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Abstract

Body-bar frameworks provide a special class of frameworks which
are well understood generically, with a full combinatorial theory for
rigidity. Given a symmetric body-bar framework, this paper exploits
group representation theory to provide necessary conditions for rigid-
ity in the form of very simply stated restrictions on the numbers of
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ations of the framework. We give some initial results, and conjectures,
for when these conditions are also sufficient for rigidity.

∗supported by the DFG Research Unit 565 ‘Polyhedral Surfaces’
†supported by a grant from NSERC (Canada)

1



1 Introduction

This paper describes the conditions that symmetry places on body-bar frame-
works that are isostatic, i.e., both statically and kinematically determinate,
thus extending the work on bar and joint frameworks that was described in
Connelly at al. (2009).

Body-bar frameworks consist of rigid bodies in a d-dimensional space that
are connected together by rigid bars, each of which provides a length con-
straint between two joints which lie on different bodies. Body-bar frameworks
provide a useful way of describing many structures and mechanisms. In par-
ticular, they avoid difficulties that occur using combinatorial algorithms to
detect mechanisms and states of self-stress for bar and joint frameworks in
3D (Whiteley 1996), where the ‘double banana’ (see, e.g., Fowler and Guest
2002) provides a classic counter-example to the existence of a straightforward
extension to 3D of the Laman (1970) characterisation of isostatic 2D bar and
joint frameworks. Body-bar frameworks hold the promise of a systematic the-
ory of rigidity which exhibits all the key combinatorial properties, theorems
and algorithms of the well understood plane bar and joint structures (Tay
1984, Whiteley 1988, White and Whiteley 1987). These good combinato-
rial properties are the reason that body-bar frameworks form the underlying
model used in calculations regarding the flexibility of biomolecules (see e.g.,
Hespenheide et al., 2004).

A number of ‘classical’ linkages and robotic mechanisms have the struc-
ture of a body-bar framework. One simple example is the Stewart platform,
which is two bodies joined by six bars (Fichter et al. 2009). The platform is
manipulated by changing the length of the six bars (pistons). A key concern
are the singular positions, where the structure both becomes dependent (has
a static self-stress) and loses access to one of the original 6 degrees of free-
dom (Fichter 1986). Figure 1 shows examples of Stewart platforms where
the actuating bars have been given a fixed length, so that they become rigid
bars.

Body-bar frameworks may often be generated in a symmetric configu-
ration, and this paper examines the impact of symmetry on the rigidity of
the framework. The paper extends the prior work on necessary conditions
imposed on bar and joint frameworks by various symmetry groups to provide
necessary conditions on body-bar frameworks to remain isostatic. Further,
the good combinatorial properties of body-bar frameworks raises the promise
of converting these necessary conditions into necessary and sufficient condi-
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Figure 1: A Stewart platform is a simple example of a body-bar framework,
which can become symmetric. In (a) all joints are distinct, in (b) some of
the joints are identified. We will focus on structures of type (a).

tions for frameworks with symmetry.

2 Background

2.1 Scalar counting rule

A d-dimensional body-bar framework consists of a set of b full-dimensional
rigid bodies in Rd which are connected by e rigid bars. The bodies each
move, preserving the distance between any two points that are connected by
a bar. The underlying combinatorial structure for a body-bar framework in
d-space is a multigraph G = (B, E) which allows up to

(
d+1
2

)
edges (forming

a set E) between any pair of ‘vertices’ (forming a set of bodies, B). The
upper bound on the number of bars is motivated by the fact that the space
of infinitesimal motions of a full-dimensional rigid body in d-space (such as
a rigid bar and joint framework whose joints span all of Rd) has dimension(

d+1
2

)
. So, in order to join two rigid bodies in Rd in such a way that the

resulting structure is again rigid, one needs
(

d+1
2

)
properly placed bars, and

additional bars will give a local overconstraint between the two bodies.
The configuration p of a d-dimensional body-bar framework G(p) de-
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fines the positions of all the end-points of the bars of G(p) in Rd (i.e., the
attachment points of the bars on the bodies). We will restrict our config-
urations to realisations in which all the attachment points on a particular
body are distinct, e.g., the system shown in Figure 1(a), and not that shown
in Figure 1(b). Further, we only consider body-bar frameworks with in-
jective configurations in this paper, and hence we do not allow attachment
points to coincide at all. A number of subtle difficulties can occur in apply-
ing techniques from group representation theory to the analysis of body-bar
frameworks with non-injective configurations. A detailed discussion of these
difficulties can be found in Schulze (2010a), with further discussion in Section
6.1.

For an arbitrary dimension d, the following result has been proven by Tay
in 1984 (see also White and Whiteley, 1987).

Theorem 1 (Tay, 1984) For a generic body-bar configuration in IRd, p, the
body-bar framework G(p) is isostatic if and only if G = (B, E) satisfies the
conditions:

(i) e =
(

d+1
2

)
b−

(
d+1
2

)
;

(ii) for any non-empty set of bodies B∗, which induce just the bars in E∗,
with |B∗| = b∗ and |E∗| = e∗, e∗ ≤

(
d+1
2

)
b∗ −

(
d+1
2

)
.

Equivalently, the body-bar framework G(p) is isostatic in d-space if and only
if G = (B, E) is partitioned into

(
d+1
2

)
spanning trees.

