.3.

5.1.3. Irathane and Aluminium-Alloy Cylinder

Two of the cylinders described in Section 3.1 as simple examples have been made
from Irathane and Al-alloy. These cylinders were not made with any particular
application in mind, but rather to demonstrate the feasibility of such cylinders.
A sheet of 0.9 mm thick aluminium alloy plate was coated with a 0.7 mm thick -
layer of Irathane on both sides. Irathane is a flexible polyurethane. The Al-alloy
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Steel stiffening plates - Part of Cu-Be sheet

77

(a)

Steel stiffening plate

A .‘.. ‘-":'.-.-.,-.. 7 Cu-Be hinges

(b)

Figure 5.1. (a) Cu-Be sheet stiffened by steel plate during the manufacture
of the cylinder. (b, c) Detail of the folds around a node, (b) when the
cylinder is extended, and (c) when the cylinder is folded.
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Figure 5.2. The Cu-Be and steel cylinder.

provides stiffness for the triangles, and the Irathane was used to form the hinges.

Hinges were formed by removing material from the outside of the hinge-line,
using a milling machine. Both one layer of the Irathane, and the Al-alloy were
removed, leaving the other layer of Irathane to form the hinge.

Two sheets of Al-alloy coated with Irathane were milled to the correct fold
pattern. The left and right hand edges of the sheet were again formed halfway
between two fold-lines. The final cylinder was formed by joining together sets of
half-plates on opposite edges of the sheet. The bases of both cylinders were fully

restrained before testing
The two cylinders manufactured by this method are shown in Figure 5.4.

5.2. Test Results

All of the cylinders described in the previous section were tested to find the force
required during the folding process. They were compressed using a Howden testing
machine in a displacement controlled mode. The base of all of the cylinders were
fully fixed, as described in the Section 5.1. The top of the cylinders were loaded
using a plate which was attached to the testing machine through a ball joint, thus

allowing the plate to change its orientation.
The load was measured by a load cell at the top of the testing machine. The

results presented show the compressive load on the cylinder, and have therefore
been corrected to include the weight of the loading plate.
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Figure 5.5. Compressive force during the first compression test on the
Cu-Be and steel cylinder.

5.2.1. Cu-Be and Steel Cylinder

Four compression tests were performed on the Cu-Be and steel model described
in Section 5.1.1. A plot of the force required to fold the cylinder during the first
compression test is shown in Figure 5.5. Figure 5.6 shows four photographs taken
during this test. As can be seen from Figure 5.6(a) the cylinder had to be initially
slightly folded to fit in the testing machine.

The plot of force during folding can be more readily understood by knowing
the change in the relative height coordinates of two successive nodes between the
open and closed configuration. The difference in height between two nodes on
the a-helix is 9mm, and on the b-helix 64 mm. It can be seen that the basic
periodicity of the plot has a wavelength corresponding to successive nodes on the
b-helix folding.

One important effect shown in the photographs is the formation of a second
transition zone close to the base of the cylinder. This occurred when the cylinder
had been compressed by 125 mm. For the rest of the test it was this transition zone
which moved up through the cylinder. A possible reason for the formation of this
second transition zone is the weight of the cylinder, which led to a compressive
force approximately 55N greater in the second transition zone than in the top
transition zone.

During the test, whenever the force was rising no new nodes would fold. A
number of nodes would then fold in quick succession as the force dropped.

When fully folded, the cylinder had a height of 242 mm, compared with an
original height of 872 mm. 150 mm of the compressed height was accounted for by .
the part of the cylinder fixed open at the base.

When the test was reversed, and the top plate moved up, the cylinder showed
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(a) (b)

(©) (d)

Figure 5.6. Photographs taken during the folding of the Cu-Be and steel
cylinder: (a) Initial state, (b) § = 100mm, (c) § = 400mm, (d) 6 =
630 mm, fully folded. 51
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Figure 5.7. Compressive force during the second, third and fourth com-
pression test on the Cu-Be and steel cylinder.

some spring-back, and regained a height of 540 mm. Closer inspection of the Cu-Be
around the nodes showed that the creases seen in Figure 5.1 had moved by 1-2mm
closer together. Stretching the cylinder caused these creases to move back towards
their original position, and the cylinder to regain an extended configuration. The
creases did not, however, return completely to their original position, and the
cylinder only regained a height of 763 mm, compared with an original height of
872mm.

Three further tests were performed on the cylinder. After each test the cylinder
was pulled back towards its original configuration. The force required to fold the
cylinder in each case is plotted in Figure 5.7. In each test the cylinder folded
by forming a transition zone close to the base of the cylinder, which then moved
up through the cylinder as the test proceeded. The force plotted is that in the
transition zone, and so the original data has been modified to account for the
steadily decreasing weight of the portion of the cylinder above the transition zone.
Again during the test a number of nodes would fold each time the force decreased.

For each of the further three test performed the change in the relative height
coordinates of two successive nodes between the open and closed configuration is
7mm along the a-helix, and 45mm on the b-helix. Note that these values are
smaller than for the original test, as the plastic deformation around the nodes
reduced the height of the cylinder. Again the basic periodicity of the force has a
wavelength corresponding to successive nodes on the b-helix folding.
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Figure 5.8. Compressive force during a 5 mm/minute compression test on
the Nylon-66 cylinder.

5.2.2. Nylon-66 Cylinder

A number of compression tests were performed on the Nylon-66 cylinder described
in Section 5.1.2. These tests were performed at different compression rates, as
Nylon-66 has strain rate dependent stress-strain properties. However, the results
of only one test are presented. Each of the others qualitatively showed the same
results, but with slightly larger forces for the quicker tests.

The force plot for a compression performed at 5 mm/minute is shown in Fig-
ure 5.8. Photographs taken during this test are shown in Figure 5.9. The results
of this test are rather unexpected. The force plot shows none of the periodicity
seen in all of the other cylinders tested.

The cylinder initially forms a transition zone at its top, as can be seen in
Figure 5.9(b). However, as the test proceeds, the cylinder starts to fold in a
number of different places, as can be seen in Figure 5.9(c). Generally these other
areas of folding initiated at folds were the Nylon had cracked.

When the test was reversed the cylinder unfolded in the reverse order of folding,
but under a reduced load.

5.2.3. Irathane and Aluminium-Alloy Cylinders

The results of the compression test on the Irathane and Al-alloy cylinder no. 1 are
shown in Figure 5.10. As for the Cu-Be and steel cylinder, these results can be
more readily understood by knowing the change in the relative height coordinates
of two successive nodes between the open and closed configuration. The difference
between two nodes on the a-helix is 2.7mm, and on the b-helix 22mm. It can
be seen that the basic periodicity of the plot has a wavelength corresponding to
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© (d

Figure 5.9. Photographs of folding the Nylon-66 cylinder: (a) Initial state,
(b) § = 100 mm, (c) § =200 mm, (d) § = 300 mm, fully folded.
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Figure 5.10. Compressive force during folding for the Irathane and Al-
alloy cylinder no. 1. -

successive nodes on the b-helix folding.

The cylinder formed one transition zone at the top of the cylinder, which
moved down the cylinder as the the test proceeded. As for the Cu-Be and steel
cylinder, no nodes would fold while the force was rising, but a number would fold
in quick succession when the force was reducing.

The results of the compression test on the Irathane and Al-alloy cylinder no. 2
are shown in Figure 5.11. For this case the change in the relative height coordja
nates of two successive nod‘?s between the open and closed configuration is 2 mm
along the a-helix, and 22Thm on the b-helix. In contrast with the previous case,
however, there is no consistent periodicity in the results.

The cylinder again formed one transition zone at the top of the cylinder, which
moved down the cylinder as the the test proceeded. Again, no nodes would fold
while the force was rising, but a number would fold in quick succession when the

force was reducing.

5.2.4. Discussion

Apart from the Nylon-66 cylinder, all the cylinders tested had a number of features
in common. They all initially formed a transition zone, as predicted in Chapter 4.
This transition zone then moved through the cylinder. Generally the zone moved
from the top down, as predicted, but for the Cu-Be and steel cylinder it moved
from the bottom up, due to the self-weight of the cylinder.

The shapes of the force plots measured during the folding of the cylinders also
have a number of similarities. They all show a periodic variation of the force. In
two of the cylinders, the Cu-Be and steel cylinder, and the Irathane and Al-alloy
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Figure 5.11. Compressive force during folding for the Irathane and Al-
alloy cylinder no. 2.

cylinder no. 1, the wavelength of this variation corresponds to the folding of one
node along the b-helix, i.e. of n nodes on the a-helix. In the Irathane and Al-alloy
cylinder no. 2 the period of variation showed no obvious pattern.

Comparing the results for all cylinders except the Nylon-66 cylinder with those
produced from the computer simulation in Chapter 4, a number of similarities can
be seen. In both the simulation and the tests, the mode of deformation of the
cylinder are similar. A transition zone forms, which then moves through the cylin-
der. Comparing the plots of force from the computations with the experimental
results, both cases show the force varying around a constant value as the transition
zone moves through the cylinder.

There are, however, a number of discrepancies between the computational
results and the test results. One is that the force in the experimental results
does not vary about zero, but about an average compressive force. This implies
that some strain energy is being stored in the cylinder during the folding process.
Another discrepancy is that the variation of the force does not correspond to
successive nodes on the a-helix folding. Indeed, for two of the cylinders tested it
corresponded to successive nodes on the b-helix folding. A third discrepancy is
the absence in the experimental results of any sign of the initial force peak as the
transition zone forms.

There are two obvious explanations for the discrepancies between the compu-
tational and the experimental results. The first is the effect of hinge elasticity.
The original computer model assumed momentless hinges, and so the folded state
had zero strain energy. In reality, some energy must he pnt into the hinges to
cause them to fold. Thus, as the transition zone moves down the cylinder, energy
must be put into the cylinder to fold more hinges, and so the average compressive
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force must be greater than zero.

The second explanation for the discrepancies is the effect of errors' during
manufacture. The most obvious source of these is the final joining process to
transform a sheet into a cylinder. This is difficult in practice. A misfit here would
lead to the force plot showing a periodicity, not as successive nodes on the a-helix
fold, but as complete turns of the a-helix fold. The more random periodicity shown
by one of the Irathane and Al-alloy cylinders could be due to more distributed
errors, as this was an early attempt at making a cylinder, and it had already been
damaged by a number of demonstrations prior to the test.

The reasons for the exceptional nature of the Nylon-66 cylinder are not clear.
One possible explanation is that the rate-dependent nature of the material pre-
vents strains being quickly released, halting the expected reduction in the force
folding the cylinder. However, even tests performed very slowly (1 mm/minute)
showed qualitatively the same behaviour, but with a lower force level.

A more likely explanation is the effect of errors during manufacture. The final
joining process to transform the sheet of Nylon into a cylinder was particularly
difficult. The final seam was not always aligned well, and errors became worse
towards the base of the cylinder. This caused a number of joints near the base
of the cylinder to crack. In contrast with the constant error assumed above, the
effect of an increasing error in the cylinder would be to make it progressively more
difficult to fold. Also the cracked hinges would tend to initiate the folding that
occurs away from the transition zone, as seen in Figure 5.9.

5.3. Modifications to Computer Model

In order to validate the reasons suggested in the previous section for the discrep-
ancies between experimental results, and those predicted by the computer model
in Chapter 4, a number of changes were made to the computer simulation. The
first change was to modify the model so that it no longer assumed momentless
hinges. The second change was to modify the model to simulate the effect of a
final misalignment during the manufacture of the cylinders.

5.3.1. Elastic Hinges

The aim of this section is to incorporate elastic hinges into the computational
model described in Chapter 4. These hinges will apply a couple to the triangular
plate on each side of the hinge; equilibrium is maintained by additional forces at
the nodes, applied perpendicular to the plate. The elastic couple is treated as an
internal stress. Externally the nodes are, as previously, only loaded by forces and
not moments. A more complex model which included external moments would be
pointless, as these would anyway be set to zero in the analysis.

The elastic hinge element is a non-standard element in the Force Method, and
so it% implementation is described in detail. Consider a typical elastic hinge,
connecting the two triangular plates shown in Figure 5.12(a). The hinge and
the plates are defined by the four nodes s, ¢, v and v, which have position vec-
tors ps, Pt, Pu and py. The equilibrium and compatibility relationships for the
plates themselves have been defined in the previous chapter, using bar elements.
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Presented here is the equilibrium relationship between the hinge element and ad-
ditional forces perpendicular to the plate which keep the element in equilibrium.
The compatibility and flexibility relationships are also defined.

An exploded view of the two plates, showing the forces and moments applied
to each plate, is shown in Figure 5.12(b). The hinge exerts a moment M (positive
in the direction shown) on each plate. Forces r,, r;, r, and r, are applied at
the node s, t, u and v. All the forces applied to one plate are perpendicular to
that plate. Forces r, and r; are each made up of two components, r,; and r;; are
perpendicular to plate stu, and r,; and r;; are perpendicular to plate stv. An
equilibrium relationship can be set up for each plate in turn.

. Consider plate stu. For simplicity, the vectors a = p; — ps, and b = p,, — p,

are introduced. The vector a x b (where X is the standard vector cross product)
is perpendicular to the plate (s, t and v will not be collinear if they define a plate),
and so the forces can be written

{ eall
Fn = (uaxbn axb

™
= | 2l b
(uaxbu ax

LA )
r,=|———J]axb
(Ila x b|

Consider moment equilibrium about s. The force r, exerts a moment b x r,,
the force r;; exerts a moment a X ry, and the hinge exerts a moment (M/||a||)a.
Therefore moment equilibrium gives the three-dimensional vector equation

bxru+axrt1+(” ") =0

Rewriting the forces as above then gives

||zl ) ( ||ra || ) ( M)
———|bxaxb+ axaxb+|—ja=0
(Ila x bl lla x b]| l|all

The vector triple products can then be expanded
bxaxb=(b-b)a—(b-a)b=|b|J?a—(a-b)b
axaxb=(a-b)a—(a-a)b=(a-b)a—|a|*b

where - is the standard vector dot product, and the equation becomes

(nruunbuz +rali(a-b)+ M (w)) a— (Ir.(a- b) + [lealla?)b = 0

If this equation is derived for a plate, then a # 0, b # 0, and a and b will not be
parallel. This vector equation can therefore be split into two scalar equations

Iruli(a - b) + lIrallllall* = 0 (5.1)
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Figure 5.12. Elastic hinge element: (a) Nodes and positions. (b) Exploded
view showing forces and moments.
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(5.2)

and i
Ieulbl% + f[rall(a- b) + M (Ila”:” II) _

A third equation, relating moments acting perpendicular to the plate, is identically

zero.
Equations 5.1 and 5.2 can be solved for ||r,||, giving

la x blal )
r.l=—-M
el (na||2||b||2—<a-b)2

This equation can be simplified using the identity
lall?[[b][ ~ (a - b)* = [la x b]|?

To give
[lal )
r.=-M|———"
i == (R

And hence an equilibrium relationship between M and r,

_ llall 9
r,=-M axb (5.3)
(Ila x bl oo
Also, substituting back into equation 5.1 gives an equilibrium relationship between
M and s
(a-b) )
rn=M|———-——]axb (5.4)
! (na X b|[?[Ja]

An equilibrium relationship between M and r,; can now be found by consid-
ering force equilibrium on the plate stu :

ra+ra+r,=0

giving

S T A |
==t (G ) 2 9

Very similar relationships can be set up for the triangular plate stv. The only
differences are that the moment applied by the hinge, M, acts in the opposite sense
on this plate, and a vector ¢ = p, — p, is used instead of b. The relationships

obtained are

_ B .

r,=M (||a el axc (5.6)

(a-c) ) :

ro=-M|——— _laxc (5.7

2 (na x o2l )

(a-c)— IIallz)
rp=M|~—"———|axc (5.8)
’ ( l|la x c|||all
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Equations 5.3-5.8 can be used to form the 12 x 1 equilibrium matrix for this
element, A relating the internal stress M to the external forces in zquilibrium

with it, r,, ry, r, and r,

(- ((ﬂl-b)—llﬂlllz)a><b+ ((a-c)—||a||2)axc\

[la x bi[2|[al| lla x c||?|a]
(o8 Y- (Y an .
lla x bj[2||al lla x cf|?||a| wel

la] Ty
S L b
Qwarax Ty

\ nghgax° )

The transpose of A} is the compatibility matrix of the hinge element, relating
the rotation of the hinge to the displacement of the four nodes, s, , u, and v. The
unstrained state of the hinge element is when it is flat, i.e. when s, ¢, u and v are
coplanar.

