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ABSTRACT 

In  this paper we are concerned with the wrapping of a flat, thin membrane around a central hub. The 
folding pattern consists of a series of hill and valley folds, as in a recent proposal by Temple and Oswald  
for the design of a solar sail. For launch their sail is wrapped around the circular body of the spacecraft, 
about 4 m in diameter; once in orbit it is deployed to a 276 m diameter disk which can collect enough 
solar pressure to sail to Mars. 

The paper begins with a brief survey of related work: it turns out that, since the early 1960's, several 
people have thought about folding thin sheets in this way, and yet no complete solution or even 
explanation is available. We present a simple description of the folding technique. Based on the 
simplifying assumption that the membrane to be folded has zero thickness, we identify some key 
properties of the folding pattern and hence show how to draw the fold pattern. Then we present a simple 
way of computing the correct fold pattern for thin membranes. We discuss some alternative fold patterns, 
including irregular hubs and other variants. 

In the Appendix we give two fold patterns from which simple demonstration models can be made. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From: R. Motro & T. Wester, Structural Morphology / Morphologie Structurale, Proceedings of the First 
International Seminar on Structural Morphology, Montpellier, 7–11 September 1992, pp 203–215 



 
 

 
 

Fig.1. The basic fold pattern, for n = 24. 
 
1.  INTRODUCTION 

The folding of thin, flat sheets is a matter of daily routine: a letter is often folded about its centre line 
and then again about the new centre line to fit a standard size envelope; a road map is usually folded into 
a narrow concertina pattern, with fold lines parallel to the shorter sheet side, and then the other way about 
a fold line perpendicular to the previous set. 

In  this paper we are concerned with the wrapping of a flat, thin membrane around a central hub as 
shown in Fig. 1. It can be seen that the folding pattern consists of a symmetric set of hill and valley folds. 
This folding pattern was proposed by Temple and Oswald (Cambridge Consultants, 1989) for the design 
of a solar sail. For launch the sail is wrapped around the circular body of the spacecraft, about 4 m in 
diameter; once in orbit it deploys into a 276 m diameter disk which can collect enough solar pressure to 
sail to Mars. See Wright (1991) for a general introduction to solar sailing. 

Since the early 1960's several people have thought about folding thin sheets in this way. The idea can 
be found, very much in an embryonic form, in Huso (1960). Huso had invented a sheet reel for folding 
compactly the tarpaulin cover of a car. His device consists of a fixed part, connected to the car roof, and a 
rotatable hub connected to the tarpaulin: when the hub is rotated the tarpaulin is gradually wound onto it. 
A series of prongs have the function of guiding the tarpaulin while it is drawn towards the hub, to achieve 
a fairly uniform folding. Figure 4 of Huso (1960) is a sketch of the expected folding pattern: each fold 
appears to start tangential to the hub. 

The technique was refined by Lanford (1961) who patented the folding apparatus shown in Fig. 2, 
where the regular spacing of hill and valley folds is achieved by means of guiding wires tensioned by 
weights. This produces a fully-folded sheet with a regular saw tooth edge. The fold lines, sketched in Fig. 
2(a) are not straight, and were described as of helical shape by Lanford. 
A third contribution was made by Scheel (1974), whose patent "Space-saving storage of flexible sheets" 
envisages a set of straight flexible ribs and major folds approximately tangent to the hub; a further set of 
intermediate folds along which the sheet is folded in alternate directions, intermediate folds bisect the 
angles between adjacent major folds; and, possibly, some additional minor folds, parallel to the major 
folds, see Fig. 3. This pattern leads to a series of  pleats and sub-pleats, which are wrapped around a 
circular hub, as in the previous two patents. It will be shown in Section 2.2. that Scheel's major and  
 
 
 
 

 



 
Fig. 2. Lanford's folding apparatus. 

 

 
Fig. 3. Scheel's fold pattern. Valley folds shown by dashed lines. 

 
intermediate folds can be obtained as a degenerate case of a standard fold pattern based on Lanford's 
folding. 

Later on, a mesh antenna which is folded by wrapping its ribs around a hub was developed (Wade 
and McKean, 1981). No further progress was made until Temple and Oswald put forward their solar sail 
proposal. The key difference in their approach is that, instead of relying on folding devices, they derived 
an approximate equation for a fold line and, having made a template, were able to prefold a membrane 
according to the correct pattern. They made a series of simple paper models which could be folded and 
unfolded very easily by hand, without any prongs or guiding wires.  