A simple counting rule can be developed from Theorem 1 for possibly
non-generic frameworks (i.e., where the bodies and bars may not lie in a
completely general position) by considering the linear algebra of an equilib-
rium or rigidity matrix (as described, for example, in Guest and Pellegrino,
1994), or can be derived as a special case of mobility counting, see Guest
and Fowler (2005). For a system with an m-dimensional space of internal
infinitesimal mechanisms, and an s-dimensional space of self-stresses, the
counting rule is

m− s =

(
d + 1

2

)
(b− 1)− e. (1)

Equation (1) gives a simple counting condition for the determinacy of a d-
dimensional body-bar framework, in terms of the number of ‘vertices’ (bod-
ies), b, and the number of ‘edges’ (bars), e, of the structure. The number
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m− s on the left hand side of equation (1) expresses the net freedom of the
structure as the difference between the dimension of the space of infinitesimal
internal mechanisms and the dimension of the space of self-stresses. A stati-
cally determinate structure has s = 0; a kinematically determinate structure
has m = 0; isostatic structures have s = m = 0.

Throughout this paper we will slightly abuse notation by denoting the
space of internal infinitesimal mechanisms and the space of self-stresses by
the same symbols, m and s, as their respective dimensions.

2.2 Symmetry-extended counting rule

To formalize the notion of a symmetric body-bar framework G(p), we consider
the bar and joint framework G(p) which is obtained by replacing each body
of G(p) with the bar and joint realisation of the complete graph on the set
of attachment points on the body. We define a symmetry operation of a
body-bar framework G(p) in Rd as an isometry R of Rd such that for some
graph automorphism α ∈ Aut(G), we have

R
(
p(v)

)
= p

(
α(v)

)
for all v ∈ V (G).

The symmetry element corresponding to R is the affine subspace of points in
Rd that are fixed by R (see Figure 2, for example). The set of all symmetry
operations of a body-bar framework G(p) forms a group under composition,
called the point group of G(p).

Note that the symmetry operations in the point group G of a body-bar
framework G(p) induce permutations of both the bodies and the bars of G(p).
These permutations in turn give rise to two ‘natural’ group representations of
G: the ‘internal’ representation which describes how the bars are being per-
muted by each symmetry operation in G, and the ‘external’ representation
which describes how the bodies are being permuted and how the coordinate
system for each body is effected by each symmetry operation in G. These
definitions of the internal and external representation are completely analo-
gous to the definitions of the internal and external representation introduced
in Kangwai and Guest (2000) and Fowler and Guest (2000) to establish the
symmetry-extended version of Maxwell’s rule for bar and joint frameworks
(see also Schulze (2009a), for further details). Using the basic techniques from
group representation theory given in Fowler and Guest (2000) and Schulze
(2009a), we can refine the scalar counting rule in equation (1) to take the
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following ‘symmetry-extended’ form:

Γ(m)− Γ(s) = [ΓT + ΓR]× [Γ(b)− Γ0]− Γ(e). (2)

This could also be derived as a special case of the symmetry-adapted mobility
rule given in Guest and Fowler (2005).

In equation (2), each Γ is known in mathematical group theory as a char-
acter (James and Liebeck, 2001), and in applied group theory as a represen-
tation of G (Bishop, 1973). For any set of objects q, Γ(q) can be considered as
a vector, or ordered set, of the traces of the transformation matrices Dq(R)
that describe the transformation of q under each symmetry operation R that
lies in G. In this way, (2) may be considered as a set of equations, one
for each conjugacy class of symmetry operations in G. Alternatively, and
equivalently, each Γ(q) can be written as the sum of irreducible representa-
tions/characters of G (Bishop, 1973). In (2) the various sets q are sets of
bodies b, bars e, mechanisms m and states of self-stress s; Γ0 is the triv-
ial representation which takes the value of one for all group elements, and
ΓT and ΓR are the representations of translations and rotations in d-space,
respectively (see also Schulze, 2009b).

In 3-space, equation (2) becomes

3D: Γ(m)− Γ(s) = [Γx,y,z + ΓRx,Ry ,Rz ]× [Γ(b)− Γ0]− Γ(e) (3)

where Γx,y,z is the representation of translations along the three Cartesian
directions and ΓRx,Ry ,Rz is the representation of rotations about the three
Cartesian directions. In the 3-dimensional case, calculations using (3) can
be completed by standard manipulations of the character table of the group
(Atkins, Child and Phillips, 1970; Bishop, 1973; Altmann and Herzig, 1994).

Analogously, for 2-dimensional body-bar frameworks (assumed to lie in
the xy-plane), equation (2) becomes

2D: Γ(m)− Γ(s) = [Γx,y + ΓRz ]× [Γ(b)− Γ0]− Γ(e). (4)

Note that equation (4) is obtained from equation (3) by replacing Γx,y,z

with Γx,y and ΓRx,Ry ,Rz with ΓRz , as appropriate to the reduced set of rigid-
body motions.

In the context of the present paper, we are interested in isostatic systems,
which have m = s = 0, and hence obey the symmetry condition Γ(m) =
Γ(s) = 0. In fact, the symmetric version of Tay’s equation (2), (3), (4) gives
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the necessary but not sufficient condition Γ(m)−Γ(s) = 0, as it cannot detect
the presence of paired equisymmetric mechanisms and states of self stress.

The symmetry-extended Tay equation corresponds to a set of k scalar
equations, where k is the number of irreducible representations of G (the
number of rows in the character table), or equivalently the number of conju-
gacy classes of G (the number of columns in the character table). The former
view has been used in Fowler and Guest (2000) and Schulze (2009a); the
latter view has recently been used in Connelly et al. (2009) to formulate the
additional necessary conditions for a symmetric bar and joint framework to
be isostatic in terms of simply stated restrictions on the numbers of joints and
bars that are unshifted by various symmetry operations of the framework.
In this paper, we again use the latter view to establish analogous restrictions
on isostatic symmetric body-bar frameworks.

A related analysis for bar and joint frameworks, which could also be
extended to body-bar frameworks, is given by Owen and Power (2008).