Finally the flexibility matrix is described, which relates the moment developed
in the hinge, M, to its rotation. Obviously this is a 1 x 1 matrix. The flexibility
of a continuous hinge is inversely proportional to its length, and so the flexibility

matrix, F}, is given by
f ) I
Fp=|—"—] —
* @m—pm AE

The factor f is a parameter which can be varied to simulate the effect of different
hinge flexibilities, amd AE '\ The *xid slfom A At bors i (e vmosted .

In the rest of the computer model, described in Chapter 4, the triangular
plates are simulated as bars lying along the edges of the plates, which are set to
have a flexibility proportional to their length. Therefore the ratio (flexibility of a
bar element) : (flexibility of corresponding hinge element) = I: (f/I) =1 : (f/1?),
where [ is length of the bar/hinge.

The hinge elements for the cylinder are incorporated with the elements de-
scribed in Chapter 4 to give enlarged equilibrium, compatibility and flexibility
matrices for the entire structure. The simulation of the folding process then pro-
ceeds as before, except that the strain vector &g, the opposite of which is imposed
on the structure to return it to a strain-free configuration, now incorporates the
rotations of the hinge elements away from their unstrained, flat, configuration.

Simulations were performed for cylinders which incorporated the new hinge
element, and have parameters m =1, n =7, l;/l, =1 and [./I, = V3. They are
made up of N = 36 nodes and B = 86 bars. In addition to this there are also now
H =76 hinge elements. The same cylinder, without hinge elements, was the first
to be analysed in Section 4.2.

Each simulation consists of approximately 300 compression steps of size 0.011,,
using the algorithm described in Section 4.1. Simulations were performed using
different values of the flexibility factor, f. The results for f = 1x 10%, f =1 x 10°
and f = 1 x 10* are presented in Figures 5.13 and 5.14. Note that decreasing f
corresponds to making the hinge stiffer.
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Figure 5.13. Compressive force R in the cylinder during the folding of
cylinders with m =1, n =7, §j/l, = 1, I./1, = V3, for different values of
hinge flexibility, f. -
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Figure 5.14. Distribution of ., when § = 1.91l, during the folding of
cylinders withm =1,n =7, /I, =1, /], = V3 and f =1 x 10%. Bars
take the number of their bottom node, and nodes are numbered going up
on the a-helix. Discrete values have been joined, for legibility.
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Figure 5.13 shows the compressive force R developed in the cylinder for the
three different stiffnesses of hinge. Each of the plots shows the force rising at the
end, this is the interaction of the transition zone with the base.

When f =1 x 10° the force plot appears very similar to the results presented
previously for a momentless hinge in Figure 4.3. The stiffness of the hinge has
very little effect.

When f = 1 x 10° some changes are evident. After a larger initial force peak,
corresponding to the transition zone forming in the bars, there is a gentle rise in
the average force as the transition zone continues to incorporate the bending of
more hinges. The initial transition zone includes bars which are at the edge of the
. cylinder, and hence are not hinges between plates. As the transition zone moves
down the cylinder, these edges become fully folded, while new bars are taken into
the transition zone which are also hinges, and therefore a steady state has not
been reached. The transition zone is fully formed further down the cylinder, when
all the bars incorporated in it are also hinges. After this time, there is a steady
state part of the plot as it moves down the cylinder. Note that there is an average
compressive force in the cylinder during the steady state phase, as energy must
now be put into the cylinder to fold the hinges.

When f =1 x 10* the force plot is significantly changed. The formation of the
transition zone is now more obviously a two stage process, and the forces involved
are much higher. The force required to form the initial transition zone is now
seven times higher than for the case with momentless hinges. More importantly,
the steady state part of this plot involves compressive forces larger than those
in the initial force peak. The steady state part of this curve is rather short, as
the cylinder that is being simulated is small, and the effect of the base quickly
becomes important. Results are presented later for a longer cylinder, which better
shows the steady state part of the plot.

Figure 5.14 shows the strain in the c-bars when the cylinder has been com-
pressed by 6§ = 1.91/, for f = 1 x 10*, which corresponds to a peak in the force
plot. The plots for f = 1 x 10° and f = 1 x 10° are similar, but with slightly
lower strains. The plot is presented for 6 = 1.91/, rather than § = 1.62,, as used
in sectiofi Section 4.2, so that the transition zone has had time to fully form. The
peak strain in the c-bars is only 3% higher when f = 1 x 10* than for the case
with momentless hinges.

Thus, although having elastic hinges significantly affects the force developed
during the folding of the cylinder, it makes very little difference to the deforma-
tions induced in the cylinder during folding. Comparing the case f =1 x 10* with
the case for momentless hinges, the peak force increases by seven times, combined
with significant changes in the profile of the force plot, while the deformation
(measured by the strain in the c-bars) increases by only 3%.

The results for the force developed in a longer cylinder are shown in Figure 5.15.
For this simulation a longer version of the cylinder presented above, with f =
1 x 10* was used, in order to better show steady state folding. A cylinder with
N =50, B =128 and H = 118 was simulated using 400 compression steps of size
0.01/,. The initial part of the plot is indistinguishable from the shorter case, but
the longer cylinder allows the steady state folding to continue further.
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Figure 5.15. Compressive force R in the cylinder during folding of cylin-
ders withm =1,n="7, /I, =1, ./, =3, and f =5 x 10°.

5.3.2. Manufacturing Errors

Manufacturing errors were simulated by making the bars which cross the final join-
line of the cylinder too long by a factor e, where e is a parameter to be varied.
Simulations were performed for cylinders, with parametersm =1,n =1, /I, =1
and I./l, = /3, and made up of N = 36 nodes and B = 86 bars. Again, this
cylinder, without manufacturing errors, was the first to be analysed in Section 4.2.
The cylinders were compressed in approximately 300 steps of size 0.01/, using the
algorithm described in Section 4.1. Simulations were performed using values of e
of 0.1%, 1% and 2.5%. The results are shown in Figures 5.16-5.19.

Figures 5.16-5.18 show the variation in R, the compressive force in the cylinder,
for three different values of manufacturing error. When e = 0.1% (Figure 5.16)
the force plot is very similar to the case when the error is zero, presented in
Figure 4.3. When e = 1% (Figure 5.17), however, the steady state part of the plot
becomes periodic with a wavelength corresponding to the folding of n = 7 nodes
of the cylinder. The manufacturing error prevents the folding from proceeding
smoothly.

Similar results are seen when e = 2.5% (Figure 5.18). Again the results are
periodic with a wavelength corresponding to the folding of n = 7 nodes. The
variation in force is greater than for e = 1% as larger errors make it more difficult
to fold parts of the cylinder.

A plot of strain in the c-bars for e = 1% is shown in Figure 5.19. The strains
are shown when the displacement § = 1.71[,, as this corresponds to the largest
peak force during a cycle. Note that, comparing the results in Figure 4.6 for.
a cylinder without manufacturing errors, the peak strain has not significantly
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Figure 5.16. Compressive force R in the cylinder during the folding of
cylinders with m = 1, n = 7, I,/l, = 1, I./l, = +/3, and manufacturing
error, ¢ = 0.1%.
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Figure 5.17. Compressive force R in the cylinder during the folding of
cylinders with m = 1, n = 7, /I, = 1, l./l, = /3, and manufacturing
error, e = 1%.
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Figure 5.18. Compressive force R in the cylinder during the folding of
cylinders with m = 1, n = 7, /I, = 1, I./l, = /3, and manufacturing
error, ¢ = 2.5%.
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Figure 5.19. Distribution of ¢, when § = 1.76, during the folding of
cylinders with m = 1, n = 7, /I, = 1, I./l, = v/3 and manufacturing
error, ¢ = 1.0%.
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changed. However, because of the\incompa.tibility introduced by making some
bars longer, higher levels of strain are introduced elsewhere in the cylinder. The
corresponding plot for e = 2.5% is not shown, as these distributed strains make
the plot difficult to read. A careful examination of the strains for the e = 2.5%
case shows the peak strain in the c-bars to be 12% higher than for the case with
ZEro error.

The large strains seen near the base in Figure 5.19 are partly due to the way the
simulation is performed. The base nodes are clamped before the manufacturing
errors are introduced. A more careful simulation would reduce the strains in the
bars close to the base, but this would little affect the strain elsewhere.

5.3.3. Discussion

This section has explored two possible explanations for why observed experimental
behaviour differs from that predicted in Chapter 4.

Adding non-momentless hinges to the simple model has the effect of raising
the average compressive force to fold the models above zero, an effect seen in
all of the cylinders tested. Indeed a hinge stiffness I2/(1 x 10*) times the axial
stiffness of the corresponding bar led to this compressive force being similar in
size to the force required to form the initial transition zone. This may therefore
also be a reason for there being no obvious initial force peak during the forming
of the transition zone in the experimental results, as this force is no greater than
the forces later in the folding process.

It may be considered that a hinge stiffness of I2/(1 x 10*) times the axial
stiffness of the rods is unrealistic. Indeed, a test on an Irathane and Al-alloy hinge
showed the Irathane hinge stiffness to be of the order of 12/(2 x 10°) times the
stiffness of the Al-alloy plate measured along the hinge. This comparison, however,
misses the point of the simulation. The deformation of the bars in the model is
not meant to directly simulate the deformation of the triangular plates. The
deformation of the bars represents whatever is the primary mode of deformation
of the cylinder during folding. The representation has been deliberately left vague,
as this mode of deformation varies for different types of cylinder. For the Irathane
and Al-alloy cylinder, this primary mode of deformation is shear deformation in
the hinges. Adding elastic hinge elements to the model is ‘meant as a way of
qualitatively exploring this as an explanation of experimental observation.

Introducing manufacturing errors into the simple model changes the behaviour
during steady state folding. The force developed, while still oscillating about zero,
no longer has a period whose wavelength corresponds to the folding of one node,
but corresponds to the folding of n nodes. Superimposed on this can be seen the
effect of individual nodes folding. This behaviour is very similar to that seen in
the experimental tests.

The maximum error introduced in the length of a bar was 2.5%. This cor-
responds to a misalignment during final fabrication of 3mm for the Cu-Be and
steel cylinder, and of 1 mm for the Irathane and Al-alloy cylinder. Errors of this
magnitude could certainly have been introduced.

Finally, it should be noted that, although the changes to the model described
here have radically changed some aspects of the compressive behaviour of the
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cylinder, the internal deformation of the cylinder during folding has not changed
greatly. The maximum internal deformation, as measured by the strain in the
c-bars of the model, has risen by no more than 12% in any simulation performed.
Thus the original model remains a valid tool for predicting and comparing many
aspects of the behaviour of foldable cylinders.

5.4. Conclusions

This chapter has shown the practical realisation of the more theoretical work
described in the previous two chapters. It has shown foldable cylinders to be a
viable concept, and has gone some way in addressing the practical issues involved.

The geometric modelling techniques described in Chapter 3 have been of use
during the experimental work. Neither the Cu-Be and steel, nor the Nylon-66
cylinder were of the simple type which fold down to polygons. Both were designed
using the helical geometric model to limit the amount of deformation that was
allowed during folding.

The computational modelling techniques of Chapter 4 have been shown to
predict many of the characteristics seen in the folding of foldable cylinders. Also,
the usefulness of having a simple computational model has also been shown, as it
can easily be modified to test the validity of different explanations for observed

experimental behaviour.
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Wrapping Fold Pattern
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6. INEXTENSIONAL WRAFPING OF FLAT
MEMBRANES

The folding of thin, flat sheets is a matter of daily routine. A letter is often folded
twice to fit in its envelope; maps are often folded into a narrow concertina pattern.

This chapter is concerned with the folding of a flat, thin membrane so that it
wraps around a central hub as shown in Figure 6.1. It can be seen that the folding
pattern consists of a symmetric set of hill and valley folds. This folding pattern
was proposed by Temple and Oswald (Cambridge Consultants Ltd., 1989) for the
design of a solar sail. For launch the sail would be wrapped around the circular
body of the spacecraft, forming a package about 4 m in diameter; once in orbit it
would deploy into a 276 m diameter disk which would use solar pressure to sail to
Mars. Wright (1991) gives a general introduction to solar sailing.

The aim of this chapter is to obtain a simple understanding of the fold pattern,
and to be able to calculate the fold pattern for real membranes. A review of
previous work on wrapping and other ways of folding a membrane was given
in Section 2.3. Section 6.1 introduces some theoretical work on the folding of
membranes that is useful in the analysis of the fold pattern. In Section 6.2 the
fold pattern is analysed. Initially the simplifying assumption that the membrane
has zero thickness is made, which leads to some key properties of the folding
pattern being found. The patterns for a zero-thickness membrane do not, however,
work well in practice, and so the same approach is extended to membranes with
non-zero thickness. The folding process is discussed in Section 6.3.

6.1. Theory on Inextensional Folding of Membranes

Miura (1989) formulated a simple set of rules for a set of fold lines meeting at a
single point in a flat inextensional sheet. He assumed that the Gaussian curvature
where the folds meet must remain zero. (See Calladine (1983, chapter 5) for an
introduction to the Gaussian curvature at a vertex.) Miura showed that, if two
fold lines meet then they must be collinear, and that it is impossible for three fold
lines to meet. He also showed that, when four fold lines meet, one of the folds
must be of opposite sign to the other three, i.e. one valley and three hill folds, or
one hill and three valley folds. This is the rule most of interest in this chapter.
All the intersections between folds in the fold patterns considered will be of this
type, except for a degenerate case considered in Section 6.2.2 which has five folds
meeting at a point.

‘Duncan and Duncan (1982) and Johnson and Wu (1980) have also considered
the folding of an inextensional sheet. They considered curved fold lines by means
of intrinsic geometry. Among other things, it can be seen from their work that
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(b)

Figure 6.1. The basic fold pattern for n = 24: (a) Almost fully folded.
(b) Almost fully deployed.

curved fold lines will only be possible if the membrane on both sides of the fold
bends. This can also be seen as a limit case of Miura’s rule for four folds meeting

at a point.

6.2. Calculating the Fold Pattern

An initial consideration for the wrapping fold pattern must be the shape of the
hub. In previous work this has always been assumed to be circular. However, con-
sidering the work on curved fold lines outlined in the previous section, it becomes
clear that this is impossible for a truly inextensional fold pattern. Folding one of
the curved folds adjacent to the hub would require the hub to bend to a specific
shape, while another fold would require a different shape, and this clearly cannot
happen. The solution to the problems of using a circular hub is to instead use a
polygonal hub.

The fold pattern will be considered initially for a regular n-sided hub, where
only four folds meet at every vertex; in Figure 6.1 n = 24. Trregular hubs will
be considered in Section 6.2.2, and a case where more than four folds meet at a
vertex in Section 6.2.3. Using the terminology of Scheel (1974) the folds which
originate from a hub vertex and extend to the edge of the sheet will be called
major folds. Apart from the degenerate case considered in Section 6.2.3 only one
major fold originates from each hub vertex, and so there are n major folds.