Our interest in this problem began after a lecture during which Temple demonstrated one of his 
models. We decided to look for a simple description of the folding technique and for ways of computing 
the correct fold pattern. We believe that we have been successful on both fronts. We have found that, 
with the simplifying assumption that the membrane to be folded has zero thickness, some key properties 
of the folding pattern can be identified and hence the fold lines can be drawn quite easily. In this context 
we have also explored some alternative, non-symmetric fold patterns. All of these matters are discussed 
in Section 2 of this paper. The assumption of a zero-thickness membrane is, actually, not acceptable and 
in fact simple models produced according to Section 2 do not work well in practice, even when made 
from 
 

 



 
Fig. 4. (a) Standard, two-way fold pattern. (b) Fold pattern from Miura et al. (1980), fully extended.  

(c) Same pattern, fully folded. Valley folds shown by dashed lines. 
 
standard photocopying paper sheets, whose thickness is approximately 0.1 mm. Hence, in Section 3 we 
discuss a rather simple way of accounting for membrane thickness: although conceptually unchanged, our 
approach is now a little more formal and, following some simple computations, the position of each fold 
line is found and drawn by plotter. A Discussion of the approach adopted and some suggestions for 
further work conclude the paper. 

Before starting our detailed investigation into the wrapping of membranes it is useful to discuss a 
rather different folding technique (Miura, 1980) because the necessary conditions for inextensional 
folding apply to our problem as well. Miura noticed that the standard way of packaging a thin rectangular 
sheet, by folding it about its centre line and then repeating this process, say, for a total of five times, 
produces the fold pattern shown in Fig. 4(a). The fold lines intersect at twenty-one inner vertices: at each 
vertex  there are two pairs of collinear folds. Figure 4(b) shows the slightly more elaborate and yet much 
better fold pattern devised by Miura, which produces a coupled biaxial contraction of the sheet and 
requires hinges of uniform thickness, unlike the pattern of Fig. 4(a) where the folds formed last have to 
bend round several layers of previously formed folds.  

Miura (1989) shows that, for inextensional folding, three of the four fold lines intersecting at a vertex 
must be of one sign (e.g. concave, or valley folds) and the fourth of opposite sign (convex, or hill fold). 
With a single exception, in Section 2.2, all fold patterns considered in this paper are precisely of this type. 
The same paper shows that if there are only two fold lines meeting at a vertex, they must be collinear; 
that there can be no vertices with three fold lines, unless — of course— two of them are collinear and the 
third is not active; and finally that there can be no vertex where all fold lines have equal sign, unless there 
are two folds only. Miura's results, originally obtained for the discrete case of straight folds  intersecting 
at vertex points, can be extended by a limit process to discuss the properties of curved fold lines as well, 
see Section 4. 

 

2.  MEMBRANES OF ZERO THICKNESS 
Because we are interested, obviously, in fold patterns with a finite number of folds and also in 

preserving the flatness of the hub, folds which are continuously curved around the hub are not possible 
(Johnson and Yu, 1980). Therefore, it is necessary to assume that at the centre of the fold pattern there 
will be an n-sided polygon with straight sides. Figure 5(a) shows the fold pattern for a membrane of zero 
thickness, to be wrapped around a hexagonal hub, in this section we show how this pattern was obtained. 
In analogy with Scheel (1974), we shall call major folds the n = 6 folds which originate at hub vertices 
and extend to the edge of the fold pattern.  Note that, when the membrane is absolutely flat and hence 
fold signs do not matter, the folding pattern itself has n-fold rotational symmetry. 

The treatment presented in this section is applicable to any polygonal hub, the only requirement is 
that the number of sides n, and hence the number of major folds, should be even because each hill fold 
needs a corresponding valley fold. Initially, we will look at regular polygons; irregular polygons will be 
considered in Section 2.1. 