3 Two-dimensional isostatic body-bar frame-

works

In this section we treat the two-dimensional case: bars, joints, and bodies,
and their associated displacements are all confined to the plane. (Note that
frameworks that are isostatic in the plane may have out-of-plane mechanisms
when considered in 3-space.) We use the Schoenflies notation for symmetry
operations (see, e.g., Altmann and Herzig, 1994). The relevant symmetry
operations are: the identity (E), rotation by 2π/n about a point (Cn), and
reflection in a line (σ). The possible groups are the groups Cn and Cnv for
all natural numbers n. Cn is the cyclic group generated by Cn, and Cnv is
generated by a {Cn, σ} pair. The group C1v is usually called Cs.

All two-dimensional cases can be treated in a single calculation, as shown
in Table 1. Characters are calculated for four operations: we distinguish C2

from the Cn operation with n > 2. Each line in the table represents a stage
in the evaluation of (4). Similar tabular calculations are found in Fowler and
Guest (2000) and subsequent papers such as Connelly et al. (2009).

To treat all two-dimensional cases in a single calculation, we need a nota-
tion that keeps track of the fate of structural components under the various
operations, which in turn depends on how the bodies and bars are placed with
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respect to the symmetry elements. A key concept is whether a component is
shifted or unshifted by a symmetry operation: loosely, a component (body,
bar) is unshifted if it is not moved (but may be reoriented) by a symmetry
operation. More precisely, given a body-bar framework with point group G,
we say that a body is unshifted by a symmetry operation R in G if it is
fixed by the permutation of the bodies induced by R, i.e., if each attachment
point on the body is mapped to a (possibly different) attachment point on
the same body; similarly, a bar is unshifted by R if either R

(
p(v)

)
= p(v)

and R
(
p(w)

)
= p(w) or R

(
p(v)

)
= p(w) and R

(
p(w)

)
= p(v), where p(v)

and p(w) are the endpoints of the bar (see also Figures 2, 3, 4, 5, and 6).
The notation used in Table 1 is as follows.

b is the total number of bodies;

bn is the number of bodies which are unshifted by a given n-fold rotational
symmetry operation Cn≥2;

bσ is the number of bodies unshifted by a given reflection σ;

e is the total number of bars;

e2 is the number of bars left unshifted by a C2 operation; (see Figure 2(a)
and note that Cn with n > 2 shifts all bars);

eσ is the number of bars unshifted by a given reflection σ (see Figure 2(b):
the unshifted bar may lie in, or perpendicular to, the mirror line).

Each of the counts refers to a particular symmetry element and any structural
component may therefore contribute to one or more count, for instance, a
body counted in bn also contributes to bσ if it lies on a rotation axis and a
reflection line.

From Table 1, the symmetry treatment of the 2D body-bar equation
reduces to scalar equations of four types. If Γ(m)− Γ(s) = 0, then

E: 3b− e = 3 (5)

σ: bσ + eσ = 1 (6)

C2: b2 + e2 = 1 (7)

Cn>2: (bn − 1)(2 cos φ + 1) = 0 (8)
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C2 σ

(a) (b)

Figure 2: Possible placement of a bar with respect to a symmetry element
in two dimensions, such that it is unshifted by the associated symmetry
operation: (a) C2 centre of rotation; (b) mirror line.

where a given equation applies when the corresponding symmetry operation
is present in G.

Some observations on 2D isostatic body-bar frameworks, arising from this
set of equations are:

(i) Trivially, all 2D body-bar frameworks have the identity element and
(5) simply restates the scalar Tay rule (1) for m− s = 0.

(ii) Presence of a mirror line implies, by (6), that either bσ = 1, eσ = 0
or bσ = 0, eσ = 1. Note, however, that for the second case, the bar
must lie perpendicular to the mirror: if the bar lay on the mirror, the
two end bodies must also have the symmetry of the mirror, implying
bσ ≥ 2.

(iii) Presence of a C2 element imposes limitations on the placement of bodies
and bars. As both b2 and e2 must be non-negative integers, (7) has two
solutions: b2 = 1, e2 = 0 or b2 = 0, e2 = 1 . In other words, an isostatic
2D body-bar framework with a C2 symmetry has either exactly one
body unshifted and no bar unshifted, or exactly one bar centered on
the point of rotation (unshifted) and no body unshifted.

(iv) For Cn>2, equation (8) with φ = 2π/n implies

(bn − 1)

(
2 cos

(
2π

n

)
+ 1

)
= 0 (9)

and hence for all n, bn = 1 is a possible solution. Alternatively, we
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could have cos(2π/n) = −1/2, implying that for n = 3 there is no
restriction on b3, the number of bodies unshifted by a 3-fold rotation.

In summary, a 2D isostatic body-bar framework may have symmetry
operations drawn from the list {E, C2, C3, Cn(n > 3), σ}, and hence the
possible symmetry groups G are infinite in number: C1, Cn, Cs, Cnv. Group by
group, the conditions necessary for a 2D body-bar framework to be isostatic
are then as follows.

C1: e = 3b− 3.

C2: e = 3b − 3 with: (i) b2 = 1, e2 = 0 and all other bodies and all edges
occurring in pairs, implying b odd and e even; or (ii) b2 = 0, e2 = 1
and all bodies and all other edges occurring in pairs, implying b even
and e odd (see Figure 3(b)).

C3: e = 3b − 3 with b3 arbitrary, and all bars occurring in sets of 3 (see
Figure 3(c)).

Cn, n > 3: e = 3b− 3 with bn = 1, and hence all but one body occurring in
sets of n. If n = 2m, then the induced C2 tells us there is no centered
bar and all bars occur in sets of n (see Figure 3(d)). If n is odd, then
there can be centered bars, but they occur in sets of n, as they are
shifted.