There are two restrictions on the shape of the polygonal hub. An obvious
restriction is that n must be even for fold patterns which have only onc major
fold per vertex, as each hill major fold will require a corresponding valley major
fold. The other restriction is that only convex polygons are allowed, as the fold
pattern will not work at any re-entrant corners. The reason for this will be shown

in Section 6.2.2.
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6.2.1. Membranes of Zero Thickness with a Regular Hub

Figure 6.2(a) shows the fold pattern for a membrane of zero thickness with a
hexagonal hub. This section shows how this pattern was obtained.

Initially the angles between fold lines intersecting at a hub vertex are consid-
ered. Consider vertex B shown in Figure 6.2(b) (although any vertex would do as
the pattern has n-fold rotational symmetry). Given the hub angle a, the angles
B, v and 6 must be calculated. Obviously, because the sum of the inner angles in
an n-sided, regular polygon is (n — 2)7

o= (1 —'-2-) 7 ' (6.1)

n

Also, as the angular defect at every point of the membrane, point B in particular,
is zero (Calladine, 1983, chapter5)

at+B+y+6§=2r (6.2)

Two further equations can be obtained by considering the fully wrapped config-
uration. The membrane around vertex B is shown when wrapped in Figure 6.2(c).
As the membrane has zero thickness, in plan view it coincides with the edge of
the hub. Therefore lines BC, DE, FG are vertical in the wrapped configuration,
which implies -

LABC =6 = g (6.3)
and also that .
T-B=3 (6.4)
Given equation 6.1, the solution of the system of equations 6.2-6.4 is
T T w s
===t = = — 6.5
f=—y=g5+.6=3 (6.5)

which completely defines the fold pattern in the region next to the hub. Note that
the major fold BD bisects the external angle of the polygon.

The remainder of the fold pattern can now be defined. In Figure 6.2(c) the
folds BC, DE, FG end up vertical, and hence have to be parallel. They are also
equidistant because in Figure 6.2(c) they pass through adjacent vertices of the
regular hub. With reference to Figure 6.2(a), this shows that type b folds are
parallel and equidistant. By symmetry, the same is true for type d folds. Finally,
it can be seen that B, D and F and also A, C, E and G, are collinear because type
c folds pass through the intersections of folds b and d in Figure 6.2(a).

The complete folding pattern can now be drawn. First an n-sided regular
polygon representing the hub is drawn: its sides are alternately hill and valley
folds. Then, n major fold lines are drawn, each forming an angle 8 = = /n with
a side of the polygon. Finally, the n sets of equally spaced, parallel folds b and d
are drawn, orthogonal to the sides of the hub.
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Figure 6.2. (a) Fold pattern for n = 6 and ¢ = 0. (b) Detail of (a). (c)
Wrapped configuration of membrane panels in (b). Valley folds are shown
by dashed lines.
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6.2.2. Membranes of Zero Thickness with an Irregular Hub

There is no requirement for the hub to be a regular polygon. The same reasoning
used in Section 6.2.1 can be applied using an irregular polygon as a hub, although
now different equations have to be solved at each vertex. Considering an inner
hub angle o; at vertex i, where : = 1...n, this gives
T o T oo T
- d (6.6)

ﬂi=§—3,’7¢=5+7,56='2‘

from which the folds next to the hub can be drawn, as before. The n major folds
remain straight, and there is no difficulty in then completing the fold pattern.
~ The reason for not allowing non-convex hubs can now be seen. For a re-entrant
vertex, a; > m, giving, from equation 6.6, 5; < 0, which is obviously impossible.
It is interesting to consider the case of an irregular polygon with equal sides
but angles equal only at alternate vertices, e.g. for n = 4 a rhomboidal, instead of
a square hub. In this case, any configuration has (n/2)-fold rotational symmetry.
When this configuration is folded it looks very similar to the wrapped configuration
for a regular hub, except that now the hub has moved up or down within the folded

shape.

6.2.3. A Regular, Degenerate Case

‘The idea of having alternate angles of different sizes can be taken to its limit. For
example, starting from the pattern of Figure 6.2(a) and, while keeping the side
lengths equal, change the inner angles: &y = a3 = a5 — 7 /3 while ay = a4 =
ag — 7. From equation 6.6 §1 = f3 = 5 — 7 /3 and B2 = B4 = fg — 0. Thus, in
the limit, the fold pattern shown in Figure 6.3 is obtained, with three major hill
folds and three major valley folds, as in the pattern from which it originated.

The fold pattern of Figure 6.3 has three interesting features. Firstly, in the
wrapped configuration the hub is at the bottom of the membrane. Secondly, the
vertices on the triangular hub are points of intersection of five folds, not just the
four seen in the standard case. This is the only case considered in this chapter
where this is true. Thirdly, this fold pattern has important similarities with the
fold pattern described by Scheel, and shown in Figure 2.3. The only differences
are that Scheel’s pattern is drawn with six hub vertices rather than three, that
the folds marked b and d in Figure 6.3 are omitted from Scheel’s pattern, and
that Scheel’s pattern is drawn with a circular hub, which has been shown to be
impossible for a truly inextensional folding pattern.

Although obtained as a special, degenerate case of the fold pattern of Fig-
ure 6.2(a), the pattern of Figure 6.3 and many others with the same key feature
of having five folds meeting at each hub vertex could be obtained directly from
an approach similar to that in Section 6.2.1. There is one key difference: because
at each vertex there are five angles but only four geometrical conditions on them,
there is now some freedom in the solution, and hence several different wrapped
configurations can be obtained. The pattern of Figure 6.3 satisfies the additional
condition that two angles external to the hub are equal to 7 /2, hence the wrapped
membrane has a flat lower edge, level with the hub. Many other choices are pos-
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Figure 6.3. Degenerate version of the fold pattern in Figure 6.2(a). Valley
folds are shown by dashed lines.
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sible; for example, the lower edge of the membrane could be made to lie on a
conical surface, entirely above the hub.

6.2.4. Membranes With Non-Zero Thickness

The fold patterns derived in the previous section can be modified to account for
a small membrane thickness ¢ > 0. For the sake of simplicity, only the basic fold
pattern will be considered, based on regular polygonal hubs, as in Figure 6.2(a).
Thus all of the symmetry considerations in Section 6.2.1 are still valid. The
approach could be readily extended to irregular hubs and to degenerate cases.

Obviously, the wrapped membrane will no longer coincide with the edge of
the hub, a consideration which greatly simplified the analysis in Section 6.2.1. To
make progress it is crucial that, having removed the unrealistic assumption that
t = 0, a simple description of the fold pattern is identified that avoids complica-
tions in the analysis. An obvious line of attack is to think of the membrane as a
series of thick, rigid panels hinged at their edges, but this leads to unnecessarily
complex problems of detail where fold lines join.

The approach pursued here is to assume that the wrapping of a membrane
with £ > 0 around an n-sided polygon is essentially equivalent to the wrapping of
a membrane with ¢ = 0 such that, after folding, its vertices lie on helical curves
whose radius increases at a constant rate which is based on t. With this approach
the (small) out-of plane bending of each membrane panel is neglected, as is any
detailed consideration of the localised bending near each vertex. Although of
negligible importance in an overall sense, the deformation and stress state in the
membrane near a vertex may need to be analysed separately.

Figure 6.4(a) shows, again for n = 6, a plan view of the first major fold after
wrapping. In this view it follows a discretised version of an Archimedean spiral.
If ¢ = 0 it would coincide, of course, with the edge of the hub. The profiles
of the other five major fold lines have identical shape in plan view, and so can
be obtained by rotation of the first fold line about the centre of the hub. Note
that membrane panels such as BCED in Figure 6.2(c) are no longer plane after
wrapping, because BC and DE are no longer vertical. BC and DE do, however,
still lie in vertical, radial planes.

Let the j-th vertex on the i-th major fold have a position vector P;;. For
convenience the cylindrical coordinate system (O, r, ¢, z), defined in Figure 6.4(c),
will be used. In the wrapped configuration, the vertices on the first major fold,
assumed to be a hill fold, are

Pll = (R, U, 0)

Py =(R+u,2n/n,z)
Py = (R + 2u,2r/n, z3)
where z3, 23, etc. are positive quantities to be determined, and u is the plan

distance between successive vertices in one radial plane (see Figure 6.4(c)). Ob-

viously

14
“= cos(m/n) (6.7)
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(©)

Figure 6.4. (a) Plan view of a major fold line in the wrapped configuration,
for t > 0. Vertex points P;; on major folds in (b) wrapped and (c) flat
configurations.
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For the second major fold, which is a valley fold
Pu = (R, 27('/1’1, 0)

P2 = (R+ u,4r/n,—z)
P13 = (R + 2u, 67r/n, —23)

Note that, for simplicity, the thickness ¢ of the hub has been neglected and
hence the z-coordinates of all vertices P;; vanish. Also, by symmetry, the z-
coordinates of equal numbered vertices on different folds are equal in absolute
value; this would not be true for irregular hubs.

The r, 6 coordinates of all vertices, as well as the z-coordinates of hub vertices,
are therefore known in the wrapped configuration, but the z-coordinates of non-
hub vertices are unknown. However, as in Section 6.2.1 there is a condition on the
angular defect at each vertex by which these unknown coordinates can be found.
The condition involves the four angles at any vertex. These angles can be found
by taking the dot-products of unit vectors between suitably chosen vertices in the
wrapped configuration. (Taking dot-products will be accomplished most easily by
converting the vectors into cartesian coordinates.) Using the notation shown in
Figure 6.4(c), the angles at a hub vertex are

(P1z—P1u) (Pu—Pn) )
= arccos . 6.8
g (uPu “Pull Pa— Pyl (68)
(P2 —P21) (P12 —P2zn) )
= arccos . 6.9
7 (”Pzz =Pyl ||P1z—Pall (6.9)
(P21 - Pll) (P12 - P21))
é§ = arccos . 6.10
(”le — Pyl [Pz —Pall (6.10)

while the angle a is still given by equation 6.1. Substituting these expressions
into equation 6.2, it is possible to solve for the unknown z,. 8 and 7 can then be
calculated from equations 6.8 and 6.9. The fold pattern can now be drawn as far
as vertex 2 for each major fold.

To calculate z3 and hence &, A and y, see Figure 6.4(c), it is possible to express
K, A, p in terms of vertex coordinates by equations analogous to 6.8-6.10 and then
substitute them into the angular defect condition for vertex P2,

(r—B—-6)+c+rA+p=2r (6.11)

The resulting equation can then be solved for the unknown z3, and the fold pattern
can be drawn as far as the third vertex. Similar equations can be generated for
all other vertices, to complete the fold pattern.

Section 6.4 gives two fold patterns, computed as described above and then
plotted by computer.

Folding patterns for irregular hubs can be computed by an approach similar to
that described above but, because the z-coordinates of corresponding vertices are
no longer equal in magnitude, a system of up to n equations in the 2-coordinates
of these vertices has to be set up and solved, instead of a single equation as above.
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6.3. Comments on the Folding Process

It should be noted that all the fold patterns described in this paper have been
derived by considering only the flat and wrapped configurations. Hence, bearing
in mind the approximations of the approach, everything will fit together in these
two configurations. On this basis alone there is no evidence that a continuous
inextensional transition from one state to the other is possible (indeed, compare
the foldable cylinders described in Part I where such a transition is not possible).
However, there is some evidence from physical models that such an inextensional
transition is possible. Paper models have survived years of demonstrations without
. obvious damage.

Recently, Kumar (1993) has shown that such a transition, with certain qualifi-
cations, is possible. He used a pin-jointed bar model of a zero thickness membrane,
similar to the computational models in Chapter 4. He has followed a mechanism
of this model which takes it from the flat to the fully wrapped configuration.

There are a number of points to note about Kumar’s results. First, his transi-
tion relies on small amounts of bending in both the hub and non-triangular panels.
However, this still fits with the aim of an inextensional folding. More importantly,
the model does not take into account clashes between panels. In later stages of
the folding process the mechanism requires panels to pass through one another by
a small amount. Obviously this is impossible, and would lead to some straining
in practice. The effect is likely to be small, however, and rapidly decreases with
increasing n. Finally the model was only for a zero thickness membrane. Fold
patterns for a non-zero thickness membrane are slightly different to those with
zero thickness, and so there may possibly be some small amount of straining in
these cases. However, a computer model of a non-zero thickness membrane would
be difficult to execute, not least because the exact details of what happens at fold
lines in the wrapped configuration have been left deliberately vague.

6.4. Actual Wrapping Fold Patterns

Two wrapping fold patterns have been reproduced here. They are suitable for
photocopying and making simple paper models. It is suggested that fold lines are
lightly scored on the outside of each fold prior to folding. It should be noted that
photocopying tends to distort the folding patterns, and so the models may not
work perfectly. Also if the patterns are magnified, it should be noted that the
corresponding values of ¢ will also be magnified.

The patterns produced here are for the following cases:

1. A hexagonal hub and 2 mm thick membrane with five vertices on each
major fold. This pattern is not meant for use with a 2 mm thick sheet
(with R/t = 7.5 it would be far from thin), but with ordinary photocopying
paper, to produce a fairly open wrapped configuration, suitable for simple
demonstrations.

2. A 12-sided hub and 0.2 mm thick membrane.
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Solid Surface Deployable
Antenna (SSDA)
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7. ANALYSIS OF MECHANISMS USING DUAL
QUATERNIONS

Part III of this dissertation is concerned with the development of a new solid
surface deployable antenna. The basic concept is to split a parabolic dish antenna
into a number of rigid panels which are hinged together in such a way that they
form a simple mechanism, allowing them to compactly fold together. The designs
considered draw their inspiration from the wrapping fold pattern considered in
Part II. However, while some of the analysis of that fold pattern could be left
deliberately vague, as it is used for a flexible membrane, the folding of a number
of rigid panels about fixed hinges requires a more rigorous analysis. This chapter
explains that analysis.

The theory developed in this chapter gives the ability to calculate the posi-
tion of points on an open chain of bodies connected by revolute joints after those
joints have undergone arbitrary finite rotations. Time, and the derivatives of mo-
tion with respect to time, are not considered. Neither are the forces that are
associated with motion. This may appear unduly restrictive, but proved useful in
the development of the solid surface deployable antenna. It showed the feasibil-
ity of concepts, and highlighted problems, e.g. collisions within the structure, or
impossible configurations.

The theory is based on the use of quaternions as a natural way of handling
compound finite rotations, and the extension of this to dual quaternions as a
way of handling compound finite spatial displacements. The theory is based pri-
marily on a book by McCarthy (1990), but the concept of a screw displacement
from Hunt (1978) proved useful, and many further insights into quaternions and
rotations were obtained from Altmann (1986; 1989)

Section 7.1 explains some basic theory on rigid body rotations and how the ef-
fect of successive finite rotations can be calculated. Section 7.2 introduces quater-
nions and their algebraic properties, and goes on to show how they can naturally
be used to represent rigid body rotations. Some aspects of general rigid body
spatial displacements are considered in Section 7.3, then Section 7.4 explains dual
numbers and dual quaternions, and how they can be used to represent these gen-
eral displacements and coordinate transformations. Some proofs of this material
are contained separately in Section 7.7, at the end of the chapter.

Section 7.5 develops a new approach in the analysis of mechanisms, based on
extracting any required information about a mechanism from the dual quaternions
used during its analysis. This approach is developed for one particular type of
mechanism, an open chain of bodies connected by revolute hinges, as this will
prove useful in Chapter 8. Section 7.6 shows how this new theory can be used for

the example of a simple robot arm.
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7.1. Rigid Body Rotation

In order to calculate what happens to. points on chains of bodies when rotation
about various hinges occurs, it is first necessary to understand a simpler problem.
What is the net result of two finite rotations of a rigid body? Euler (1775) made
the first steps towards understanding this problem.

Euler’s theorem states that the general displacement of a rigid body with one
point fixed is a rotation about some axis. Euler considered the rotation of a sphere
of unit radius. He showed that the net result of two successive rotations applied
to the sphere is a rotation of the sphere by a unique angle around a unique axis.
Euler proved his theorem algebraically, but did not give a solution by which the
axis and angle of the net rotation could be found.