We begin by calculating the angles between fold lines intersecting at a hub vertex. Referring to 
vertex A, Fig. 5(b), given the hub angle α, we wish to calculate the angles β, χ, δ. Obviously, 



 
 
 
 

 
Fig. 5.(a) Fold pattern for n = 6 and t = 0. (b) Detail of (a). (c) Wrapped configuration of  

membrane panels in (b). Valley folds shown by dashed lines. 
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because the sum of the inner angles in an n-sided, regular polygon is (n − 2)π. Also 
 
    α + β + χ + δ = 2π (2)  

because the angular defect at every point of the membrane, point A in particular, is zero (Calladine, 
1983).  

To obtain two more equations we consider the fully wrapped configuration. Because the membrane 
has zero thickness, it coincides —in plan view— with the edge of the hub. Hence BC, DE, FG end up 
vertical, which implies 
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π
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Because, by symmetry, the angles at vertex A are equal to the corresponding angles at B, Fig. 5(b), 
and BC is vertical after wrapping, we have the fourth condition, see Fig. 5(c): 
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Given equation (1), the solution of the system of equations (2-4) is 
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which defines completely the fold pattern in the region next to the hub. Note that AC bisects the angle 
between side AB and the line of side OA.  

Next, to define the remainder of the folding pattern, we note that the folds BC, DE, FG end up 
parallel in Fig. 5(c) and hence have to be parallel, since they are coplanar, also in Fig. 5(b). They are also 
equidistant because in Fig. 5(c) they pass through adjacent vertices of the hub. With reference to Fig. 
5(a), this shows that type b folds are parallel and equidistant. By symmetry, the same is true for type d 
folds. 

Finally, we note that B, D, F and, similarly, A, C, E, G, are collinear because type c folds pass 
through the intersections of  folds b and d, in Fig. 5(a). 

Now we are ready to draw a complete folding pattern on a flat sheet. First we draw an n-sided 
regular polygon representing the hub: its sides are alternate hill and valley folds. Then, we draw n major 
fold lines, each forming an angle β = π/n with a side of the polygon. Finally, we draw the n sets of 
equally spaced, parallel folds b and d, orthogonal to the sides of the hub. 

2.1  Irregular hubs
There is no need for the hub to be a regular polygon, the only requirement —as explained earlier— is 

that n should be even. Obviously, equation (1) does not hold for irregular polygons, but equations (2 - 4) 
still hold. Note that the reasoning for equation (4) has to be modified slightly, but the final result does not 
change. Thus, given the inner hub angle αi at vertex i, where i = 1, ... n, we have  

    
βi =  

π − αi

2
,  and  δ i =

π
2

, (6)
 

from which the folds next to the hub can be drawn, as before. After that, since the n major folds are still 
straight, there is no difficulty to complete the fold pattern. 

It is interesting to consider the case of an irregular polygon with equal sides but angles equal only at 
alternate vertices, e.g. for n = 4 a rhomboidal, instead of a square hub. In this case, any configuration has 
n/2-fold rotational symmetry. In the wrapped membrane the hub vertices are no longer at the centre, as in 
Fig. 1. 

2.2  A regular, degenerate case
The idea of having alternate angles of different  size can be taken to the limit. For example, let us 

start from the pattern of Fig. 5(a) and, while keeping the side lengths equal, let us change the inner 



 
Fig. 6. Degenerate version of fold pattern in Fig. 5(a). Valley folds shown by dashed lines. 

 
angles: α1 = α3 = α5 → π/3 while α2 = α4 = α6 → π. From equation (6) β1 = β3 = β5 → π/3 and β2 = β4 = 
β6 → 0. Thus, in the limit, we obtain the fold pattern shown in Fig. 6 with three major hill folds and three 
major valley folds, as the pattern from which it originated.  

The fold pattern of Fig. 6 has three interesting features. First, in the wrapped configuration the hub is 
at the bottom of the membrane. Second, the vertices on the triangular hub are points of intersection of 
five folds, not just four as in the standard case. It might be expected that such degenerate arrangements 
would have more inextensional mechanisms than the standard fold pattern. However, it can be verified by 
means of the extended Maxwell's rule (Calladine, 1978) applied to a triangulated bar-and-joint model of 
the membrane that, actually, there are still only three independent mechanisms, one of which is activated 
for folding. Third, the central part of the folding pattern in Scheel (1974) is essentially identical to this 
one, although Fig. 3 has six hub vertices while Fig. 6 has only three and folds b and d are not shown in 
Fig. 3. We have just shown that these fold patterns require a polygonal hub, hence obviously a membrane 
folded according to Scheel's pattern will wrinkle in the region near the cylindrical hub. Furthermore, the 
major folds are straight, as in Figs 3 and 6, only for membranes of zero thickness, hence Scheel's pattern  
would not be correct in practice. 

