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Abstract Symmetry arguments characterise the mechanisms and states of self-
stress of the ‘double banana’ and its n-fold generalisations (bar-and-joint
assemblies of n distorted bipyramids linked at shared apical vertices).
The scalar form of Maxwell’s rule shows only that any states of self-
stress and mechanisms of these systems are equal in number, whereas
the symmetry extension of the rule shows further that they are either
equisymmetric (for odd n) or differ in two specific one-dimensional rep-
resentations (for even n). General symmetry criteria are stated for the
indeterminacy produced by similar condensations of rigid frameworks
with suppression of two joints.
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1. INTRODUCTION

The ‘double banana’ (Figure 1) is a classic example of a structure that
satisfies Maxwell’s rule for the rigidity of frames and yet is clearly inde-
terminate, since the two banana units are free to rotate about the line
joining their common points (the so-called ‘implied edge’ (Graver, Ser-
vatius and Servatius, 1993)). It has been shown (Fowler and Guest, 2000)
that a symmetry extension of Maxwell’s rule can provide extra informa-
tion that detects and characterises such indeterminancies in favourable
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Figure 1. The ‘double banana’.

cases. Here we show that the application of symmetry analysis of this
type detects the mechanism and its associated state of self-stress in the
double banana. A full symmetry description of mechanisms and states
of self stress is also presented for the generalised n-fold ‘multiple ba-
nana’, and for some related frameworks produced by augmentation of
polyhedra with banana subunits on all edges.

2. THE DOUBLE BANANA

Maxwell’s rule (Maxwell, 1864), that a statically and kinematically
determinate framework with b bars and j joints obeys

b = 3j − 6, (1)

is clearly satisfied by the single ‘banana’ formed by face-fusion of two
tetrahedra, which has b = 9, j = 5. When the double banana is created
by joining two such units, with net elimination of two vertices, Figure 1,
the Maxwell rule is still satisfied (b = 18, j = 8) but the composite struc-
ture now has an obvious mechanism. The two bananas can rotate freely
about the line joining their common vertices. Calladine’s statement of
an extended Maxwell rule (Calladine, 1978),

s−m = b− 3j + 6, (2)

where s and m count states of self-stress and mechanisms, respectively,
implies the existence of a corresponding state of self-stress. This is easily
seen to be the state in which one banana is in tension and the other is
in compression. Counting structural components alone cannot deduce
s = m = 1 from s−m = 0, but in this case, consideration of component
symmetries can.
The symmetry extension of Maxwell’s rule (Fowler and Guest, 2000)

is
Γ(s)− Γ(m) = Γ(b)− [Γ(j)× ΓT − ΓT − ΓR], (3)
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where Γ(s), Γ(m) etc. are the representations of s states of self-stress, m
mechanisms, b bars and j joints, and ΓT , ΓR are the translational and
rotational representations, all within the point group of the undistorted
frame. Several examples of the use of this formula are given in the
original reference.
In the present case, the point group of the double banana is D2h and

the evaluation of the term in square brackets on the RHS of (3) proceeds
as

D2h E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz)

Γ(j) 8 2 2 0 0 6 2 4
×ΓT 3 −1 −1 −1 −3 1 1 1

= 24 −2 −2 0 0 6 2 4
−ΓT − ΓR −6 2 2 2 0 0 0 0

= 18 0 0 2 0 6 2 4

which reduces to

4Ag + 2B1g +B2g + 2B3g +Au + 2B1u + 3B2u + 3B3u.

Similarly, the first term on the RHS of (3) gives

D2h E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz)

Γ(b) 18 0 2 0 0 6 0 6

which reduces to

4Ag + 2B1g +B2g + 2B3g +Au + 2B1u + 4B2u + 2B3u.

Hence, by subtraction, Γ(s) − Γ(m) = B2u − B3u, and the separate
symmetries of the state of self-stress and the mechanism are Γ(s) = B2u
and Γ(m) = B3u, respectively.
B2u is the symmetry of a vector pointing along the y axis (Atkins,

Child and Phillips, 1970), and matches the dipolar state of self-stress in
which the two bananas have equal and opposite bar forces. Likewise, B3u
is the symmetry of a vector pointing along the x axis, and matches the
mechanism, in which the two bananas have equal and opposite rotational
displacements about the common axis. Figure 2 represents these sym-
metries in a symbolic notation which will be useful for larger systems.