The problem of finding the net result of two rotations was first solved by
Rodrigues (1840), using a geometrical construction. The construction which he
described is now perversely known as the Euler construction. The Euler construc-
tion is described by Altmann (1986, page 156).

Consider two rotations, first by an angle a about an axis 1, then by an angle
B about an axis m, where 1 and m are both unit vectors. Consider the net result
of these rotations as being a rotation by an angle 4 about an axis n, where n is
also a unit vector. If a rotation by an angle v about a unit vector n is represented
symbolically by R(vn), then we can represent the rotations above as

R(yn) = R(fm)R(al) (7.1)

(Note that this equation represents a rotation about the 1 axis first).
Rodrigues showed from his construction that

gl B _a . B.a
Y = cos cos 2 — sin o sin Em - 72
cos 5 = cos 5 cos 2 sin o sin 5m 1 (7.2)
sin In = sinécos g/lg’-ci/- — si —""; . s'nésin Zmx1 (7.3)
o = 2 2 coszsmzm’ 1 2 2 .

where - and x are the standard vector dot and cross products. These equations
give an explicit formula for both + and n.

7.2. Quaternions, and Their Use in Representing Rota-
tions

Quaternions are a very natural way of representing rotations, but before that
connection can be seen it is necessary to explain their algebrai¢ properties. A
lucid introduction to quaternions and their connection with rotations is given in
Altmann (1989).

Quaternions are an extension of the concept of complex numbers, with three
imaginary units, i, j, k, rather than just i. These imaginary units have the follow-
ing propertics

P=j=k’=-1 (74)

ij = k,ji = =k, and cyclic permutations, see Table 7.1 (7.5)
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Table 7.1. Multiplication table for quaternion units.

second quaternion

1 i ] k

1{1 i J k

first if1 -1 k =
quaternion | j | J -k -1 i
kik jJ -1 -1

Then, just as a complex number can be written a + Ai, where a and A are real
quantities, so a quaternion A can be written A = a + A;i + A,j + Ak, where a,
Az, A, and A, are all real quantities. In this dissertation, quaternions are always
denoted by calligraphic letters. The multiplication and addition of quaternions
follows normal algebraic rules, but note that quaternions are non-commutative, as
can be seen in Table 7.1, and so the order of multiplication does matter. A simple
example of quaternion multiplication is the quaternion (2 + i) postmultiplied by
the quaternion (j + 3k)

(2+1)§+3k) = (2j+6k+(ij) + 3(ik))
= (2j + 6k +k —.3i).
= (=j+7k)

Another notation for quaternions is to consider them as an ordered pair of a
scalar and a vector quantity (Altmann, 1986). A quaternion A is thus written

A=a+ A;i+Aj+ Ak =[a,A] (7.6)

Az
A=| A4,
A,

Consider a second quaternion B = [, B]. If A and B are multiplied according to
the rules in Table 7.1 then the result, again written as a couple of a real number
and a vector, is

where

AB = [a,A][b,B] = [ab— A - B,aB + bA + A x B] (1.7)

The usefulness of quaternions in handling rotations becomes apparent if the
rotations considered earlier are also represented as a couple of a scalar and a vector

R(al) = |cos g, sin g—l—l]] (7.8)
Equation 7.1, R(yn) = I}(fm)It(al) can also be written in this form

[cos 1, sin %n]] = [cos g, sin ém]] [cos 2[-, sin %l]

2 2 2
85




SSDA ANALYSIS OF MECHANISMS

However, because of Rodrigues’ sofution, equations 7.2 and 7.3, R(yn) can also
be written as

[cos %, sin %n]] =
B a . B .«
[cos 5 05 5 /; sin 5 sin 2m.l,
sin g cos g,l/$ cos’g/éin 53‘ + sin g sin %m x 1] (7.9)

A comparison of equations 7.9 and 7.7 shows that the multiplication rules for
these Rodrigues’ couples are identical to those for quaternions, and so the Ro-
drigues’ couple in equation 7.8 is a quaternion. The identification of quaternions
with rotations follows naturally from the product of two large angle rotations.

The four parameters given in equation 7.8 (a scalar and three vector compo-
nents) are known as the Euler-Rodrigues parameters, although their close connec-
tion with quaternions is rarely made explicit.

There is a superabundance of coordinates in the Euler-Rodrigues parameters.
Only three independent parameters are required to define the spherical rotation
of a body. However, any set of three parameters chosen to characterise a rotation
will have singularities in certain configurations (Wittenburg, 1977, page 25). Also,
with only three parameters, calculating the effect of compound rotations becomes
difficult. The four Euler-Rodrigues parameters are reduced to the required three
by the additional constraint that the vector I in equation 7.8 is a unit vector, as
already mentioned.

7.2.1. Additional Properties of Quaternions
This section defines some particular types of quaternions which will prove useful
later in the chapter.
The identity quaternion, I is defined so that
AT =TA=A

It is given by
I=11,0]

which can be easily be checked by substitution into equation 7.7.

The inverse quaternion A~ is defined so that

AAT = ATA=1T

A7 = [a, A] ™ = [a K\ A, —A] / a-A-A) (7.10)

This can also be easily checked by substitution into equation 7.7.

It is given by

A unit quaternion is one where the factor 1/(a? + A - A), which appears in
equation 7.10, is equal to one. Note that the representation of a rotation in
equation 7.8 is a unit quaternion.
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A pure quaternion is one where the real part, a, is equal to zero.

7.3. Rigid Body Displacements

Having considered rotations, and how they can be represented by quaternions, the
next step is to extend these results to the general displacement of a rigid body.
Initially some basic aspects of spatial displacements must be considered.

During a general spatial displacement, there are no fixed points in space (cf.
a rotational displacement, where there is always a line of points which do not
move). However the spatial equivalent of Euler’s theorem for rotations is Chasles’
theorem (Goldstein, 1980, page 163). Chasles’ theorem states that there is a fixed
axis within the body (or the body extended) which has the same position in space
before and after the displacement. This axis is called the screw axis, and the dis-
placement is called a screw, where the body displaces along, and rotates around,
the screw axis. The terminology ‘screw’ implies that the two motions occur si-
multaneously, but this is not necessarily true. The motion is a superimposition of
two motions, a displacement along, and a rotation around, the screw axis.

A screw axis can be represented by its six Plicker coordinates (Hunt, 1978,
page 304). Consider a line S in space, whose direction is given by w, a unit
vector, and which has a point p lying on it, see Figure 7.1. The six Plicker
coordinates of this line are then given by (w, p X w). Note that this representation
has a superabundance of coordinates, as a line in space can be specified by four
parameters. The six parameters are reduced by the two constraints that w is a
unit vector, and that p x w is obviously orthogonal to w. (At first it may seem
that the representation of a line requires five parameters, the position of a point
on the line, and two parameters to represent direction. However, this leads to
infinitely many representations for the same line, as the line can then be specified
by any of the points on it.)

The concepts of a screw displacement and of a screw axis represented by its
Pliicker coordinates will prove useful in the next section.

7.4. Dual Quaternions, and Their Use in Representing
Rigid Body Displacements ‘

Dual numbers are a useful way of transferring results obtained for spherical
displacements, where one point is fixed, to general spatial displacements (Duffy,
1980). In this dissertation, dual quantities are denoted by a caret,”. Dual numbers
are similar to complex numbers, but make use of the operator € instead of the
operator i. They have the form

ad=a-+e€b

where a and b are real numbers, and the operator € is manipulated according to

the rule
e€=e,--=0 (7.11)
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Figure 7.1. A Line in Space.

The multiplication and addition of dual numbers follows normal algebraic
rules, apart from the properties of € given in equation 7.11. Thus, having two
dual numbers, @ = a + €b, and ¢ = c+ €d, their sum is

i+é=(a+c)+eb+d)
and their product is
aé = ac+ e(ad + be)
Dual numbers prove useful in defining spatial geometry. To do this the dual
angle, 0 between two lines is defined as being

6=60+ed

where 0 is the ordinary angle between the two lines, and d is the perpendicular
distance between them, as shown in Figure 7.2. Note that in this formulation the
operator € can be seen as having dimension [length]™!. -

The sine and cosine of a dual angle are given by

sin § = sin 6 + ed cos 0 (7.12)
cos = cosf — edsin 0 (7.13)

These relationships can be shown by considering the Taylor series expansion of
a function, which, because of the rule for manipulating € given in equation 7.11,

gives
f(0 + ed) = f(0) + edf'(6) + (ed)*f"(0)/2+ - - -
£(8) + €df'(9)

£(6)

1
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Two lines in space

Common normal

Figure 7.2. The dual angle between two lines, 0=0+ed

In defining dual quaternions it will be useful to write the Plicker coordinates
of aline as a dual vector. Retaining the notation of Figure 7.1 the line S is written
as the dual vector W, where

w=w-+e(pxw) (7.14)

The quantities defined here, dual angles and dual vectors, can be used to
extend the theory of spherical displacements to spatial displacements, see e.g.
Duffy (1980). They are used here to define dual quaternions.

Dual quaternions can be used to represent general screw displacements. Con-
sider a finite rigid body displacement, such as that shown in Figure 7.3. The body
displaces about a screw axis W (a dual vector defined by the Pliicker coordinates of
the screw axis), by a dual angle o (representing a rotation by an angle  about the
screw axis, and a displacement d along it). This displacement can be represented
by a dual quaternion, A. A can be written in a way analogous to a quaternion
representing a rotation

A A A A

.A=cos-—+1.b,,sin—z'+1bysin§j+tb,sin——k

2 2 2
or alternatively ) )
x 0
A = [cos g,v‘v sin 5] (7.15)
where the trigonometric functions of dual angles are defined in equations 7.12

and 7.13.

The reason the dual quaternions representing a screw displacement are defined
in this way becomes obvious when the net result of two spatial displacements of
a body is calculated. Consider a spatial displacement represented by the dual
quaternion .4, followed by a spatial displacement B. ¢ represents the net resul-
tant displacement, then € can be found by dual quaternion multiplication

C=BA (7.16)

This result is proved in Section 7.7. It is analogous to the result for finite rotations
represented by quaternions.
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SCrew axis

body after
spatial displacement

body before
spatial displacement

Figure 7.3. A spatial displacement.

An alternative way of considering a dual quaternion A is as a combination of

its real and dual parts i
A=A+ eA° (7.17)

where both 4 and A° are real quaternions.

The quaternion A represents the rotation of the body around the screw axis.
It is of the same form as the rotation defined in equation 7.8. The dual part of the
quaternion, A° represents the translation of the body. A° can be calculated from
the displacement of the point on the body originally coincident with the origin
of coordinates, the vector d,. If a pure quaternion (one with no scalar part) is
defined as

D=[0,d,]

then A° is given by
A = %DA (7.18)

It is shown in Section 7.7 that the two alternate ways of defining a dual quater-
nion representing a displacement, given by equation 7.15, and by equations 7.17
and 7.18, are equivalent.

The dual quaternions representation of displacements again show a supcrabun-
dance of coordinates. Only six parameters are required to define a rigid body
displacement, whereas a dual quaternion has eight parameters. However, there
are two constraints implicit in the representation. This can be seen by consid-
ering that the dual quaternion in equation 7.15 is derived from the six Plicker
coordinates of the screw axis, which themselves have two implicit constraints, as
explained earlier.
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0

Figure 7.4. Transformations between coordinate systems.

7.4.1. Using Dual Quaternions to Represent Coordinate Transforma-
tions

All of the discussion so far has considered the net results of displacements of rigid
bodies in a single fixed global coordinate system. However, Section 7.5 will make i
use of a number of different coordinate systems, with dual coordinates representing ‘
the transformation between these coordinate systems. This is done by defining a i‘
coordinate transformation as the spatial displacement necessary to move a body

originally aligned with one coordinate system to become aligned with another. \
The dual quaternion, defined in the original coordinate system, which represents |
this displacement is used to define the coordinate transformation.

Consider two coordinate systems, [0;] and [O;]. The dual quaternion which
represents the rigid body motion from [04] to [O], 71_.2 can be used to define
[O:] in coordinate system [0;]. Note that 7;_,, is defined in terms of coordinate
system [0;]. Now consider a third coordinate system [03]. This is defined, in
coordinate system [O] by the dual quaternion 7;_,3. Note that 7A}_,3 is defined
in a different coordinate system to ’j]_,g. The three coordinate systems, and the
transformations between them, are shown in Figure 7.4.

Consider the transformation from coordinate system [O;] to coordinate system
[Os], defined in coordinate system [0,], and represented by the dual quaternion
Ti—3. T3 can be found in terms of 7;_, and ’]A'z_,;;, but not by simple dual

quaternion multiplication ) o
7;—»3 # 7}—»37i—>2 (719)

Equation 7.19 would be correct if both 'j]_,z and 7"2_,3 were defined in the same
coordinate system. The correct answer is obtained by reversing the order of

multiplication, giving ) o
73—»3 = 7;—»2%—»3 (720)
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The reason for this reversal in the order of multiplication can be seen by con-
sidering all three coordinate systems originally coincident. The dual guaternion
753 then defines the transformation of [O3] from its original position coincident
with [O;] to its correct position in the coordinate system [O;], as shown in Fig-
ure 7.5. The dual quaternion 7;_., then defines the transformation of both [O;]
and [Os] to their correct final positions within coordinate system [O,], as also
shown in Figure 7.5. Obviously F; 3 is the net result of 7,3 followed by T;_,,
and so, following the rules for dual quaternion multiplication

7;—»3 = 7;.—»2%—»3

thus explaining the apparent change in the order of multiplication given in equa-
tion 7.20.

7.5. Analysing Mechanisms

The previous sections of this chapter developed the basic theory behind the use
of dual quaternions in the analysis of spatial displacements and coordinate trans-
formations. This section will develop this theory to analyse one particular type of
mechanism, an open chain of rigid bodies, where each intermediate body in the
chain is connected by revolute joints to two other bodies. (A revolute joint is a
joint which allows rotation around, but not translation along, the hinge axis. A
door hinge is a revolute hinge.) This rather specialised application is developed
for use in Chapter 8, however the same approach could be developed for other
types of mechanism.

The technique for changing coordinate systems is based on work by Mec-
Carthy (1990). In the following analysis, however, a new feature is that the
dual quaternion which represents a coordinate transformation is used to provide
information on the configuration of bodies in the mechanism, rather than simply
using these dual quaternions as operators on other quantities such as vectors. In
particular a method will be developed by which the coordinates of any point on
the chain can be found for any arbitrary rotation of each of the hinges.

In order to simplify the pictures used in explaining the analysis, each rigid
body is considered as two perpendicular bars. Consider a body :, a part of an
open chain, which is connected to bodies (i — 1) and (Z + 1) by revolute joints.
Body i is represented by two bars; the first bar lies along the axis of the revolute
hinge connecting body i to body ¢ + 1, and the second lies along the common
normal to the axes of the two revolute joints on the body. An example is shown in
Figure 7.6. Kinematically, this two-bar representation is equivalent to the original
body.

Consider one section of an open chain of rigid bodies connected by revolute
hinges, as shown in Figure 7.7. (Note that each body has been replaced by its two-
bar representation.) Define a line z; along the axis of the revolute joint connecting
body ¢ to body 7 — 1. Define the common normal between z; and z;,; as the line
x;. Define the intersection of x; and z; as the point o;, and the intersection of x;
and z;,, as the point a;. These points and lines are all shown in Figure 7.7.
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1
1. Coincident coordinate systems
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Figure 7.5. Net effect of two transformations of a coordinate systems.
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body i
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body (i+1)

body (i-1)

Figure 7.6. The two-bar representation of a rigid body.