Although obtained as a special, degenerate case of the fold pattern of Fig. 5(a), the pattern of Fig. 6 
—and many others with the same key feature of having five folds meeting at each hub vertex— could be 
obtained directly from an approach similar to that in Section 2. There is only one key difference: because 
at each vertex there are five angles but only four geometrical conditions on them, now there is some 
freedom and hence several different wrapped configurations can be obtained. The pattern of Fig. 6 
satisfies the additional condition that two angles external to the hub are equal to π/2, hence the wrapped 
membrane has a flat lower edge, level with the hub. Many other choices are possible; for example, the 
lower edge of the membrane could be made to lie on a conical surface, entirely above the hub. 



 
 

 
Fig. 7. (a) Plan view of a major fold line in the wrapped configuration, for t > 0. Vertex points  

Pij on major folds in (b) wrapped and (c) flat configurations. Note that in (c) P12 
is no longer on a radial plane through P12, etc.  

3.  THIN MEMBRANES 
The fold patterns derived in the previous section can be modified to account for a small membrane 

thickness t > 0. For the sake of simplicity, we shall consider only the basic fold pattern, based on regular 
polygonal hubs, as in Fig. 5(a). Thus all of the symmetry considerations in Section 2 are still valid. Our 
approach could be readily extended to irregular hubs and also to degenerate cases. 

Obviously, the wrapped membrane will no longer coincide with the edge of the hub, a consideration 
which greatly simplified our analysis in Section 2. To make progress it is crucial that, having removed 
our earlier, unrealistic assumption that t = 0, we identify some key property that avoids unnecessary 
complications in the analysis. A rather obvious line of attack would be to think of the membrane as a 
series of thick, rigid panels hinged at the edges but this leads to fairly intractable singularities at the fold 
lines. 

A more productive approach is to assume that the wrapping of a membrane with t > 0 around an n-
sided polygon is essentially equivalent to the wrapping of a membrane with t = 0 such that, after folding, 
its vertices lie on helical curves whose radius increases at a constant rate, based on t. With this approach 
we neglect the (small) out-of plane bending of each membrane panel and also the localised bending near 
each vertex. Although of negligible importance in an overall sense, the deformation and stress state in the 
membrane near a vertex may need to be analysed separately. 

Figure 7(a) shows the first major fold after wrapping, in plan view; if t = 0 it would coincide, of 
course, with the edge of the hub. Because the profiles of the other five major fold lines have identical 
shape, in plan view, they are obtained simply by rotation of the first fold about the centre of the hub. 
Therefore, membrane panels such as BCED in Fig. 5(c) are no longer plane, after wrapping, because BC 
and DE are not vertical, although they still lie in vertical, radial planes. 

We shall now describe the process by which, starting from the hub, we can position the fold lines 
next to it and hence the first set of n vertices away from the hub. The next set of fold lines and vertices 
are positioned by the same process, and so on. Let us denote by Pij the j-th vertex on the i-th major fold. 
For convenience, we shall work in the cylindrical coordinate system O, r, θ, z defined in Fig. 7(c).  In the 
wrapped configuration, the vertices on the first major fold, assumed to be a hill fold, are 
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where z2, z3, etc. are positive quantities, to be determined, and  
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For the second major fold, which is a valley fold: 
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Note that, for simplicity, the thickness t of the hub has been neglected and hence the z-coordinates of 
all vertices Pi1's vanish. Also, by symmetry, the z-coordinates of equal numbered vertices on different 
folds are equal in absolute value; of course, this would not be true for irregular hubs. 