Cs: e = 3b − 3 with: (i) bσ = 1, eσ = 0; or (ii) bσ = 0, eσ = 1. Either one
body and no bar or one bar and no body is unshifted by the mirror,
and all other bodies and bars occur in sets of two (see Figure 3(e)).

C2v: e = 3b − 3 with b2 = bσ = 1 and e2 = eσ = 0. There is a central body
with full C2v symmetry and no bars are either centered on the axis, or
unshifted by a mirror (see Figure 3(f)). All bars occur in sets of 4 and
all bodies beyond the centered body are off mirrors, and hence also
occur in sets of 4. Note that e2 = 1 is not possible, as this bar must lie
on one of the mirrors, implying that the bodies at its ends also lie on
the mirror, which would violate the required bσ = 0.

C3v: (i) e = 3b− 3 with b3 arbitrary (Figure 3(c)). With the mirrors, we can
either have bσ = 1 and eσ = 0, or have bσ = 0 and eσ = 1, where for
each of the three mirror lines, the bar that is unshifted by the mirror
is perpendicular to, and centered on, the mirror.
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Cnv, n > 3 : e = 3b−3 with bn = 1 and eσ = 0. There is a central body with
full Cnv symmetry. There can be bars centered on the rotation centre
if n is odd (they are shifted), but there cannot be any bars centered on
the rotation centre if n is even (see Figure 3(f)).

We consider whether these conditions are also sufficient in Section 5.1.
Note that an isostatic body-bar framework can be constructed for any

given point group in 2D. Examples of small 2D isostatic body-bar frameworks
for various point groups are depicted in Figure 3.

4 Three-dimensional isostatic body-bar frame-

works

The families of possible point groups of 3D objects are: the icosahedral I, Ih;
the cubic T , Th, Td, O, Oh; the axial Cn, Cnh, Cnv; the dihedral Dn, Dnh, Dnd;
the cyclic S2n; and the trivial Cs, Ci, C1 (Atkins et al., 1970). The relevant
symmetry operations are: proper rotation by 2π/n about an axis, Cn, and
improper rotation, Sn (Cn followed by reflection in a plane perpendicular
to the axis). By convention, the identity E ≡ C1, inversion i ≡ S2, and
reflections σ ≡ S1 are treated separately.

The calculation of characters for the 3D symmetry-extended Tay equation
(3) is shown in Table 2. Characters are calculated for six operations. For
proper rotations, we distinguish E and C2 from the Cn operations with n > 2.
For improper rotations, we distinguish σ and i from the Sn>2 operations.

The notation used in Table 2 is

b is the total number of bodies;

bn is the number of bodies which are unshifted by a given n-fold rotational
symmetry operation Cn≥2;

bc is the number of bodies unshifted by the inversion i or the improper ro-
tation Sn>2; each such body is centered on the unique central point;

bσ is the number of bodies unshifted by a given reflection σ;

e is the total number of bars;

en is the number of bars unshifted by a Cn>2 rotation: note that each such
bar must lie along the axis of the rotation (see Figure 4(a));
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(a) (b.i) (b.ii)

(c.i) (c.ii) (c.iii)

(d)

(e.i)

(e.ii) (f)

Figure 3: Examples, for various point groups, of small 2D isostatic body-bar
frameworks: (a) C1; (b) C2 with (i) b2 = 0, e2 = 1, and (ii) b2 = 1, e2 = 0;
(c) C3v with (i) b3 = 0, (ii) b3 = 2, and (iii) b3 = 3; note that one can easily
obtain isostatic body-bar frameworks with point group symmetry C3 from
the examples in (c) by appropriately perturbing the positions of the joints;
(d) C4; note that this example can easily be generalized to obtain examples
for any Cn, n ≥ 2; (e) Cs with (i) bσ = 0, eσ = 1, and (ii) bσ = 1, eσ = 0; (f)
C2v; this example can again easily be generalized to obtain isostatic body-bar
frameworks with point group symmetry Cnv, for any n ≥ 2.
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Cn

(a)

(b)

Figure 4: Possible placement of a bar unshifted by a proper rotation about
an axis: (a) for any Cn≥2; (b) for C2 alone.

e2 is the number of bars unshifted by a given C2 rotation: such bars must
lie either along, or perpendicular to and centered on, the axis (see
Figure 4(a) and (b));

enc is the number of bars unshifted by the improper rotation Sn>2: note that
such bars must lie along the axis of the rotation, and be centered on
the central point of the group (see Figure 5(a));

ei is the number of bars unshifted by the inversion i: note that the centre
of the bar must lie at the central point of the group, but no particular
orientation is implied (see Figure 5(b));

eσ is the number of bars unshifted by a given reflection σ: an unshifted bar
may lie on the mirror or perpendicular to and centered on the mirror
(Figure 6(a) and (b)).

Again, each of the counts refers to a particular symmetry element, and so,
for instance a body counted in bc also contributes to b, and may contribute
to bn and bσ if it has these symmetries.
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Sn
i = S2

(a) (b)

Figure 5: Possible placement of a bar unshifted by an improper rotation
about an axis: (a) for any Sn≥2; (b) for i = S2.

(a)

(b) σ

Figure 6: Possible placement of a bar unshifted by a reflection in a plane:
(a) lying in the plane; (b) lying perpendicular to the plane.

From Table 2, the symmetry treatment of the 3D Tay equation reduces
to scalar equations of six types. If Γ(m)− Γ(s) = 0, then

E: 6b− 6 = e (10)

σ: eσ = 0 (11)

i: ei = 0 (12)

Sn>2: enc = 0 (13)

C2: 2b2 + e2 = 2 (14)

Cn>2: (bn − 1)(4 cos φ + 2) = en (15)

where a given equation applies when the corresponding symmetry operation
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is present in G.
Some observations on 3D isostatic body-bar frameworks, arising from the

above, are:

(i) From (10), the body-bar framework must satisfy the scalar Tay rule
(1) with m− s = 0: 6(b− 1) = e.