Y Zi

body (i+1)

body (i-1) ~

Figure 7.7. Part of a chain of rigid bodies.
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The lines and points defined on the chain of bodies can then be used to define
a reference frame [0;] on body ¢. The origin of [O;] is at o;, the 2-axis is defined
by z;, and the z-axis by x;. The y-axis is defined to form a right-handed set.
This way of describing a mechanism is closely allied to the Denavit-Hartenburg
convention (Hartenburg & Denavit, 1964, pagé 348), with some minor changes to
numbering.

It is now possible to find the dual quaternion which represents the change in
coordinate systems from one body to the next, that is the transformation from
[0i] to [Oi41] (i.e. the rigid body transformation which would"a body originally
coincident with [O;] to coincide with [O;41]). This can in turn be simplified by
defining an intermediate coordinate system [A;]. [A;] has its origin at a;, has an
z-axis defined along X;, but a 2-axis defined along z;,,. The transformation from
[Oi] to [A;] is a simple one, and is shown in Figure 7.8. It involves a rotation
about x; by an angle ¢;, and a translation along x; by a distance a;. Thus this
motion is a screw along the z-axis. The screw axis is defined by the dual vector

x, where

1 0
x=]10]|4+€] 0
0 0

and the screw magnitude is given by the dual angle &;
&; = a; + €aq;

Note that the dual vector % is defined in the coordinate system [O;], and so its
real part is simply along the z-axis, and its dual part is zero as the axis passes
through the origin of coordinates, see equation 7.14.

The screw can be represented by a dual quaternion X (&), where

A

X(é;) = [cos %, X sin 9[2—'] (7.21)
which is equivalent to

X(&) = cos%+sin%i+0j+0k

Expanding the dual angle &;, this expression can be written as

. a . Qi & a,
i+ e(~2 sin ' | — cos —1)

2 2 2

~ a- a.
X (&) = cos -~ + sin -
(&) 5 +sin
The transformation from [A;] to [O;4,] is also simple, and is shown in Fig-
ure 7.9. It involves a rotation about z;,; by an angle §;, and a translation along
Z;+1 by a distance b;. For this transformation the screw axis is defined by the dual
vector z, where

0 0
z=| 0]+€]| O
1 0
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Figure 7.8. The transformation represented by X (&;). yo; and y,; are the
y-axes in coordinate systems [O;] and [A;] respectively.

and the screw magnitude is given by the dual angle j;

A

Bi = i+ eb;

The screw can be represented by a dual quaternion z (,3.-), where
Z(8;) = [cos -'gi, Zsin %—] (7.22)

which is equivalent to

A A

2:'(,3,) = cos% + 0i 4 0j + sin %k

Expanding the dual angle ,@,-, this expression can be written as

2:'(,3,) = cos% + sin %k + e(—%— sin -'g—' + % cos —glk)

Note that the transformation from [O;] to [A;] only depends on the geometry
of the body, i.e the relative position of the two screw axes, and so «; and a; have
a fixed value. In contrast, the transformation from [A;] to [O;41] depends on the
geometry of the body, and the orientation of the revolute joint at [O;41]. Thus 5;
may vary, while b is fixed. If this were a prismatic joint, b; could vary while §;
remained fixed, while for a cylindrical joint both b; and §; could vary.

Having found X(é&;) and Z(5;) it is simple to calculate the dual quaternion
which represents the transformation from [O;] to [Oi41], ’j}, by dual quaternion

algebra ) ) o
T = X(&)Z(B:)

96




SSDA ANALYSIS OF MECHANISMS

Figure 7.9. The transformation represented by Z (ﬁ,)

Note the order of multiplication, as explained in Section 7.4.1.

The process described can be repeated to find the dual quaternion which repre-
sents the transformation from the base coordinate system to a coordinate system
on any body in the chain. This dual quaternion then contains complete informa-
tion about the orientation of this body, and the position of the origin of coordinates
on this body, in the global coordinate system. The first design for a deployable
antenna, considered in the next chapter, required only the position vectors of some
particular points, and so the next step is to obtain this information from the dual
quaternion.

Consider the dual quaternion 7~ which represents the coordinate transforma-
tion from the global coordinate system to a coordinate system with its origin at
the point of interest in the mechanism. What is required is the position vector d,,
the position that the origin of coordinates has moved to. This is best achieved by
splitting 7 into its real and dual parts

T=T+€T® (7.23)

T° represents the displacement part of the transformation, and from equation 7.18
can he written

1
0 —_— e
T° = 2'DT
where
D= [O,dO]I

D, and hence d can be found by post-multiplying equation 7.23 by the inverse
quaternion 7! (see equation 7.10), giving

D=27°7T"1
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Figure 7.10. A simple robot arm.

and therefore

[o,d,] =27°T!

The method outlined above gives an explicit method for finding the position
vector of any point on a set of rigid bodies connected by revolute hinges for any
arbitrary position of those hinges. This method can be implemented algebraically
or numerically. However, the algebraic expressions become exceedingly complex
for even small chains of bodies. A chain of bodies with only two revolute hinges
(the example in the next section) was found to be too complex for sensible hand

calculation.

7.6. An Example

An example of the type of open chain mentioned earlier is the simple robot arm
shown in Figure 7.10. The arm is a chain of two rigid bodies connected by a
revolute hinge and attached by a revolute hinge to a base. The position of the
end-effector P is controlled by the position of the two hinges. This mechanism will
be analysed using the theory explained earlier to find expressions for the cartesian
coordinates of the end-effector for arbitrary positions of the two hinges.

The first step in the analysis is to produce a two-bar model of the structure,
as mentioned in Section 7.5. The two-bar model of the robot-arm is shown in
Figure 7.11. The figure shows the parameters defining the position of the two
hinges, 8, and 6,, which are zero in the position shown. The figure also shows the
base coordinate system used in the analysis, and the relative dimensions of the
mechanism. Note that kinematically the mechanism in Figure 7.11 is identical to
the robot arm shown in Figure 7.10.

The second stage in the analysis is to calculate the dual quaternions required
to transform the reference frame from its base position to the end-effector. The
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. A y L Y

P

Figure 7.11. The two-bar model of the robot arm.

dual quaternions required are listed; the effect of each dual quaternion on the
coordinate system is shown in Figure 7.12 for the case when 6; = 0; = 0. Each
dual quaternion is given as an X- or Z- quaternion. The definition of these dual
quaternions was given in equations 7.21 and 7.22.

1. 2, =206, + €0). The rotation around the first hinge. Rotate the reference
frame about the z-axis so that the z-axis lines up with the common normal
to the first hinge axis. Note that 21 varies with 6,, and that, for §; = 0, no
transformation is required.

2. X, = X(—7/2 + €l). Move and rotate the reference frame along and about
the z-axis so that the z-axis lines up with the second hinge axis.

3. Z3= Z(r+0,+ el). The rotation about the second hinge. Move and rotate
the reference frame along and about the z-axis so that the z-axis lines up
with the normal to the end-effector. Note that Z; varies with 6,.

4. X, = X0+ €l). Move the reference frame along the z-axis (no need to
rotate) to the point P,

The quaternions defined above are then multiplied together, as described in
Section 7.4.1, to give a dual quaternion, 7, which represents the change in coor-
dinates from the origin to point P

A

T = 2,2,
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() Afier Z, @ Afer X,

(3) Afier Z, ) Afeer X,

Figure 7.12. The moving reference frame on the robot arm.
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7 can then be written as the sum of its real and dual parts
T=T+¢T°

where 7 a,ndAT0 can be found by applying the rules of dual quaternion algebra to
the &- and Z- quaternions defined above. This gives

T = ﬁ cosﬁsm@ smo—cosgz-
-2 27 2 2
+ V2 6 . 6, 6,
2 cos sin 2 s1n L cos 2
V2 6, 0, 0,
+T cos-2—cos 2 +sm—-s1 E—
\ +—\(—i cos ﬁ cos — — sm L sin -03
2 2 2 2

~S

01 02 2 0102+01_02
Ccos 5 COos 9 cos 9 s1n 9 sin > s >

+
~[& S

B s oo ®ian? s n )
COs 2 [ol0] 9 COSs 2 sin 2 sin 2 1n 2

+

U S ST RNy A Y
cos2sm2 SlIl2COS2 11121112 ]

+£ —cosﬁsin&—sma—lcoso—2—2smgl—sm& k
4 2 2 2 2 2 2

T° represents the position of the end-effector, but not in an obvious form. It
is possible, however, to express this position as a position vector in the original
base coordinates using the method explained in Section 7.5

[0,dp] = 27°7 ! (7.24)

where dp = (dpz, dpy,dp,)T, and dp,,dp,, dp, are the cartesian coordinates of P.
Performing the multiplication in equation 7.24 gives
0 _
dp; = —2cos El sin %1— — 4sin? 71 sin® -02—2 + 2sin?
6, . 6, . ,0 . o0
dpy = 4cos -2—1s1n-21s1n2 52- — 2sin? —2-1- +1
0 0
dp, = 25sin Ez cos Ez
These expressions can be validated by the trial substitution of simple values of 6,
and 6,.

Thus an analytical expression for the position of an end-effector of a simple
robot arm has been calculated. However, these expressions are rather complex
even for simple systems, and indeed, the expressions given above were calculated
using a computer algebraic manipulation program. In the next chapter the same

methods are used numerically.

hich
2
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screw axis

body after
spatial displacement

body before
spatial displacement

Figure 7.13. The spatial displacement of a body.

7.7. Proof of some Dual Quaternion Properties

This section proves some of the expressions which were given in Section 7.4.

The first property to be shown is that the two alternative ways of defining the
dual quaternion representing a spatial deformation, one based on dual vectors and
dual angles, equation 7.15, and the other based on defining a real and a dual part
of the dual quaternion, equations 7.17 and 7.18, are equivalent.

The proof begins by considering the body shown in Figure 7.13 before and after
a spatial displacement. The displacement consists of a screw around the screw
axis defined by a point on the axis, p, and a unit direction vector, w (defining the
dual vector W = w + €(p x w)). The body rotates about the axis by an angle 0,
and displaces along it by a distance d (defining the dual angle § = 0 + €d). After
the displacement, a vector, attached to the body and originally coincident with p,
becomes the vector p’, and the head of the vector moves from p to p + dw. The
point on the body that was originally coincident with the origin of coordinates
has displaced by d,. This point is coincident with the tail of p’. Therefore

d,+p' =p+dw
d,=dw+p—p' (7.25)

The next step is to consider how an equivalent equation may be written using
quaternions. This is based on the idea of using pure quaternions (quaternions
with no scalar part) to represent position, and hence fulfil the same job as position

102




SSDA ANALYSIS OF MECHANISMS

vectors. The equivalent pure quatérnions to the vectors defined earlier are given
by

D= [0, do]]
W = [0,w]
P=1[0,p]

Define a quaternion A which represents a rotation about the screw axis by an
angle 6

A = [cos g, sin —gw]l (7.26)

It is shown by Altmann (1986, p215) that a pure quaternion, representing position,
can be rotated by a unit quaternion using the operation P’ = APA™!, where P’
is the rotated form of P. Equation 7.25 can now be written in its quaternion form

D=dW+P— APA™! (7.27)

The proof proceeds by substituting these expressions into equations 7.17
and 7.18, and showing that the resultant form is equivalent to equation 7.15.
Substituting 7.27 into equation 7.18

1
O—._.
.A_2DA

A = (%) (AW +P — APAA

A distributive law is valid for quaternions, as they are made up of operators which
obey the usual distributive laws, and so

A = (%) (WA +PA— AP)

The products can be expanded using the multiplication law for quaternions in

equation 7.7, giving
. [0 0
WA = [—sin (5) , W COS (5)]

o (¢ 0 . (0
PA=[-p-wsin (5) ,pcos (-2-) +p X wsin (5)]]

AP =[-p - wsin (g—) , pcos (-g—) — Pp X wsin (g)]]

A = [—%dsin (g) ,%dw cos (g) + p x wsin (g)] (7.28)

Substituting equations 7.26 and 7.28 into 7.17 gives an expression for the dual
quaternion A

A = [cos (g) —€ (%dsin (g)) , (7.29)
win(£) o (bewen (&) 4 pwan ()1 0
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Comparing equations 7.30 and 7.15 shows that equation 7.30 is simply an ex-
panded form of equation 7.15, thereby completing the proof that the two ways of
defining a dual quaternion to represent a spatial displacement are equivalent
The next proof shows that, having defined dual quaternions as above, the
product of two dual quaternions does indeed describe the net effect of the two
spatial displacements that these dual quaternions describe.
Consider two spatial displacements defined by the dual quaternions A and B

A=A+ eA

B=B+eB°
Consider a spatial displacement defined by C which is the result of A followed by

B A
C=C+¢eC° (7.31)

Assuming equation 7.16 to be true
C=84
¢ = (B+ eB°)(A+ €A
C=BA+¢e(B°A+BA) (7.32)

However, from equation 7.18

A = %DA.A
B = lD B
5B
where
DB = [Oa dB]]
Dy = [01 dA]]

and d4 and dg are the displa:cement vectors of the origin of coordinates for the
spatial displacements A and B respectively. Substituting into equation 7.32 gives

¢=BA+ e%(DBBA + BD,A) (7.33)

If this equation can be shown to be true, then the assumption that ¢ = BA will
be correct. Comparing equations 7.31 and 7.33, and considering the real and dual
parts separately, it can be scen that

C=BA O (134)

and
1

C’ = E(DBBA + BD4A) (7.35)
Equation 7.34 is obviously true from the definition of the product of quater-.
nions given in Section 7.2. To prove that equation 7.35 is true, however, it is

necessary o consider the displacement of the point originally coincident with the
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Original position
of body

Position of body
after first spatial
displacement

(a)

Position of body after
second spatial displacement

(b)

Iigure 7.14. The spatial displacement of a body: (a) Alter A. (b) After
A followed by B.
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origin of coordinates after the spafia.l displacement A followed by the spatial dis-
placement B.

Figure 7.14(a) shows the position after the displacement A. The pomt on the
body originally coincident with the origin of coordinates O has moved to O4. O4
is defined in the original coordinate system by the vector d4.

Figure 7.14(b) shows the position after the displacement A followed by the
displacement B. The _point on the body that was coincident with the origin of
coordinates O after A but before B has moved to Op. The vector on the body
coincident with d4 has been rotated during the displacement B to become the
vector d;. The tail of vector d; coincides with Op as they were coincident before
the dlspla.cement B. The head of vector d; is the point Oc, the point which was
coincident with the origin of coordinates before either displacement A or B. This
point defines the vector dg = OO¢. Therefore

dc =dp +d/,
Writing this in quaternion form gives
DC = DB + DIA

D4 is D4 rotated by the unit quaternion B. Using the rule for rotations described
earlier

De =D + BDAB_I (736)
Substituting equations 7.36 and 7.34 into the definition of C°, equation 7.18
1
C’ = -DsC
g

gives

= %(DBBA + BDAA)

This is the same formula as equation 7.35. Therefore both equations 7.34 and 7.35
are true, which confirms the original hypothesis that equation 7.16 is true. Thus,
when spatial displacements are defined by dual quaternions as described in the
previous section, the product of two dual quaternions does indeed describe the
net result of the two spatial displacements described by these dual quaternions.
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8. DESIGN OF SSDA

This chapter considers the design process followed to reach the final design of Solid
Surface Deployable Antenna (SSDA) whose manufacture and test are described
in Chapter 9. The aim of the design was to find an effective way of folding a
parabolic antenna with a solid surface, while using only simple mechanical con-
nections between the panels.

All of the designs considered took their inspiration from the wrapping fold
pattern considered in Part II of this dissertation. Four of the concepts which
were considered are described in Section 8.1. One of these was selected, and its
kinematic modelling is explained in Section 8.2. The final design process for the
selected concept is described in Section 8.3, and the final design in Section 8.4.
Finally, some concluding remarks are made in Section 8.5.

8.1. Four Alternative Concepts

A number of different concepts were considered for the SSDA. The four concepts
which were developed furthest are described briefly in this section. Each of the
concepts went through some of the further development described in Sections 8.2
and 8.3, but the complete design process is only described for the final concept
selected.