This linearised analysis shows the existence of a local, possibly in-
finitesimal, possibly finite, mechanism. In the special case of the double
banana it is possible to deduce that the mechanism is in fact finite. This



4 P.W. Fowler and S.D. Guest

+ _

(a) (b)

Figure 2. Representation of (a) the single state of self-stress, and (b) the single
mechanism, of the double banana. Each vertex represents a banana: in (a), the + or
− represents an overall state of tension, or compression; in (b), the arrow represents
rotation of the banana around the shared implied edge.

follows from the fact that the symmetries of the mechanism and the
state of self-stress remain distinct along the path followed by the mech-
anism (Guest and Kangwai, 1999), which preserves C2v symmetry. In
this lower group, the mechanism is totally symmetric, whereas the state
of self-stress is antisymmetric under the C2 rotation and one reflection
operation.
Although the banana unit considered here has a triangular cross-

section, the analysis is easily seen to generalise to bipyramidal units
based on any cross-section, including the pentagon of the biological ba-
nana, as long as the two units remain symmetry-equivalent under a
reflection or C2 rotation. The following section shows how far these con-
siderations may be extended for systems with more than two banana
subunits.

3. THE MULTIPLE BANANA

An obvious generalisation of the double banana is themultiple banana:
a set of n bananas in which exactly two joints are common to all n
subunits (Figure 3). The multiple banana satisfies Maxwell’s rule (with
b = 9n, j = 3n+2) and obeys Calladine’s extended version with s = m,
but it is also intuitively clear thatm = n−1 (each banana is free to rotate
about the axis defined by the two common joints, but concerted rotation
of all n constitutes a rigid-body motion rather than a mechanism), and
hence s = n − 1 (tensions can be freely chosen for n − 1 subunits, that
in the final subunit being constrained by the requirement of preserving
equilibrium).
An analysis similar to that in the previous section can be performed for

any particular value of n, but a more general formulation is also straight-
forwardly constructed. For this purpose, the full three-dimensional n-
fold multiple banana framework can be replaced by an n-vertex polygon,
where each vertex stands for a banana subunit. A local tension in a sub-
unit is then shown as a scalar at the relevant vertex, and the rotational
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Figure 3. An example of the multiple banana, here a triple banana with three
sub-units.
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Figure 4. (a) The two states of self-stress, and (b) the two mechanisms, of the
3-banana, described using the notation introduced in Figure 2. A double + or arrow
represents a quantity with double magnitude.

motion of a single subunit as a tangential vector at that vertex, Figure
4.
The representation of the n − 1 states of self-stress in the symmetry

group that describes the undistorted structure (in this case Dnh for an
n-fold banana) is then seen to be

Γ(s) = Γσ(v)− Γ0 (4)

where Γσ(v) is the permutation representation of the vertices of the poly-
gon, and Γ0 is the totally symmetric representation, which has character
+1 under every operation of the symmetry group. The interpretation of
this group-theoretical formula is that the states of self-stress comprise
all the independent combinations of local tensions (vertex scalars) that
sum overall to zero, or in other words all those that are orthogonal to
the totally symmetric (1, 1, 1, . . .) combination.
Likewise, the representation of the mechanisms of the n-fold multiple

banana is
Γ(m) = Γ→(v)− ΓRz

(5)

where Γ→(v) is the representation of a set of in-plane tangential vectors,
one for each vertex, and ΓRz

is the representation of a rotation about
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the axis of the structure. The relation (5) expresses the fact that any
combination of such vectors, with the exception of the concerted rigid-
rotation, stands for an internal mechanism.
Γσ(v) is a familar object, tabulated in the chemical literature, but

Γ→(v) is more unusual. However, its evaluation can be side-stepped by
use of the identity (Fowler and Quinn, 1986)

Γσ(v)× ΓT = Γσ(v) + Γπ(v) (6)

where Γπ(v) is the representation of the set of pairs of orthogonal tan-
gential vectors at vertex sites. In systems with a horizontal mirror plane,
the π space splits into disjoint representations of the in-plane and out-
of-plane tangential vectors:

Γπ(v) = Γ↑(v) + Γ→(v). (7)

The part of Γπ(v) that is antisymmetric with respect to the horizontal
plane is

Γ↑(v) = Γσ(v)× ΓTz
(8)

where Tz is a translation along the principal axis, so that the desired
symmetry Γ→(v) can be found by subtraction as

Γ→(v) = Γπ − Γσ(v)× ΓTz
= Γσ(v)× ΓTx,Ty

− Γσ(v), (9)

where ΓTx,Ty
is the representation of the in-plane translations Tx and Ty.