(ii) From (11), each mirror σ that is present contains an arbitrary number
of bodies that are unshifted by σ, but there are no bars in the mirror
or bars perpendicular to and centered on the mirror.

(iii) From (12), a centro-symmetric body-bar framework has no bar centered
at the inversion centre, and the number of centrally symmetric bodies
is arbitrary.

(iv) From (13), the presence of an improper rotation Sn>2 implies that
no bar lies on the improper rotation axis, and the number of bodies
unshifted by Sn>2 is arbitrary.

(v) For a C2 axis, (14) has solutions

(b2, e2) = (1, 0) or (0, 2).

The count e2 refers to both bars that lie along, and those that lie
perpendicular to the axis. However, if a bar were to lie along the C2

axis, the bodies at either end would contribute 2 to b2, thus generating
a contradiction to (14), so all bars included in e2 must lie perpendicular
to the axis.

(vi) Equation (15) can be written, with φ = 2π/n, as

(bn − 1)

(
4 cos

(
2π

n

)
+ 2

)
= en

with n > 2. The non-negative integer solution bn = 1, en = 0, is
possible for all n. For n > 2 the factor (4 cos(2π/n) + 2) is rational at
n = 3, 4, 6, but generates a further distinct solution only for n = 3:

n = 3
0(b3 − 1) = e3

and so here e3 = 0, but b3 is unrestricted.
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n = 4
2(b4 − 1) = e4

One possibility is b4 = 1, which covers all the requirements, with
e4 = e2 = 0. If we consider the option of b4 = b2 = 0, then we
have e4 < 0 which is impossible. If we consider b4 > 1, then C4

implies C2
4 = C2 about the same axis, and hence b4 = b2 > 1,

which is also impossible. Thus we only have the one case b4 = 1.

n = 6
4(b6 − 1) = e6

C6 implies C3
6 = C2 and C2

6 = C3 about the same axis, and hence
e6 = e3 = 0, and b6 = b3 = b2 = 1.

Thus en is 0 for any n > 2, and only in the case n = 3 may bn depart
from 1.

The above conditions do not exclude any point groups; however, for par-
ticular groups, some further interesting observations can be made.

(i) For C2v, there are no added constraints, but we observe that if e2 = 2,
then the two bars perpendicular to the axis are mirror images of each
other and not in either mirror.

(ii) For Cnv, n ≥ 3, there are no added constraints. However, note that
for n > 3, the body which is unshifted by Cn must have the full Cnv

symmetry, for otherwise we have bn > 1.

(iii) For C2h, we observe that if b2 = 1 and e2 = 0, then the body that
is unshifted by C2 must also be unshifted by the reflection σ whose
mirror is perpendicular to the C2 axis (for otherwise we have b2 > 1),
and hence also by the inversion i; this body is therefore centered on
the point of inversion and has full C2h symmetry. If b2 = 0 and e2 = 2,
then the two bars perpendicular to the axis are mirror images of each
other.

(iv) For C3h, there are no added constraints since b3 is arbitrary.

(v) For Cnh, n > 3, the body that is unshifted by Cn must also be unshifted
by the reflection σ (whose mirror is perpendicular to the Cn axis), and
hence also by the improper rotation Sn. So, this body is a central body
with full Cnh symmetry.
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(vi) For D2, we observe that if there exists a body that is unshifted by one
of the 2-fold rotations, then this body must also be unshifted by the
other two 2-fold rotations. This body must therefore be centered on
the intersection point of the three 2-fold axes, with full D2 symmetry.

(vii) For D3, there are no added constraints.

(viii) For Dn, n > 3, we observe that the body which is unshifted by Cn must
also be unshifted by each of the 2-fold rotations in Dn (whose axes are
perpendicular to the Cn axis). This body is therefore centered on the
intersection point of the rotational axes and has full Dn symmetry. In
particular, it follows that we must have b2 = 1 and e2 = 0 for each C2.

(ix) For D2h, we observe that if b2 = 1 for one of the 2-fold rotations,
then this body must also be unshifted by all the other elements in the
group, so that it is centered at the point of inversion and has full D2h

symmetry. Any other bodies unshifted by the reflection in D2h will be
off the C2 axis.

(x) For D3h, there are no added constraints.

(xi) For Dnh, n > 3, the body which is unshifted by Cn must also be
unshifted by all the other elements of the group and is hence centered on
the point of intersection of the rotational axes, with full Dnh symmetry.
In particular, we must have b2 = 1 and e2 = 0 for each C2. Any other
bodies unshifted by the reflection in Dnh have to lie off the rotational
axes.

(xii) For D2d and D3d, we observe that if there exists a body that is unshifted
by one of the 2-fold rotations, then this body must also be unshifted
by all the other elements in the group, so that it is a central body with
the full symmetry of the group. For D2d, any other bodies unshifted
by the reflection will be off the C2 axis.

(xiii) For Dnd, n > 3, the body which is unshifted by Cn must also be un-
shifted by all the other elements in the group, so that it is a central
body with full Dnd symmetry. In particular, we must have b2 = 1 and
e2 = 0 for each C2. Any other bodies unshifted by one of the reflections
in Dnd will be off the Cn axis.

19



(xiv) For S4, we observe that if there exists a body that is unshifted by the
2-fold rotation, then this body must be a central body with full S4

symmetry. Alternatively, if b2 = 0 and e2 = 2, then these two bars will
be a pair of ‘opposite’ bars perpendicular to the C2 axis.