Each of the concepts considered was developed from the wrapping fold pattern
given in Part II. This fold pattern was developed for a flexible membrane, and so
needs modification for a set of rigid panels. These modifications were based on
the idea of the mobility of a mechanism.

A rigid body free in space has six degrees of freedom. Consider n bodies in
space. If one body is taken as a reference body, this leaves 6(n — 1) relative
degrees of freedom. Now consider these bodies connected together by g joints:
joint ¢ imposes a number of constraints, u;. For instance, a revolute joint imposes
five constraints, and a spherical joint three constraints. The number of relative
degrees of freedom between the bodies when the constraints have been imposed
is called the relative mobility, M, of the system. Thus

g
M=6n-1)-) u; (8.1)

=1
It should be noted that the above formula for mobility is a general formula. It
applies when the constraints are independent. Thus there will be instances when
a mechanism has a greater mobility than that predicted by equation 8.1. Also,
equation 8.1 does not imply that a mechanism with mobility greater than zero can
move between all possible configurations; it may be necessary to dismantle and
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Figure 8.1. The fold pattern developed in Part II.

re-assemble the mechanism to reach some of these configurations. The equation
for mobility remains, however, a useful first step in selecting possible designs for

the SSDA.

A typical folding pattern developed in Part II is shown in Figure 8.1. This
particular pattern has 6 sides, and 2 nodes along each major fold.

The fold pattern splits the surface into a number of panels. Consider each of
the 19 panels in Figure 8.1 to be a rigid body, and each of the 30 fold lines to be
a revolute joint. Then, the mobility of this system can be calculated as

M=(19-1)x6=30x5=—42

Thus, this system is highly overconstrained, and in general will not work as a
mechanism. For a general fold pattern having a hub with n sides, and m nodes
along each major fold line, the mobility is given by

M =n(—-4m +1)

Thus the system will be overconstrained for any m and n. This fits in well with
the work by Kumar (1993), described in Section 6.3.
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Figure 8.2. The fold pattern split into separate wings.

In order to develop a deployable antenna based on this folding pattern it is
necessary to reduce the number of constraints. The simplest way to do this is to
cut the pattern along the major fold lines, forming a number of wings emanating
from the hub, as shown in Figure 8.2. This system now has a mobility of n(m+1).
However, for the deployable antenna, the ideal is to have a single way of opening
the structure, i.e. M = 1. Thus, some constraints now have to be added. One
possibility is to connect each wing to the next by a spherical joint. For three
panels in each wing, as in Figure 8.2, this gives M = 0. If one spherical joint
is removed, this gives M = 3. This is not the ideal M == 1, but could be easily
controlled, and so this idea was the first to be considered, leading to Design (a).

8.1.1. Design (a)

Design (a) is shown schematically in Figure 8.3. It was developed initially assum-
ing that each of the panels was thin and flat, with the intention of later extending
this to parabolic panels having some thickness.

A simple cardboard model of the thin flat case worked well. Also, this design
was analysed using the quaternion theory developed in Chapter 7, and imple-
mented in a similar way to the later description in Section 8.2. The results of a
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Figure 8.3. Design (a): fully deployed, top view.
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simulation are shown in Figure 8.4. As M = 3, there is some freedom in the choice
of unfolding path, but this simulation follows a particularly simple path. The un-
folding is completely strain-free. All possible unfolding paths for Design (a) are
similar to the one shown in the simulation results in Figure 8.4. The unfolding
starts from the wing whose final panel is not connected by a spherical joint, and
proceeds in a wave around the antenna, with the wings unfolding sequentially.

Unfortunately, problems occurred trying to extend these early, successful, re-
sults to a parabolic surface. The main problem is the packing of panels in the
folded configuration, when these panels are curved. Schematically, the problem
is shown in Figure 8.5. The curved panels fold back-to-back, which causes two
problems. Not only does it lead to a very poor packing efficiency, but it is also dif-
ficult to position the fold lines so the panels can actually fold in this way, because
the panels are so far apart. Even if this problem could be overcome, this design
could only lead to a structure with a poor packing efficiency, and so Design (a)
was taken no further.

The remaining concepts described in this section all have one common feature,
which shows a major departure from the wrapping fold pattern: all wings fold in
the same direction, in contrast with Design (a), where alternate wings fold up
and down. This is to ensure that the curved panels, when folded, can neatly nest
inside one another, and give a good packing efficiency.

8.1.2. Design (b)

Design (b) was the first design considered where all of the wings fold in the same
direction, and because of this, there are no points on adjacent panels which are
coincident before and after folding. Compare this with Design (a) where the
points on adjacent wings that are coincident with a spherical joint are obviously
coincident before and after folding.

In order to reduce the mobility of the system, connecting bars are added be-
tween panels at the end of adjacent wings. Design (b) is again based on the
arrangement of panels shown in Figure 8.2, i.e. each wing having three panels.
Adjacent wings are connected together by a connecting bar which has a revolute
joint at one end, and a spherical joint at the other. One possible arrangement for
this bar is shown in Figure 8.6.

Consider the mobility of Design (b). For a design based on an n-sided hub,
there are 1 4+ 4n bodies (including the connecting bars), 4n revolute joints, and n
spherical joints. Hence, from equation 8.1

=(l+4n—-1)x6—-4nx5—-nx3=n

Therefore, the design shown in Figure 8.6, where n = 6, has a mobility of 6.
However this can be easily reduced to a mobility of 1 by a symmetry constraint. If
all the wings are forced to unfold concurrently, then this adds five extra constraints
to the system, and leaves it with a mobility of 1. These constraints could be added,
for instance, by coupling the motion of the revolute joints at the hub. All of designs
(b), (c), (d), assume this symmetry constraint, in contrast with the asymmetric

folding of Design (a).
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Figure 8.4. Simulated unfolding sequence for Design(a), assuming thin,
flat panels.
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Figure 8.5. Cross-section through a curved surface packaged according to
Design (a). Note the panels are folded back-to-back.

Part of the design process is to decide the position of the connecting bar. This
is done by ensuring that the system is strain-free both when folded and when
deployed. This process is described in detail for the selected design in Section 8.3.
Deciding the position of the connecting bar leaves some freedom for both the
position and orientation of the revolute hinge at its end. The plan was to choose
values for these parameters which allowed strain-free folding. However, a brief
investigation of the folding process for some of the various possibilities did not
show a strain-free path between the folded and the deployed configurations.

Because of the problems with finding a strain-free path, and more particu-
larly because, even if a solution were found, the antenna would not show a great
reduction in diameter during folding, this design was not developed further.

8.1.3. Design (c)

Design (c) is similar to Design (b), but makes use of a connecting bar which
has revolute joints at both of its ends. Because of the extra constraints that
such a connecting bar provides, five panels per wing can be used. This is shown
schematically in Figure 8.7. Note that Design (c) again has a mobility, M = n (for
an n-sided hub), which is reduced to M = 1 by cnsuring a symmctrical folding
path. Also, note that because five panels per wing are used, this system will
potentially show a large reduction in diameter during folding.

Again, one of the steps in the design process is to make sure the system is
strain-free both when folded and when deployed, and this again leaves freedom in
the positioning of the connecting bar. A brief investigation of the folding process -
for some of the possible positions of the connecting bar again did not show a
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Figure 8.6. Design (b): (i) Fully deployed, top view. (ii) Fully folded,
side view.
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Figure 8.7. Desigu (¢): fully deployed, top view.
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Figure 8.8. Two-bar model of one wing of the SSDA.

strain-free path between the folded and deployed configuration. However, it was
found that the strains induced during folding are much smaller than for Design (b).
Because of this, and also because of the potentially large packing efficiency, it is
this design that is developed further in Sections 8.2 and 8.3.

8.1.4. Design (d)

Design (d), on which very little work was done, was intended as a back-up to
Design (c). In Design (d), as in Design (c), the connecting bar has revolute joints
at each end, but Design (d) also has an additional revolute joint somewhere along
the bar. Because of this, and to keep the mobility during symmetric unfolding
equal to one, Design (d) has four panels per wing.

Because Design (d) has an additional hinge in the connecting bar, there is a
great deal of freedom during the design process, giving more potential for finding
designs which have suitable folding properties. However, the design does not have
as good potential packing efficiency as Design (c), and was not developed further.

8.2. Analytical Modelling of Design (c)

The SSDA is modelled using dual quaternions, based on the theory described in
Chapter 7. The first step in this analysis is to replace each body in the actual
system with its two-bar equivalent. As a symmetric folding mode is being consid-
ered, only one wing need be considered. The two-bar model for one wing of a flat
version of the chosen design of SSDA is shown in Figure 8.8. It shows an open
chain of bodies which connects the origin of coordinates at O to a point on the
end of the connecting bar at P.
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An important difference between this system and the robot arm modelled as
an example in Section 7.6 is that the SSDA consists of kinematically closed loops
of rigid bodies. The hinges shown in Figure 8.8 do not have complete freedom of
movement. Constraints must be imposed that the revolute joint at the end of the
connecting bar (at P) must be connected to the next wing. Because a symmetric
folding mode is being considered, the axis of the revolute joint on the next wing
is simply the equivalent axis on this wing rotated.

The method used to impose this constraint is best explained by considering
how it works if the connection between one wing and the next is by means of a
spherical joint (this method was first developed for the analysis of Design (a)).
The position of the point at the centre of the spherical joint is calculated in
terms of the angles rotated by the hinges connecting the six bodies that make up
the wing. The position of the point at the centre of the same spherical joint is
also calculated by similarly considering the next wing, but this time the point is
located on a panel, rather than at the end of the connecting bar. For a general set
of hinge angles, these two positions will be different, and it is possible to measure
a distance d between them. The hinge angles are varied until this d is reduced to
zero, when the two wings will be properly connected.

A revolute joint can be similarly modelled, except that it is now necessary to
specify a point and a direction on the two halves of the joint. It would be possible
to find a measure of the lack of fit between the two halves of the joint, and minimise
this. However, computer code had already been written for the connection of a
spherical joint. Therefore, a revolute joint is modelled as two spherical joints a
fixed distance apart (100 mm in this case), by ensuring that both spherical joints
are connected.

For the SSDA the above process was implemented by writing a FORTRAN
routine. This routine is passed fwesﬁsrameters, the hinge angles between every
panel on the wing, and also between the final panel and the connecting bar. The
routine returns the error in alignment at the revolute joint at the end of the
connecting bar, where it is connected to the next wing. The alignment error is
quantified as the mean square of the connection errors of the two spherical joints
used to model the revolute joint. The error that this routine returns is minimised
using the NAG routine E04JAF (NAG, 1990).

The SSDA has a mobility of one, and so only one angle on the wing can be
specified: the remaining five will be fixed by the above process. For a strain-free
motion, the minimum found should be zero. However, if the mechanism is being
forced through an impossible configuration, the minimum will be greater than

Z€ro.

8.3. Design Process

The previous sections have described how a general design was selected, and how
it was modelled analytically. This section describes in more detail how the final
detailed design of the SSDA, whose manufacture is described in Chapter 9, was

arrived at.
The SSDA model is made from glass-fibre. It was manufactured by being
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moulded over a parabolic aluminium antenna, which therefore fixed its dimensions.
The final SSDA model has a radius of 0.73m, and its shape is defined by the

equation
z = 0.405r2

where z is the height above the centre of the antenna, and r is the diameter,
both measured in metres. This gives the antenna a focal length/diameter ratio of
0.42. The outer edge of the antenna is 0.22m above its centre. The antenna is on

average 3 mm thick.
An early decision was made to design an SSDA having six wings.

8.3.1. Shape of Panels -

The first part of the design process is to consider the shape of the panels which
make up the antenna, i.e. how the parabolic surface should be cut up. The panels
are initially designed to ensure that the antenna has a compact folded shape,
without any consideration of the folding mode or the position of the connecting
bar. This initial design, however, is later modified to take account of these factors.
A number of design rules are used to determine the shape of the panels.

The first design rule is that the revolute hinge line between adjacent panels
should pass through the corners of the panels. If the hinge line passes above any
part of the panel, it requires either part of the hinge mechanism to protrude above
the surface of the antenna, or a complex hinge design. If the hinge line passes
through the panels some distance in from the corners, the parts of the panels
that are beyond these points would have to be specially shaped to avoid clashing,
which would interfere with the packing arrangement described below.

The second design rule is that all hinges between panels should be vertical
in the folded configuration, thus implying that all the hinges on one wing must
be parallel. This is a similar consideration to that used in Part II to design the
wrapping fold pattern. It would be possible to design an antenna where some or
all the hinge lines are not vertical when folded, but it would be difficult to achieve
a good folded shape.

Using the second design rule it becomes easy to consider the antenna in the
folded configuration. Allowing an equal spacing between panels, the folded con-
figuration is shown schematically in Figure 8.9. (Note that the panels are shown
as flat, to simplify the diagram.) From this configuration, the distance between
adjacent hinges on one wing, i.e. the width of the panels, is determined. These
widths are shown in Figure 8,11, In the final design the radial distance between
adjacent hinges in the folded configuration, the parameter u in Figure 8.9, was
3.5mm. This may seem small, but as the panels are curved, and actually nest
inside one another, it is actually fairly conservative. This spacing was modified to
allow a gap of 14 mm between the first and second hinge lines, to prevent collisions
between panels during unfolding. This spacing was decided in the light of results
from the unfolding simulations explained in Section 8.3.3. Also, the spacing was
modified to allow a much larger gap of 220 mm between the final hinge line and
the edge of the last panel, to leave room for the connecting bar.

Taking these considerations into account, and ensuring that the outside of the
antenna coincides with the edge of the last panel, the radius of the hub in the
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Figure 8.9. Schematic of folded SSDA, top view.
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Figure 8.10. (a) Final design of hub. (b) Detail around a corner

final design was 0.143 m, and the panels have widths of 0.143 m, 0.149 m, 0.158 m,
0.162m, and 0.201 m.

The hub has to be carefully designed to avoid problems at its verlices. If
the hub was simply a hexagon, the thickness of the antenna would cause a clash
between the first panel on one wing, and the second panel on the next in the
folded configuration. This is avoided by re-designing the hub to allow space for
the thickness of the first panel, as shown in Figure 8.10.

The next step in the design process is to decide, having fixed the hub design
and the widths of the panels, the exact position of the panels on the antenna. This
is done by numbering the ends of the hinge lines, as shown in Figure 8.11. The
numbering scheme seems strange, but allows for the definition of the connecting
bar in Section 8.3.2. These numbered points are then consecutively fixed in po-
sition as follows. Note that all of these points must lie on the parabolic antenna
surface.
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Figure 8.11. Numbering scheme for the points defining panels.

1. Points 1 and 2 are already fixed. Point 3 must lie on a line that passes
through the vertical when rotated about 1-2, i.e. line 2-3 must be perpen-
dicular to line 1-2. The distance of point 3 along this line is a variable

2. Point 4 is fixed on a line which is both parallel to 2-3, and at a distance w;
away from it. w; is the width of panel 2. The position of point 4 along this
line is a variable

3. Point 5 is now completely fixed as it must lie at the point of intersection
between a line parallel to 2-3 and passing through point 4, and the surface
of the paraboloid.

4. Points 6 and 7, and 10 and 11, and point 16, are fixed in the same way as
points 4 and 5.

It may appear that there is a great deal of freedom in the SSDA design, as the
position of a number of points can be varied. However, it must be remembered
that this is one of six identical wings, which together must cover the antenna
surface. Therefore the variable parameters must be optimised to give a design
where adjacent wings come close to matching. The whole process was encoded as
a MATLAB (MathWorks, 1992) routine, where these parameters could be varied,
and a plot of thc panel design produced. This was run a number of times to
achieve a good match between adjacent panels. The final design is shown in
Figure 8.12. This shows that, where gaps between adjacent wings would have
occurred, material has been added to one or other of the wings. This gives panels
with more than four sides, but does not affect the folding in any way. The position
of the points is given later in Table 8.1, which also gives the position of the
connecting bar.
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Figure 8.12. Final panel design.
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Figure 8.13. Joint numbering for connecting bar.