It is therefore possible to express the symmetries of the mechanisms in
terms of Γσ(v) only:

Γ(m) = Γσ(v)× {ΓTx,Ty
− Γ0} − ΓRz

. (10)

Equation (10) is completely general for all n, and, taken with (4),
satisfies the target of giving an explicit expression for both Γ(s) and
Γ(m) in terms of a property of the polygon (namely Γσ(v)), but it can
be given a more transparent form if the two cases of odd and even n are
treated separately. It turns out then that

(n odd) Γ→(v) = Γσ(v)− Γ0 + ΓRz
(11a)

and

(n even) Γ→(v) = Γσ(v)× ΓRz
. (11b)

Both statements are easily proved by considering characters under the
possible symmetry operations of Dnh for odd and even n. It follows that

(n odd) Γ(m) = Γ(s) (12a)
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and

(n even) Γ(m) = Γ(s)× ΓRz
. (12b)

Equations (4) and (12) give a complete symmetry specification of the
indeterminacy of the multiple banana. From (12), the representation
Γ(s)− Γ(m) vanishes identically for odd n and for even n is given by

(n even) Γ(s)− Γ(m) = {Γσ(v)− Γ0} × {Γ0 − ΓRz
}. (13)

A further simplication is possible. Equation (13) apparently has a
linear dependence on n, through Γσ(v). In fact, Γσ(v) can be eliminated
altogether if we define a representation Γ?, which is the symmetry of a
decoration of the vertices of the polygon with consistently alternating +
and − signs all the way around the ring. In a chemical context Γ? is a
powerful tool in the study of unsaturated systems; its relevance follows
from the bi-partite nature of the n-polygon, as the sign decoration can
be achieved only for even values of n. In terms of the Γ? representation,

(n even) Γ(s)− Γ(m) = Γ? × {Γ0 − ΓRz
}. (14)

Equivalence of (13) and (14) follows from the angular momentum prop-
erties of Γσ(v), which consists, apart from Γ0 and Γ? of pairs Γ±Λ that
are self-conjugate under Rz and so make no net contribution to the RHS
of (13). The equivalence can also be proved by direct comparison of
characters.
In point groups Cnv, Dn, Dnh and Dnd, ΓRz

is non-degenerate and
distinct from Γ0, and the direct inference from the negative sign on
the RHS of (14) is that, for even n, Γ(m) always contains the one-
dimensional representation Γ? × ΓRz

, whereas Γ(s) contains Γ? itself.
The implications for the application of the Maxwell rule and its various

extended forms to these systems can be summarised as four subcases.

n = 1. Both counting and symmetry versions of the rule agree in
correctly predicting that s = m = 0.

n = 2. Simple counting fails, but the symmetry version correctly
predicts s = m = 1 with Γ(s) = B2u and Γ(m) = B3u.

odd n > 1. Counting correctly predicts s = m, and the symmetry ver-
sion extends this to the equisymmetry Γ(s) = Γ(m). Fur-
ther considerations give s = m = n−1 and Γ(s) = Γ(m) =
Γσ(v)− Γ0.

even n > 2. Counting correctly predicts s = m, and the symmetry
version extends this to Γ(s) − Γ(m) = Γ? − Γ? × ΓRz

,
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with Γ(s) containing Γ? and Γ(m) containing Γ? × ΓRz
.

Further considerations fix the full sets of symmetries as
Γ(s) = Γσ(v)− Γ0 = Γ(m)× ΓRz

.

This completes the characterisation of the indeterminacy of the mul-
tiple banana. Similar reasoning can be extended to frameworks based on
attachment of banana units to polyhedral frameworks, as will be shown
in the next section.