Thus, the r, θ coordinates of all vertices as well as the z-coordinates of hub vertices are known in the 
wrapped configuration, but the z-coordinates of non-hub vertices are unknown. However, in Section 2 we 
had a condition on the angular defect at each point of the membrane by which these unknown coordinates 
can be found. The condition involves the four angles at any vertex. We can calculate the direction cosines 
of these angles by taking the dot-products of unit vectors between suitably chosen vertices, in the 
wrapped configuration. For example, Fig. 7(c), the angles at a hub vertex are 
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while the angle α is still given by equation (1). The dot-products can easily be taken after converting the 
vertex cylindrical coordinates to a cartesian system with the same origin O. We can substitute these 
expressions into equation (2), then solve for the unknown z2, and then calculate β, χ from equations (10, 
11). Hence, we can draw the fold pattern as far as vertex Pi2 for each major fold. 

Next, to calculate z3 and hence ε, φ, see Fig. 7(c), we express ε, φ, γ in terms of vertex coordinates by 
equations analogous to (10-12) and then substitute them into the angular defect condition for vertex P22 

    ε + π −β −δ( ) + φ + γ = 2π . (13)  

In the Appendix we give the fold patterns, computed as described above and then plotted by 
computer, for the following two cases. (i) A hexagonal hub and 2 mm thick membrane with five vertices 
on each major fold. This pattern is not meant for use with a 2 mm thick sheet (with R/t = 7.5 it would be 
far from thin) but with ordinary photocopying paper, to produce a fairly open wrapped configuration, 
suitable for simple demonstrations.  (ii) A 12-sided hub and 0.2 mm thick membrane. If these patterns are 
magnified by, e.g., photocopying, note that the corresponding values of t are also magnified. 

Folding patterns for irregular hubs can be computed by an approach similar to that described above 
but, because the z-coordinates of corresponding vertices are no longer equal in magnitude, a system of up 
to n equations in the z-coordinates of these vertices has to be set up and solved, instead of a single 
equation, as above. 

4.  DISCUSSION 
A distinctive feature of the approach presented in this paper is that straight-sided polygonal hubs, not 

circular hubs, have been considered. Although the same assumption appears to have been made implicitly 
by all those who have worked on this problem before, because the fold patterns that we generate are 
basically in agreement with those drawn previously, we believe that this feature had not been fully 
exploited before. We think that continuously curved hubs are, almost certainly, ruled out. It might be 
argued that our approach could produce a circular hub by increasing the number of sides of a regular 
polygon, as n → ∞. This would require infinitely many hill and valley folds, obviously impossible to 
arrange in practice. The wrapped membrane would have negligible height and very large thickness but, 



actually, the basic assumptions of the derivation, namely of no wrinkling and inextensional behaviour, 
would cease to be valid long before such large values of n are attained. 

The main difficulty with curved folds can be explained as follows. A curved fold line in a flat 
membrane  requires that the membrane be curved in opposite directions, since at any point of the curved 
fold two of the four folds required according to Miura (1989) are along the curved fold itself. These two 
folds have equal sign, hence two more folds of opposite signs are required. If the hub has to stay flat, as 
assumed above, then the outside region has to take a negative gaussian curvature, which requires some 
extensional deformation. It would be interesting to explore further this situation by a numerical approach 
(Miller et al., 1985). 

By starting from the simpler and yet somewhat impractical case of zero-thickness membranes, we 
have been able to identify some key features of the fold patterns. Thus, it has been shown in Section 2 
that the basic pattern, with four folds meeting at each hub vertex, is fully determined by the shape of the 
hub. Additional freedom is available in patterns where five folds meet at each hub vertex. This is a topic 
for further investigation. 

As a final remark, we should like to emphasise that all fold patterns described in this paper have been 
derived from consideration of the flat and the wrapped configurations only. Hence, within the 
approximations of our approach, everything will fit in these two configurations. On this basis alone, it 
would be by no means certain that a continuous, inextensional transition from one state to the other is 
possible. At this stage, the only evidence that this is indeed the case is that many models that we have 
made work well and are apparently undamaged after many months of use. This is not an entirely 
satisfactory statement, of course, and further analysis of the deployment process is planned. 
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APPENDIX 
These patterns are suitable for photocopying (but watch out for distortions introduced by the copying 

machine) and producing simple paper models. It is suggested that fold lines be lightly scored with a blade 
on the outside of each fold, prior to folding. Extra care is required in the folding of the n = 12 model, 
hence it is better to begin with the first model to gain some practice. 

 
 
 
 
n = 6,  t = 2 mm 
 

 
 

 
 
 
 
 
 
 



 
 
 

n = 12,  t = 0.2 mm 
 

 