-

8.3.2. Positioning of the Connecting Bar

Having configured the panels of the SSDA, the next step is to fit the connecting
bar. One end of the connecting bar is fixed, by a revolute joint, to panel 5 on one
wing. The other end of the bar is connected, by a revolute joint, to panel 4 on the
next wing. While it is feasible to connect the other end of the bar to panels 3 or
5 on the next wing, difficulties occurred with both of these choices. A schematic
diagram of the numbering scheme used to define the position of the connecting bar
is shown in Figure 8.13. The coordinate system used for the analysis is also shown
in the figure. The position of points 1-7, 10, 11 and 16 have already been defined
in the previous section. Points 12 and 13 define the revolute joint connecting
panel 5 to the connecting bar. Points 14 and 15 define the revolute joint at the
other end of the connecting bar. Points 8 and 9 define the revolute joint where the
connecting bar from the previous wing is attached. As a symmetric mechanism is
being considered, points 14 and 15 are simply points 8 and 9 rotated about the
centre of the hub by «/3 radians.

Points 8 and 9, and 12 and 13, cannot be placed with complete freedom. A
number of conditions must be fulfilled. Firstly, it is essential that the connecting
bar should fit the antenna, both when open and when folded. Secondly, it is
desirable that the points do not lic far from the antcnna surface, so that the
connecting bar should not hinder the efficient packaging of the panels. To fulfil
this, both points 8 and 12 were defined to coincide with the antenna surface.
Thirdly, point 12 must be placed so that the connecting bar can rotate from its
open to its closed configuration without interfering with panel 5. This can be
done by ensuring that point 12 is on the outer edge of the antenna.

The positioning of the connecting bar was analysed by means of a FORTRAN
routine, design.f. The routine is passed information about the antenna surface
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and 15 parameters which can be varied. It returns 15 parameters which are
measures of constraint violation; the 15 constraints are derived from thc conditions
the antenna has to fulfil. When all of these output parameters return zero, an

acceptable design has been calculated.
design.f can be ‘solved’ by the NAG routine COSNJF (NAG, 1990). COSNJF is

designed to simultaneously solve a number of non-linear equations. COSNJF varies
the 15 inputs to design.f until the 15 conditions return zero.
The 15 variable parameters passed to design.f are:

1-5 The rotation of the 5 hinges between panels, from the open to the folded
configuration.

6 The rotation of the hinge between panel 5 and the connecting bar, from the
open to the folded configuration.

7-9 The cartesian coordinates of point 8 in the open configuration.
10-12 The cartesian coordinates of point 9 in the open configuration.
13-15 The cartesian coordinates of point 13 in the open configuration.

A number of constants are also passed to design.f. They include the coor-
dinates of points 1-7, 10, 11, and 16, which are already known, and a number
of design parameters. The design parameters are the coordinates of point 12,
the angle at which hinge 12-13 lies from the z-y plane, ¢, and the z-coordinate
of point 8, 8z. Different values of these parameters produce different designs of
antenna.

The routine design.f calculates the position of all points after folding, and
returns 15 values, such that when these 15 values are zero, the 15 parameters
which have been passed specify a satisfactory design. This is an antenna that not
only fits together when folded, in the way shown in Figure 8.9, but also satisfies
the design parameters (e.g. the z-coordinate of point 8).

The 15 values which design.f returns are given below.

1 Distance from point 3, when folded, to a radial plane through the vertex of
the hub. This distance is zero if the folded shape is as-shown in Figure 8.9.

2 Distance from point 4, when folded, to a radial plane through the vertex of
the hub, see (1).

3 Distance from point 6, when folded, to a radial plane through the vertex of
the hub, see (1).

4 Distance from point 10, when folded, to a radial plane through the vertex
of the hub, see (1).

5 Distance from point 16, when folded, to a radial planc through the vertex
of the hub, see (1).

6 Difference between the z-coordinate of point 8, and that specified by the
design parameter.
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7 Distance from point 8 to the antenna surface, which should be zero

8 Distance from point 9 to point 8 minus 100mm. This difference should
be zero, because the distance bétween the two spherical joints defining a
revolute joint is defined to be 100 mm. This condition also includes a penalty
formulation to ensure that 9z > 8z else there would be two possible positions
for point 9.

9 Distance from point 13 to point 12 minus 100 mm, see (8). This condition
also includes a penalty formulation to ensure that 13z > 12z.

10 Difference between the angle of line 12-13 and the z-y plane when the an-
tenna is open, and that specified by the design parameter, ¢. This difference
should be zero.

11-13 Differences in the cartesian coordinates of point 8 when folded, and rotated
about the hub by 7 /3 radians, and the cartesian coordinates of point 14 when
folded. This difference should be zero, as the points should coincide.

14-15 Differences in the coordinates of point 9 when folded, and rotated about
the hub by 7 /3 radians, and the coordinates of point 15 when folded. Only
two conditions need be fulfilled for this, as points 8 and 9, and points 14
and 15, must be the same distance apart.

Thus the routine design.f and the NAG routine COSNJF calculate a design
for the antenna which fits together both when open, and when folded. It is
possible to vary the design using three design parameters. These are, in the open
configuration:

1. How far round the circumference of the antenna point 12 is placed, which
can be defined by its y-coordinate, 12y.

2. The z-coordinate of point 8, 8z.
3. The angle of the hinge-line 12-13 from the z-y plane, ¢.

For any sensible choice of these three parameters, a design can be produced.
However, the design is guaranteed to fit together only when open and when folded.
It is necessary to simulate the folding process to consider what happens between
these two extremes.

8.3.3. Unfolding Simulation

The SSDA has a mobility of one. Therefore, performing a simulation of the
folding process requires that, at each stage, the angle of one revolute joint is
fixed. It should then be possible to calculate the other five angles to ensure that
the mechanism still fits together. For all the simulations described here, the angle
fixed is the angle between panel 5 and the connecting bar. This is for two reasons.
The first is that this choice produced successful results for the simulation. The
second reason is that, in the manufactured antenna described in Chapter 9, it is
this hinge that is motorised.
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The simulations were performed using a F ORTRAN routine, unfold.f. This
routine is passed six parameters, #,—0¢, which are respectively the 5 angles between
panels, and the angle between panel 5 and the connecting bar . unfold.f returns a
single value which is the sum of the squares of the errors at the two spherical joints
used to simulate the revolute joint at the end of the connecting bar (as described
in Section 8.2). This value takes into account both positional and angular errors.

At each step during the simulation, the value of 6, is fixed, and the other values
0,-05 are found. This is done by the NAG routine E04JAF, a minimisatioh routine.
It varies the angles 6;—05 to find a minimum in the error returned by unfold.f.
If the antenna fits together at all stages, and thus remains a mechanism, this
minimum will be zero.

Unfortunately, none of the designs tried remained a mechanism during the
folding process. This destroys many of the assumptions used to set up the simula-
tions. The antenna is required to deform during folding, and correctly modelling
this would be much more complex. Despite this, the method is still useful, and
was used to design the prototype antenna described in Chapter 9. However, the
emphasis on what is being done now changes. It is no longer a correct simulation
of the kinematics of deployment. It is now an attempt to prove that a path ex-
ists between the folded and deployed configuration which does not require large
deformations. The system is effectively being modelled as rigid apart from the
hinge between the connecting bar, and panel 4 on the next wing, where an er-
ror is allowed, as explained above. This error is minimised at each stage of the
folding process. Thus, during folding, a plot of error is produced. The various
design parameters mentioned in the previous section can be varied to produce new
plots. The next section explains how these parameters were varied to produce an
optimum design.

Each simulation in fact models the antenna unfolding. Each of the angles,
0,—0¢, starts at their folded values (found from design.f). 6; is reduced to zero
in steps, and at each stage the best set of angles 6,~0s is calculated. None of
the angles are allowed to become less than zero, as this is not allowed on the
manufactured antenna. Also, a ratchet mechanism is simulated so that each angle
can only go towards zero, to aid convergence. This may not occur in practice, but
the aim is to show the existence of a low-deformation path between the folded and
deployed configurations. If necessary a practical antenna could be guided towards
such a path by spring-loaded joints.

8.3.4. Optimisation

From the sections above, it is possible to design a number of SSDAs by varying
the position of the correcting bar. However, none of the designs investigated fit
the ideal of a strain-free folding. Given this, the best approach is to design an
SSDA which undergoes the smallest possible deformation during folding.

What is required is an optimisation process. Three parameters can be varied:
12y, the y-coordinate of point 12; 8x, the z-coordinate of point 8; &, the angle
hinge 12-13 makes with the z-y plane (¢ is positive above the plane). The 3
parameters are defined in the configuration when the antenna is deployed.

Specifying the parameters 12y, 8z, and ¢ fixes the design of the antenna.
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By varying 8z, 12y, and ¢, an antéenna must be designed which undergoes the
minimum deformation during folding. Deformation is measured in the sense of
the previous section, i.e. as if it were all concentrated at one joint. Although this
is obviously unrealistic to obtain the exact folding process, an antenna showing
small deformations by this measure will only have to undergo small, distributed
deformations in practice. This approach is validated by the antenna manufactured
in Chapter 9.

The optimisation technique was was fairly crude. A grid of the variables 12y
and 8z was generated. At each point on this grid, the value of ¢ was varied to find
the value which gave the smallest deformation during unfolding. The deformation
was measured by the simulation process described in the previous section, with ¢
being reduced to zero in 20 steps. This resulted in a grid of values of maximum
deformation during unfolding, for varying coordinates 8z and 12y. From this grid
the lowest value of deformation was chosen.

Figures 8.14-8.19 show typical values obtained during the optimisation pro-
cess. Figure 8.14 shows the deformation, and Figure 8.15 the folding angles, during
the unfolding simulation when 8z = 0.500m, 12y = 0.000m, and ¢ = 0.02rad.
This is not the optimum value for 8z and 12y, but is the optimum ¢ for this par-
ticular value of 8z and 12y. The deformation plot consists of two peaks. The end
of the first peak corresponds to a jump in the value of some of the hinge angles,
particularly 6,. This peak appears to correspond to the mechanism being forced
through an impossible position. The second peak occurs when a number of the
hinges have been reduced to their minimum value of zero, and hence have reduced
the mobility of the mechanism.

Figure 8.16 shows the deformation, and Figure 8.17 the folding angles, during
the unfolding simulation when 8z = 0.382m, 12y = 0.251m, and ¢ = 0.10rad.
This is the optimum value found for 8z and 12y, but not for ¢. Note that this
design has point 8 on the edge of panel 4, and point 12 corresponding with point
16. The deformation plot again consists of two peaks. Now, however, the first
peak has almost disappeared.

Figure 8.18 shows the deformation, and Figure 8.19 the folding angles, during
the unfolding simulation when 8z = 0.382m, 12y = 0.251 m, and ¢ = 0.34rad.
This is the optimum value found for all parameters. The deformation plot again
consists of two peaks. These peaks are now, however, very much reduced. The
maximum value of deformation of 0.0005 m? corresponds to an error at the con-
necting bar hinge of 22 mm, compared with the overall diameter of the antenna
of 1.46 m. This amount of deformation should easily be accommodated within
the panels, and it was on this design that the final SSDA design was based, as

described in the next section.

8.4. Final Design

This section describes the final design of SSDA, the mannfactnre of which is
described in Chapter 9. Table 8.1 gives the position of all of the design points,
shown in Figure 8.13, for this design. The design was arrived at by using the
design process described in Sectlion 8.3.
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Figure 8.14. Deformation of SSDA where 8z = 0.500m, 12y = 0.090 m,
# = 0.02rad, during unfolding.
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Figure 8.18. Deformation of SSDA where 8z = 0.382m, 12y = 0.251 m,
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Table 8.1. Position of all points (all dimensions in m)

| Point no. || z-coordinate | y-coordinate | z-coordinate |

1 -0.042 -6:117 0.006
2 0.081 -0.117 0.008
3 0.083 -0.219 0.022
4 0.228 -0.044 0.022
5 0.231 -0.287 0.055
6 0.376 0.059 0.059
7 0.382 -0.386 0.120
8 0.426 -0.132 0.073
9 0.526 -0.134 0.069
10 0.522 0.131 0.117
11 0.530 -0.455 0.198
12 0.686 0.251 0.216
13 0.767 0.304 0.241
14 0.327 0.303 0.073
15 0.379 0.388 0.069
16 0.686 0.251 0.216

-

The design described here is slightly different from the optimum described in
Section 8.3.4. This is because, in order to prevent the connecting bar from colliding
with panels during folding, it is necessary for the hinge axis to be some distance
below the the antenna surface. Therefore, the hinge was initially placed further
along the same hinge axis, which placed it on the other side of the panel (next
to panel 5), 40mm below the antenna surface. The design was finally changed
slightly from this to allow a little extra space, and the hinge is in fact 50 mm below
the antenna surface.

A more detailed simulation was performed to check for collisions between pan-
els, and between panels and the connecting bar. Obviously, this simulation is
subject to the errors inherent in a model where the deformation is concentrated
in one place. However, as the deformation in the chosen design is small, this
should make little difference. This is verified by comparing the final simulation
results with the actual deployment, as shown in the next chapter.

The position of a large number of points on the antenna, both on the front and
the back face, were calculated as the antenna unfolded. The antenna was then
displayed using a MATLAB routine, and by looking at the antenna from various
positions in space, collisions between panels were checked for. ‘I'he design followed
an iterative process. Larger gaps between the folded panels were introduced, as
mentioned in Section 8.3.1, to avoid collisions. Also, a non-straight connecting
bar was introduced, also to avoid collisions.

Four views from the simulation of the final design of the SSDA unfolding are
shown in Figures 8.20-8.23.
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Figure 8.20. Simulation of the deployment of the SSDA: fully folded.
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Figure 8.21. Simulation of the deployment of the SSDA: one-third de-
ployed.
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Figure 8.22. Simulation of the deployment of the SSDA: two-thirds de-
ployed.
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8.5. Concluding Remarks

This chapter has explained how the SSDA, whose manufacture is described in the
next chapter, was designed. The design process relies heavily on the tools based
on dual quaternions described in Chapter 7.

Dual quaternions were used in the design process in two ways. Firstly, they
were used to design the position of the connecting bar, and to determine how the
antenna fitted together when folded. For this they were entirely successful. It was
necessary to have a method where the position of the parts of the system could
be calculated, for an arbitrary position of the hinges of the system.

The second use of dual quaternions was to simulate the folding process, and
here the method is less suitable. For a purely kinematic simulation there is no
problem with the method, although the solution process for a closed chain could be
considerably improved. The method is much less suitable for simulations where
the system does not remain a strain-free mechanism, but requires deformation
of panels. The method was not designed for this purpose. However, although
the method of simulating the folding process was greatly simplified, this has the
advantage of reaching a solution quickly, which is particularly important in an
optimisation setting.

A more realistic simulation would require additions to the theory outlined in
the previous chapter. Dual quaternions could be included in the simulation to
describe the deformation of the panels, which could lead to a more realistic sim-
ulation. An alternative solution would be to use commercially available software
for the simulation, such as MECANO (Geradin et al., 1989). An improved sim-
ulation could then be used to give a much better measure of the deformation
of the antenna, e.g. the maximum strain energy during the unfolding, and this
could form the basis of an optimisation, but the computational cost is likely to be
prohibitive.
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9. MANUFACTURE AND TESTING OF SSDA

A model was made of the SSDA whose final design is described in Section 8.4. A
photograph of the final model is shown in Figure 9.1. This model is meant to prove
the viability of the concept discussed, and not to be a development prototype for
space hardware. There are a number of features which would not be acceptable
for a real antenna; these areas would of course be changed in a better prototype.
Sections 9.1-9.4 describe different aspects of the model, and also mention how
each aspect may be changed on actual flight hardware. Section 9.5 briefly describes
the simple testing that has taken place, and Section 9.6 concludes the work on

the SSDA.