(xv) For S6, there are no added constraints since there are no requirements
on b3 for the 3-fold axis.

(xvi) For S2n, n > 3, the body which is unshifted by Cn must also be un-
shifted by all the other elements in the group, so that it is a central
body with full S2n symmetry. In particular, if there exists a C2 in S2n,
we must have b2 = 1 and e2 = 0.

(xvii) For a body-bar framework with the rotational symmetries of a tetra-
hedron (T ), we observe that if we have b2 = 1, then this must be a
central body with full T symmetry. Alternatively, we have b2 = 0 and
e2 = 2. For each of the C2 rotations, these two bars would be a pair of
‘opposite’ bars perpendicular to the axis.

(xviii) For Th and Td, there must exist a central body which has the full
symmetry of the group. In particular, we must have b2 = 1 and e2 = 0
for each C2. Any other bodies unshifted by a reflection will be off the
C2 axes.

(xix) For a body-bar framework with octahedral (O or Oh) symmetry, the
requirement that b4 = 1 for each 4-fold axis implies that the structure
must have one body centered where the axes meet, with the respective
octahedral symmetry. In particular, we must have b2 = 1 and e2 = 0
for each C2. For Oh, any other bodies unshifted by a reflection will be
off the C2 and C4 axes.

(xx) For a body-bar framework with icosahedral (I or Ih) symmetry, the
requirement that b5 = 1 for each 5-fold axis implies that the structure
must include a central body with the respective icosahedral symmetry.
In particular, we must have b2 = 1 and e2 = 0 for each C2. For Ih, any
other bodies unshifted by a reflection will be off the C2 and C5 axes.

As an example, we consider two problematic positions of the Stewart
platform, as shown in Figure 7. The ‘standard’ starting point, with 3-fold
rotation on an axis through the 2 bodies satisfies the conditions above, and is
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Figure 7: Stewart platforms that are in singular positions due to the presence
of symmetry: (a) a Stewart platform with C6 symmetry about the z-axis,
shown dashed; (b) a Stewart platform with Cs symmetry in the x = −y
plane, shaded.

indeed isostatic. However, if there is a 6-fold rotation axis (Figure 7(a)), the
condition b6 = 1 is violated, and the configuration is singular, with both a
stress and an infinitesimal motion which is not accessible to the control of the
pistons. Similarly, if we have a mirror on two of the bars (and therefore a mir-
ror symmetry of the two bodies) the configuration is singular (Figure 7(b)).
An explicit tabular calculation of characters for every symmetry operation
for both structures is given in Table 3.

For bar and joint frameworks in 3D we had additional necessary condi-
tions related to potential ‘flatness’ of sets of vertices and edges (Connelly et
al 2009). However, as long as our structures are ‘combinatorially generic’
— the ends of distinct bars are distinct points — then these examples can-
not arise for symmetric body-bar frameworks. If, on the other hand, we
build up a significant number of ‘identifications’ of end points (which implies
coplanarity of bars) then there is a risk of some flatness requirements being
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C6 E C6 C3 C2 C−1
3 C−1

6

Γ(b) 2 2 2 2 2 2
− Γ0 −1 −1 −1 −1 −1 −1

= Γ(b)− Γ0 1 1 1 1 1 1
× (Γxyz + ΓRxRyRz) 6 4 0 −2 0 4

= (Γ(b)− Γ0)× (Γxyz + ΓRxRyRz) 6 4 0 −2 0 4
− Γ(e) −6 0 0 0 0 0

= Γ(m)− Γ(s) 0 4 0 −2 0 4
(a)

Cs E σ
Γ(b) 2 2
− Γ0 −1 −1

= Γ(b)− Γ0 1 1
× (Γxyz + ΓRxRyRz) 6 0

= (Γ(b)− Γ0)× (Γxyz + ΓRxRyRz) 6 0
− Γ(e) −6 −2

= Γ(m)− Γ(s) 0 −2
(b)

Table 3: Calculations of representations for the 3D symmetry-extended Tay
equation (3) for the Stewart platform examples in Figure 7(a) and (b). As
the final row of the table does not contain only zeros in either case, neither
platform is isostatic for the particular symmetry given.

imported with this specialization.

5 Sufficient conditions for isostatic body-bar

realisations

A key goal of combinatorial characterizations for generic rigidity is to provide
necessary and sufficient conditions, in the spirit of Laman’s Theorem and
Tay’s Theorem (Theorem 1) for generic frameworks without symmetry.

For a body-bar framework with point-group symmetry G the previous
sections have provided some necessary conditions for the realisation to be
isostatic. These conditions included some over-all counts on bars and joints,
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along with sub-counts on special classes of bodies and bars (bars on mirrors
or perpendicular to mirrors, bars centered on the axis of rotation, symmetric
bodies on the centre of rotation etc.). Here, assuming that the framework
is realized with the end-points of the bars (the attachments of bodies) in a
configuration as generic as possible (subject to the symmetry conditions),
we investigate whether these conditions are sufficient to guarantee that the
framework is isostatic.

5.1 Sufficient conditions for 2D isostatic body-bar frame-
works

The simplest case is the identity group (C1). For this basic situation, the
key result is the 2D version of Tay’s Theorem which can also be extracted
from Laman’s Theorem for bar and joint frameworks. In the following, we
take the multigraph G = (B, E) to define the connectivity of the body-bar
framework, where B is the set of b bodies and E the set of e bars, and we
take p to define the positions of all of the attachments in 2D. We recall the
plane version of Tay’s Theorem.