4. OTHER AUGMENTED FRAMEWORKS

The reason for the celebrity in rigidity theory of the double banana
is that condensation of two rigid frameworks introduces freedom in this
simple system, without disturbing the Maxwell bar count. Any two
determinate frameworks can be condensed in this way, across any pair
of joints, whether linked by a bar or not, with consequent introduction of
a degree of freedom. Condensation across pairs of joints directly linked
by a bar can also be used to introduce additional freedoms in cases where
the original frameworks were not themselves rigid. Multiple bananas are
the result of repeated formal condensation of this last type, all based on
the single implied edge of the double banana.
Another family of statically indeterminate bar-and-joint assemblies

can be constructed when augmentation with banana subunits is car-
ried out globally, once per bar, on a framework. Symmetry arguments
can again give a helpful improvement over the simple Maxwell count-
ing procedure for these augmented systems. Specifically, let the initial
framework be a polyhedron P . Each additional subunit spanning an
edge of P contributes an extra state of self-stress associated with a com-
pression or tension that can be denoted by a scalar associated with that
edge, and the total set of such states therefore has symmetry

Γ(sextra) = Γσ(e), (15)

i.e. the permutation representation of the edges (bars) of P . Each sub-
unit also introduces a rotational freedom about the augmented edge, and
the total set of such mechanisms spans the symmetry

Γ(mextra) = Γ⊥(e), (16)

the representation of a set of tangential vectors across the edges of P .
Thus the Maxwell indeterminacy symmetry for all such systems is the
difference of a scalar and a vector representation defined on the polyhe-
dron edges:

Γ(sextra)− Γ(mextra) = Γσ(e)− Γ⊥(e). (17)
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Both Γσ(e) and Γ⊥(e) can be expressed in terms of other structural
representations (Ceulemans and Fowler, 1991), and in specialised forms
when P belongs to the class of deltahedra, or alternatively of their duals,
the trivalent polyhedra.
Three examples of the augmentation of initially determinate struc-

tures (so that Γ(s) = Γ(sextra), Γ(m) = Γ(mextra)) are presented. Aug-
mentation of a simple triangle leads to a 30-bar, 12-joint system that
is completely specified by the symmetry-extended Maxwell rule. In the
D3h group, with z taken along the three-fold axis, evaluation of (17)
gives

Γ(s)− Γ(m) = A′1 + E′ −A′′1 − E′′, (18)

and hence
Γ(s) = A′1 + E′,

Γ(m) = A′′1 + E′′,
(19)

as Γ⊥(e) = Γσ(e)× ΓTz
= Γσ(e)×A′′1 for the underlying triangle.

Augmentation of a tetrahedron leads to

Γ(s) = A1 + E + T2,

Γ(m) = T1 + T2,
(20)

and as the s and m have a representation in common, their difference
alone, in the symmetry-extended Maxwell rule, would give only partial
information on each.
Similarly, augmentation of an octahedron yields a framework with

Γ(s) = A1g + Eg + T2g + T1u + T2u,

Γ(m) = A2u + Eu + T1g + T2g + T1u,
(21)

and again the pair of representations carry more information than the
Maxwell difference alone.

5. CONCLUSION

The aim of the present paper has been to confirm the utility of symme-
try arguments as an adjunct to static and kinetic analysis of frameworks.
Symmetry extension of the Maxwell rule is sufficient to provide a full
description of the double banana. The outcome of the detailed analy-
sis in Section 3 is an essential symmetry distinction between odd-n and
even-n multiple-banana systems. When n is odd, the mechanisms and
states of self-stress are equisymmetric; when n is even, their symmetries
differ only by two (one-dimensional) representations. This distinction
further defines the amount of information that can be gained from the
symmetry-extended Maxwell equation in such cases.
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Finally, it was noted that the multiple banana is only one, highly
symmetric example of a more general class of problem. Any case where
linkage of two fully determinate frameworks is carried out by identifying
a pair of vertices introduces equal numbers of states of self-stress and
balancing mechanisms, as does each repetition of the operation.
Symmetry considerations of the structural representations Γσ(v), Γσ(e),

and their vector derivatives will identify completely Γ(s) and Γ(m) for
augmented frameworks, and the symmetry-extended Maxwell rule will
improve on the counting version in many cases. The degree of advan-
tage will of course depend on the amount of symmetry in the structure,
but where such symmetries exist, their incorporation in the analysis will
always be fruitful.
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