9.1. Antenna Surface

The antenna surface is made of 3 mm thick glass-fibre. It was made by moulding
the glass fibre over an existing aluminium antenna. A base was added, in the
form of an aluminium annulus, to what would eventually become the hub. It was
fastened to the centre of the rear of the antenna using an epoxy, Araldite.

A large number of points were marked onto the glass-fibre surface. These
points not only included the corners of each of the panels, the coordinates of which
are given in Table 8.1. They also included the positions where other hardware was
bolted to the surface, e.g. hinges and hinge stops (see Section 9.2). The points
were marked on the surface using a pen fitted to an arm on a Kearns Horizontal
Boring Machine in the Cambridge University Engineering Department workshops.
This machine could accurately position the pen in space, and so mark the correct
coordinates.

The hinges which connect the panels together (described in more detail in
Section 9.2) were accurately bolted to the uncut surface. The surface was then
cut into panels using a woodworking jigsaw. The cuts between panels were not
made accurately, as they are neither important to the kinematics of deployment,
nor to the way the antenna fits together when folded. These properties depend
on the positions of the hinges.

In practice, of course, the antenna surface would not be made from glass-fibre.
It would probably be made using a honeycomb material of e.g. aluminium or
Kevlar, with the front face metallised to form a reflective surface. This would
give a much lighter structure for a given required stiffness.
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Figure 9.1. Model of SSDA, showing anti-gravity system.
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Figure 9.2. Typical hinges between panels.

9.2. Hinges Between Panels

The hinges between panels are simple brass hinges which were bought in a local
hardware shop. These hinges are bolted on to the front of the antenna. Typical
hinges on the antenna surface are shown in Figure 9.2. ’

The hinges could not simply be bolted directly to the antenna surface. All con-
nections between panels, except between the first and second panel, were made
using two revolute hinges. The axes of these hinges must coincide with the as-
sumed hinge axis, which passes through the corners of the panels. This is shown
schematically in Figure 9.3. In order for this to be achieved, appropriately sized
wedges of Al-alloy were manufactured to fit beneath the hinges.

The hinges were positioned on the antenna surface by accurately marking the
positions where the bolts holding the hinge to the surface pass through the surface.
This was done as mentioned in the previous section. These holes were drilled, and
the hinges positioned, before the antenna was cut into individual panels.

It was found that for the hinges near the hub it was not possible for the hinge
axis of the brass hinges to lie on a hinge line passing through the corners of the
hub. This was because the offset of the axis of the brass hinges was too great for
it to be hidden by the curvature, as it is in Figure 9.3. To avoid this problem,
all hinge axes on the surface were raised by 3mm. This avoids any change in
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Figure 9.3. Hinges lying on the hinge line.

139




SSDA MANUFACTURE AND TESTING

the kinematics or the folded shape of the structutre, and is equivalent to having a
surface 3 mm thicker. The change was accounted for in the simulations by making
the antenna 3 mm thicker, so the back face of the computer model and the back
face of the practical model coincide.

Hinge stops were also added to the modél. These are small lengths of alu-
minium angle which are bolted to the rear of the panels at hinge lines. They were
added to the surface before it was cut into panels, and they prevent the hinge
from rotating past its deployed configuration.

In practice it would be necessary for the hinge mechanism not to interrupt the
antenna surface. A simple way of achieving this would be for the hinges to consist
of two spherical joints, one at each end of the hinge line. This would require
minimal protrusion onto the antenna surface, and would eliminate any potential
problem in aligning two revolute hinges.

9.3. Connecting Bar

The connecting bar connects panel 5 on one wing to panel 4 on the next. It is
connected via a motorised revolute joint to panel 5, and a passive revolute joint to
panel 4. The connecting bar is made of aluminium tube with an outside diameter
of 16mm, and a wall thickness of 0.5mm. It can be seen in both the photograph
of the passive joint in Figure 9.4, and of the motorised joint in Figure 9.5.

The passive revolute joint connecting the bar to panel 4 is again a simple brass
hinge. The hinge is connected to panel 4 by an aluminium bracket. This bracket
was carefully manufactured to ensure that the axis of the hinge is where it was
designed to be. The bracket is connected to the panel by carefully positioned holes
on the surface, which were marked as described earlier. The hinge is connected to
the connecting bar through a rectangular aluminium block, in which a hole had
been drilled to correctly orient the connecting bar. A photograph of the complete
passive hinge mechanism is shown in Figure 9.4.

The connecting bar is attached to panel 5 by a motorised hinge. The connect-
ing bar is initially connected through a carefully oriented hole in a rectangular
aluminium block. This block can be rotated about the hinge axis by a heavily
geared-down electrical motor. The whole active hinge assembly is attached to
the panel by carefully positioned holes in the surface, which were marked as de-
scribed earlier. A photograph of the complete active hinge mechanism is shown
in Figure 9.5.

On a practical antenna, the connecting bar could be a very similar system,
although more carefully engineered. A more carefully designed connecting bar
could allow for a tighter packaging of the antenna when folded. The method
of driving the mechanism, having distributed motors around the circumference of
the antenna, is very similar to that utilised on the Hoop-Column Antenna (Camp-
bell et al., 1988). If required, the motorised hinges could easily be replaced by
some other driving mechanism, e.g. a spring-damper system, or a hinge driven
by memory-metal alloy. There is potential for considerable redundancy in this
wethod of driviug the antenna. If a symnnetric iechanisin was ensured passively,
e.g. by synchronising all of the revolute joints connected to the hub (this is done
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Figure 9.5. The connecting bar active hinge mechanism.
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on the TRW Sunflower), then it may not be necessary for all the connecting bars
to be driven by motors.

9.4. Anti-Gravity System

The model antenna surface is too flexible to retain a good parabolic shape when
cut into panels. In order to test the antenna, an anti-gravity system is required.

In order to correctly simulate zero-gravity, every body should be supported at
its centre of gravity. However, this would be too complex for this early model.
Instead, each wing has its own anti-gravity system. A wire is attached to the
surface, and runs over a pulley to an appropriate weight. The pulley itself is on a
rotating bar, to allow it to remain approximately above the point on the surface
where the wire is attached during deployment. The wire is attached to the surface
on panel 5, close to the motorised hinge assembly. This is because this assembly
represents a significant part of the weight each wing has to carry. The anti-gravity
system can be seen above the antenna in figure 9.1.

9.5. Testing

The only testing that has been performed on the model has been to show that
it can deploy and fold. The model is deployed and folded by simultaneously
turning all the motors connected to all six wings. This ensures a symmetric
folding/unfolding path. The model has been deployed and folded a number of
times without problems.

A single deployment can take as little as 30s. Four views from a deployment
are shown in Figures 9.6-9.9. These views are very similar to the ones produced
by the simulation of the final design, shown in Figures 8.20-8.23. This validates
the simplified modelling approach for this antenna.

During the deployment, there is some evidence of both the peaks in deforma-
tion predicted by the simulation, and shown in figure 8.18. During deployment,
when the antenna reaches the first peak, where the simulation predicts a jump in
the angle of the hinges connected to the hub, these hinges do in practice quickly
start to open. Also, where the simulation predicts a second peak in deformation,
the antenna shows a small snap-through to the final, deployed, configuration.

The model SSDA deploys entirely successfully, with no manual intervention
required. However, the antenna does not fold so well. During folding, when the
antenna teaches the last peak in deformation predicted by the simulation (i.e. the
first reached during deployment), the antenna starts to follow an incorrect path,
and manual intervention is required for it to fold correctly. No studies were done
on the retraction of the antcnna. If an antcnna was required which could both
deploy and retract, then some design changes would have to be made to ensure
that the correct path was followed during folding.

The final model antenna is 1.48 m in diameter (slightly larger than assumed in
the design). When folded, it fits into a cylindrical envelope, 0.55m in diamcter,
and 0.80m long. Defining the initial antenna diameter as D, and the final package
dimensions as diameter d and length [, this gives a d/D ratio of 0.37, and an [/ )
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Figure 9.6. Deployment of SSDA: fully folded.
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Figure 9.8. Deployment of SSDA: two-thirds deployed.
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Table 9.1. Comparison of packaging for various deployable antennae.

| Concept | d/D|1/D |
SSDA (current model) 0.37 | 0.54
SSDA (with simple improvements) || 0.29 | 0.50
TRW Sunflower 0.44 | 0.37
TRW Extended Sunflower 0.29 | 0.43
ESA/Dornier DAISY/MEA 0.36 | 0.51

ratio of 0.54. With more careful design of the connecting bar, and less conservative
gaps between panels, a very similar antenna could fit into a cylindrical envelope
0.43m in diameter, and 0.74m long. This then reduces the packaging ratios to
d/D = 0.29, and /D = 0.50.

9.6. Conclusions

This chapter has shown a successful demonstration of the concept of the SSDA.
Table 9.1 compares the SSDA with other published concepts of deployable anten-
nae based on solid panels. Also included are figures for an improved SSDA, which
could now easily be manufactured with the experience of the making the original
model, by using less conservative design. The other concepts used for comparison
are the TRW Sunflower concept (Archer & Palmer, 1984), and the ESA/Dornier
DAISY/MEA concept (Specht, 1990). Also included are figures taken from a
drawing in Hedgepeth (1989) of the TRW Extended Sunflower. It is difficult to
make comparisons with this concept, as it is not clear how it works. It does,
however, rely on 55 panels, considerably more than any other concept.

The most critical dimension of a payload is generally its diameter, and hence
the parameter d/D is the most important packaging ratio. By this measure, the
SSDA, even in its present primitive form, packs as well as the DAISY/MEA
concept, and considerably better than the TRW Sunflower. With some sim-
ple improvements, the SSDA would show a much better packing ratio than the
DAISY/MEA, and be equal with the Extended Sunflower. Note, however, that the
DAISY/MEA concept has a much more complex deployment mechanism, while
the Extended Sunflower relies on a very large number of panels, and an unknown
-deploymen: mechanism.

In terms of packaged length, the SSDA is similar to the DAISY/MEA, and
worse than both TRW Sunflowers. However, the SSDA has one important advan-
tage, because it allows for more usable space for other equipment when folded.
The other concepts fold entirely in front of the mechanism hub, and so all of the
space within their packaged envelopes cannot be used for other purposes. With
the SSDA, half of the antenna folds by wrapping around empty space at the rear
of the hub. This space could then be used for other equipment, e.g. the antenna
pointing mechanism, or other parts of the satellite. -
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10. CONCLUSION OF DISSERTATION

This dissertation has developed a number of new concepts for use as deployable
structures. Each concept has undergone some preliminary development and anal-
ysis to prove its viability. A common conceptual approach has been followed for
much of the dissertation. For the design of the SSDA, and for both the geo-
metric and computational modelling of foldable cylinders, no attempt was made
to develop a model which exactly reproduced the real behaviour of the system.
The approach was to find an appropriate simplified model which reproduced the
important aspects of the system.

Each concept has been developed as generally as possible, mostly without
reference to any specific end uses. The following three sections considers how
each of the concepts developed in this dissertation may be used, and how practical
issues relating to their use may be resolved. It is hoped that the lists of potential
applications are not complete. The concepts have been developed in a non-specific
way in the hope that this may inspire new applications.

10.1. Foldable Cylinders

Foldable cylinders are the most abstract of the new ideas developed in this dis-
sertation. There are a number of potential application for foldable cylinders, and
Chapter 5 took some steps in considering the practical issues relating to two of
them.

The first, and most obvious, application of foldable cylinders is as a protective
sheath around deployable booms. Such sheaths are necessary to protect thin
walled booms from the effects of thermal shock. For this, the concept has two
advantages over other systems. Firstly, a foldable cylinder is a developable surface.
This means that it can be made from an extruded tube which is folded in the
correct places. This eliminates one of the problems with a bellows type structure,
where a large number of joins have to be made by e.g. ultrasonic welding, in a
difficult and costly manufacturing process.

The second advantage of foldable cylinders is that they unfold, in an entirely
predictable way, into a structure with stiffness and strength. It is always an
advantage in deployable structures design to be able to predict what will happen
during deployment, to prevent potential problems of fouling during deployment
or retraction.

Another potential application of foldable cylinders is as a collapsible fuel tank.
The fuel tank collapses as fuel is used, so that the fuel within the tank is always
in a known place. This is an advantage for e.g. the attitude control of spacecraft.
The concept is particularly apt for hydrazine, a highly corrosive rocket fuel which
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reacts with rubber seals. It may also be possible, by varying cylinder parameters,
for the fuel tank to pressurise the fuel. This is discussed below.

A possible use of foldable cylinders further in the future is as deployable vol-
umes. These have a number of potential uses, such as living habitats for space
flight, or as space hangars (Cox & Nelson, 1982).

A number of further applications for foldable cylinders may be opened up
by some adjustment of the parameters defining the cylinders, so that they are
no longer strain-free both in the open and closed configurations. This alteration
was suggested by the geometry plots of Chapter 3. It may give the potential for
cylinders which release strain energy to open automatically, and thus become de-
ployable booms. These booms would have the potential to carry sensitive services,
such as gas pipes or data cables, within them, in a protected environment. It may
also be possible to have cylinders which automatically fold, and could be used to
pressurise fuel in a collapsible fuel tank, thereby eliminating the need for pumps.
If these cylinders folded by forming a transition zone, the pressure supplied to the
fuel would remain constant during collapse.

Another possible area of work is the application of the geometrical methods
developed in Chapter 3 to other systems, specifically coilable masts. The design of
coilable masts appears not to be well understood, and this method may give some
valuable insights into how coilable masts work, and how they may be designed.

10.2. Wrapping Fold Pattern

The obvious application of the wrapping fold pattern is as a solar sail. This is
how the present interest in this concept began. Many of the practical issues of
using the pattern as a solar sail have been considered by Cambridge Consultants
Ltd. (1989). The concept could also be used in other applications where a large
area in space is required, such as to provide solar power.

The work on the fold pattern itself is not complete. No consideration has
been given to the degenerate case mentioned in Section 6.2.2. This could lead to
fold patterns where the membrane is folded into a conical shape, which may be
useful to fit inside the nose cone of a launch vehicle. Another area that is worth
investigating is the use of the extra fold lines called minor folds by Scheel (1974),
and shown in Figure 2.3. These limit the packaged height of the membrane, and
thus may be useful in packaging a membrane within a certain fixed shape.

10.3. Solid Surface Deployable Antenna

This dissertation has developed a new type of deployable reflector, the SSDA. The
design philosophy behind this antenna is to keep the detailed mechanical design
as simple as possible. Thus, although the geometry and the overall design process
is complex, the final antenna relies only on simple revolute joints. To develop the
SSDA into a flight-ready mechanical design would not require new technology;
the level of technology would certainly be simpler than that required by, e.g., the
MEA reflector.
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The SSDA described in Chapter 9 is simply a proof of concept of the idea. A
number of elements could be changed, while still utilising the same basic design.
A more advanced optimisation may improve the positioning of the connecting bar,
and the packing could be improved with less conservative design. The actuators,
which would not have to be motors, could be placed elsewhere in the system. A
coupling of the joints at the hub would lead to a system with considerable re-
dundancy. The choice of six wings was completely arbitrary, and another number
may be found to be optimum.

Major changes could also be made to the SSDA. Examples include applying the
same concept to an offset parabola. There are no fundamental problems with this,
but the design process would become more complex due to the lack of symmetry.
Also the concept could be extended to larger reflectors by having more than five
panels and more than one connecting bar per wing. There is no fundamental limit
to how far this may be taken, theoretically allowing any packing efficiency to be
achieved. This contrasts with other, existing concepts.
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