Theorem 2 (Tay, 1984) For a generic body-bar configuration in 2D, p, the
body-bar framework G(p) is isostatic if and only if G = (B, E) satisfies the
conditions:

(i) e = 3b− 3;

(ii) for any non-empty set of bodies B∗, which induce just the bars in E∗,
with |B∗| = b∗ and |E∗| = e∗, e∗ ≤ 3b∗ − 3.

Equivalently, the body-bar framework G(p) is isostatic in 2-space if and only
if G = (B, E) is partitioned into 3 spanning trees.

Our goal is to extend these results to other symmetry groups. With
the appropriate definition of ‘generic’ configurations for symmetry groups
(Schulze 2010a), we can anticipate that the necessary conditions identified in
the previous sections for the corresponding group plus the condition identified
in Theorem 2, which considers subgraphs that are not necessarily symmetric,
will be sufficient.

For three of the plane symmetry groups, this has been confirmed. We use
the previous notation for the point groups and the identification of special
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bodies and edges, and describe a configuration as ‘generic with symmetry
group G’ if, apart from conditions imposed by symmetry, the attachment
points are in a generic position (the constraints imposed by the local site-
symmetry may remove 0, 1 or 2 of the two basic freedoms of the point).

By embedding the body-bar framework as a bar and joint framework,
with isostatic bar and joint bodies (of required symmetry) and applying the
previous results for isostatic bar and joint symmetric bodies (Schulze 2010b),
the following cases can be verified.

Theorem 3 If p is a plane configuration generic with symmetry group G,
and G(p) is a framework realized with these symmetries, then the following
necessary conditions are also sufficient for G(p) to be isostatic:

e = 3b− 3 and for any non-empty set of bars B∗, e∗ ≤ 3b∗ − 3 and

(i) for Cs: (a) bσ = 1, eσ = 0 or (b) bσ = 0, eσ = 1 (with all bars unshifted
by σ perpendicular to the mirror);

(ii) for C2: (a) b2 = 1, e2 = 0 or (b) b2 = 0, e2 = 1;

(iii) for C3: b3 is arbitrary.

There are also equivalent necessary and sufficient tree characterizations which
apply to these groups, as translations from the results of Schulze (2010b).

For the remaining groups, we have the corresponding conjectures. In some
cases, these could not be generalizations of plane bar and joint framework
results, since Cn>3 and Cnv:n>3 do not have isostatic bar and joint frameworks
(Connelly et al 2009).

Conjecture 1 If p is a plane configuration generic with symmetry group G,
and G(p) is a framework realized with these symmetries, then the following
necessary conditions are also sufficient for G(p) to be isostatic:

e = 3b− 3 and for any non-empty set of bars B∗, e∗ ≤ 3b∗ − 3 and

(i) for Cn, n > 3: bn = 1;

(ii) for C2v: b2 = bσ = 1 and e2 = eσ = 0 for each mirror;

(iii) for C3v: (a) bσ = 0 and eσ = 1 for each mirror and b3 is arbitrary or
(b) bσ = 1 and eσ = 0 and b3 is arbitrary;
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(iv) for Cnv, n > 3: bn = 1 and eσ = 0 for each mirror.

An immediate consequence of this theorem and these conjectures is that
there is (would be) a polynomial time algorithm to determine whether a given
framework in generic position modulo the symmetry group G is isostatic.
Although we do not have a criterion for isostatic bar and joint ‘bodies’ of
symmetry Cnv, n > 3, this could be handled within this algorithm. Although
the Laman type condition of Theorem 1 involves an exponential number of
subgraphs of G, there are several algorithms that determine whether it holds
in cbe steps where c is a constant. The pebble game (Hendrickson and Jacobs,
1997) is an example. The additional conditions for being isostatic with the
symmetry group G trivially can be verified in constant time.

5.2 Sufficient conditions for 3D isostatic body-bar frame-
works

In 3D, Tay’s Theorem becomes:

Theorem 4 (Tay, 1984) For a generic body-bar configuration in 3D, p, the
body-bar framework G(p) is isostatic if and only if G = (B, E) satisfies the
conditions:

(i) e = 6b− 6;

(ii) for any non-empty set of bodies B∗, which induce just the bars in E∗,
with |B∗| = b∗ and |E∗| = e∗, e∗ ≤ 6b∗ − 6.

Equivalently, the body-bar framework G(p) is isostatic in 3-space if and only
if G = (B, E) is partitioned into 6 spanning trees.

If we assume that we start with such a graph, then we can ask whether
the additional necessary conditions for a realization that is generic with point
group symmetry G to be isostatic are also sufficient. Without substantial
investigation of some of the cases, we provide some sample conjectures.

We note that, in general, the global conditions imply the corresponding
conditions for all subgraphs G∗ which also have the Tay count e∗ = 6b∗ − 6.
For many of these symmetry groups, the condition such as bn = 1 is actually
a minimum value of 1 by even simpler counts. For example, with no possible
fixed bars for C5, b5 = 0, both b and e are multiples of 5, and e cannot equal
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6(b−1). The extra condition from the group representations is that b5 cannot
be bigger than 1.

The exceptions occur for C2, C6, where the simple Tay counts can occur
without the extra added conditions, so we will need to impose an extra
subgraph condition. We offer some samples of these conjectures.

Conjecture 2 If p is a spatial configuration generic with symmetry group G,
and G(p) is a framework realized with these symmetries, then the following
necessary conditions are also sufficient for G(p) to be isostatic:

e = 6b− 6 and for any non-empty set of bars B∗, e∗ ≤ 6b∗ − 6 and

(i) for Cs: eσ = 0, bσ is arbitrary;

(ii) for C3: e3 = 0, b3 is arbitrary;

(iii) for Cn (n > 3, n 6= 2, 6): bn = 1 and en = 0;

(iv) for Ci : ei = 0 and bc is arbitrary;

(v) for C3v: eσ = 0 and bσ is arbitrary for each mirror; e3 = 0 and b3 is
arbitrary;

(vi) for Cnv, n > 3: bn = 1, en = eσ = 0 and bσ is arbitrary for each mirror;

(vii) for C3h: e3 = eσ = 0 and bσ and b3 are arbitrary;

(viii) for Cnh, n > 3: bn = 1, en = eσ = 0 and bσ is arbitrary.

Here is a sample of the other type of conjectured conditions.

Conjecture 3 If p is a spatial configuration generic with symmetry group G,
and G(p) is a framework realized with these symmetries, then the following
necessary conditions are also sufficient for G(p) to be isostatic:

e = 6b− 6 and for any non-empty set of bars B∗, e∗ ≤ 6b∗ − 6 and

(i) for C2: b2 = 1, e2 = 0 or b2 = 0, e2 = 2 and there are no vertex disjoint
C2-symmetric subgraphs G∗

1, G
∗
2 with e∗1 = 6b∗1 − 6 and e∗2 = 6b∗2 − 6;

(ii) for C6: b6 = 1 and there are no vertex disjoint C6-symmetric subgraphs
G∗

1, G
∗
2 with e∗1 = 6b∗1 − 6 and e∗2 = 6b∗2 − 6.
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As a suggestion that a number of these can be proven, we provide several
sufficient conditions which may also be necessary. These are cast in terms of
tree coverings which are at the core of various proofs both for Tay’s Theorem
in all dimensions, and for recent proofs for plane symmetric bar and joint
frameworks (Schulze 2009b, 2010b). A version of this proof places the six
spanning trees onto the six edges of a regular tetrahedron (White & Whiteley
1987). Since this realization has a number of the desired symmetries, we
have the following sufficient conditions. Note that these do not, immediately,
correspond to the necessary conditions above. There remains significant work
to be done.

Theorem 5 If p is a spatial configuration generic with symmetry group G,
and G(p) is a framework realized with these symmetries, then the following
conditions are sufficient for G(p) to be isostatic as a body-bar framework:

(i) for Cs: we have a partition into 6 spanning trees T1 . . . T6 with the
properties: T1, T2 go onto themselves as trees under the mirror, and
T3, T4 interchange and T5, T6 interchange;

(ii) for C2: we have a partition into 6 spanning trees with the properties:
T1, T2 go onto themselves as trees under the half-turn, and T3, T4 inter-
change and T5, T6 interchange;

(iii) for C3: we have a partition into 6 spanning trees with the properties:
T1, T2, T3 cycle as trees under the turn, and T4, T5, T6 cycle as trees
under the turn.

6 Extensions and further work

6.1 Identified Attachment Points

As we noted in the introduction, with the second version of the Stewart
Platform (Figure 1(b)), in applications it is common to have some end-points
or attachment points of bars coinciding on a body. What analysis extends
to those situations?

In the plane, this is not an issue, as we also have a complete set of
necessary conditions, and some complete sufficient conditions, for bar and
joint frameworks, and the body-bar frameworks can be embedded into that
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theory, with the exception of finding initial bodies with full symmetry Cn,
(n > 3).

In 3D, the necessary conditions for symmetric body-bar frameworks to be
isostatic established in this paper also extend to body-bar frameworks that
have some of their attachment points on the bodies identified. In fact, just
like in the 2-dimensional case, the necessity of these conditions for either type
of body-bar structure can be verified by translating the results on bar and
joint frameworks derived in Connelly at al. (2009). Note, however, that for
3D body-bar frameworks with identified end-points, there could be additional
necessary conditions (such as conditions on the number of end-points on the
bodies, for example).

The problem of establishing sufficient conditions for body-bar frameworks
with identified end-points in 3D is complex: we do not have a general form
of Tay’s Theorem with end-points of bars identified. On the other hand,
the connection to laying 6 trees onto a tetrahedron, where three trees coin-
cide at each end-point, does indicate that a number of coinciding end-points
are possible, and this also extends to some realizations with some symme-
tries. Given the potential applications this is a significant topic for further
investigation.

6.2 Body-hinge structures

Another structural type of interest are body-hinge structures, in which bodies
are connected by revolute hinges along assigned lines. These hinges function
as implicit packages of 5 bars meeting the assigned hinge line. For generic
hinges, there is a version of Tay’s Theorem, without symmetry (Whiteley,
1988). Therefore we anticipate that there are symmetry extensions for this
situation (which implicitly includes some identifications of bars). This is cur-
rently work in progress. This extension is a necessary step towards applying
these results directly to the rigidity and flexibility of biomolecules (Whiteley
2005).

6.3 Modeling body-bar frameworks as bar and joint
frameworks

In our definition of a symmetry operation of a body-bar framework, we used
the extended graph G which models each body of G as the complete graph
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on the vertices of the attached bars. We used this definition of a symmetry
operation through the rest of the paper, but did not make any use of the
rigidity properties of the frameworks on the bodies – beyond assuming that
each body was rigid in Tay’s Theorem and in equations (2), (3), and (4).

If we want to translate the results of this paper to bar and joint frame-
works G̃(p) modeling the body-bar frameworks, we can substitute an arbi-
trary isostatic framework for each body. With this substitution, necessary
conditions for isostatic body-bar frameworks extend to necessary conditions
for the corresponding isostatic bar and joint frameworks G̃(p). Notice that
it is not necessary that the symmetries of a body (which are symmetries
of the attachment points on the body) are actually automorphisms of the
substituted framework.

For example, for C4 in the plane, an isostatic body-bar framework has
an unshifted body – but there is no isostatic bar and joint framework in
the plane which has C4 symmetry as a graph automorphism (Connelly at al.
2009).
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