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Abstract

The paper presents a set of one-degree-of-freedom overconstrained linkages, which can be folded
into a bundle and deployed into a polygon on a plane. The proposed mechanisms are movable
Bricard octahedra of Type III, characterized by the existence of two configurations where all joints
are coplanar. The possible geometries of doubly-collapsible Bricard linkages are parameterized
and their kinematics is analyzed. A line-intersection method is proposed to construct a bundle-
folding mechanism of this type. Necessary and sufficient conditions are derived for the deployed-
configuration polygon to be a square. Simulation and prototype experiment results validate the
analysis and design.

Keywords: type III Bricard linkage, bundle folding, deployable mechanism, overconstrained
linkages.

1. Introduction

A deployable mechanism (DM) is capable of configuration change which dramatically alters its
shape and size. DMs have many potential applications, including for the rapid construction of struc-
tures both in space, e.g., antennas and telescopes [1, 2, 3], and on earth, in temporary and emergency
architecture. A DM which is able to fold into a bundle is of particular interest: minimal size fa-
cilitates storage and transport. The most common DMs are composed of scissor-linkage elements,
allowing, with good design, the mechanism to be folded into a bundle and deployed into different
shapes [4, 5, 6].

Recently, spatial overconstrained mechanisms have attracted the interest of designers of DMs.
Pellegrino et al. studied a bundle-compacting Bennett linkage [7]. Similar research has also been
done on the Myard linkage [8], and the Bricard linkages of types I (line-symmetric) and II (plane-
symmetric) [7, 9, 10, 11]. The deployed shapes of the Bennett, and the Type I and II Bricard linkages,
are a rhombus, a hexagon, and a rectangle, respectively.

Since it was proposed, the type III Bricard linkage has attracted relatively less attention from
researchers [12, 13, 14, 15, 16, 17]. It has two collapsed configurations, i.e., all the six revolute joint
axes (and the faces of the octahedron they define) collapse into a plane in two distinct ways. In this
study, we discuss its parametrization and propose a line-intersection method for the construction of
a bundle-folding Type III Bricard linkage. In its other flat configuration, the mechanism deploys as
a quadrangle, a pentagon, or a hexagon. Comparing with the other overconstrained linkages, the
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type III Bricard linkage proposes less fabricating difficulties since the two joint axes on link each are
coplanar. Normal machining can guarantee the manufacturing accuracy easily. Feature of bundle-
folding encourages the type III Bricard linkage to be used as the basic unit in several potential fields,
such as a deployable roof of a transportable canopy, a supporting frame of a deployable antenna,
or a large scale deployable grasping manipulator[18]. In addition, by using the kinematic bifurca-
tion of the type III Bricard linkage [17], other potential applications like reconfigurable deployable
mechanism can also be achieved [19, 20].

The paper is organized as follows. In the following section, the type III Bricard linkage is
reviewed and parameterized. In Sec. 3, a geometric construction is described, demonstrating the
existence of bundle-folding linkages of this type. In Sec. 4, for a Bricard bundle with fixed length,
the geometric conditions of forming the maximum deployed area are derived. Case studies have been
performed on both forward and inverse design, and the obtained mechanisms have been simulated
in Sec. 5.

2. The Type III Bricard Linkage

Herein we analyze the type III Bricard linkages, which have two collapsible configurations. Due
to the special geometric conditions each such mechanism must satisfy, it can be described by only
five parameters.

2.1. Geometric construction
The Bricard linkage ABCA′B′C′ in Fig. 1, is of type III with two collapsed states. The linkage

can be constructed as follows: draw two concentric circles of arbitrary radii; choose two arbitrary
points A and A′ outside of the larger circle; construct the tangents from A and A′ to the circles and
determine their intersections B, B′, C and C′. The lines BC, B′C′, B′C and BC′ will be tangent to
a third concentric circle with radius rt . Then, the six triangles ABC′, ABC, AB′C, A′B′C, A′B′C′,
A′BC′ taken in this cyclic order and hinged at their common edges, constitute a deformable six-plate
linkage with 1 dof [14].

Figure 1: Construction of the type III Bricard linkage

The six triangles in fact define a deformable octahedron: the two remaining (virtual) faces are
the triangles ACB′ and A′C′B, whose shape is constant during the movement. However, if they are
physically part of the linkage, link interference is unavoidable.
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2.2. Parametrization of the Bricard linkage
The construction in Fig. 1, can be described by the radii of the two circles and the positions

of points A and A′. We denote the radii of the larger and smaller concentric circles by R and r,
respectively. The lengths of OA and OA′ are lA and l′A. The fifth parameter is the angle between OA
and OA′, denoted by θ . A linkage geometry of this type is described completely by the five scalars,
R, r, lA, l′A, and θ . One of the parameters controls the scale of the Bricard linkage; the other four
describe the collapsed configuration, which determines the shape and deformation of the octahedron.

2.3. The two coplanar configurations
The two collapsible configurations of an example Bricard linkage are shown in Fig. 2. In the fig-

ure, the dash-dash-dot lines represent the rotation axes between two triangular panels of the linkage.
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Figure 2: Two collapsed configurations of a type III Bricard

3. Bundle-folding Bricard Linkages

The geometric construction, described above, determines the relationship among the rotating
axes which are the most important elements of the mechanism. The six triangles can be seen as
connecting bars (physical links) with specific profiles. Kinetics of the linkage will not be affected
by altering the geometric outline of the links, but the physical shape of the mechanism will change.

Consider the linkage made with the six triangles mentioned in the first paragraph of Sec. 2. The
edges AB, BC, AC′, A′B′, B′C′, A′C are the rotation axes of the mechanism. In Fig. 2(a), draw a
line not parallel to any of the six coplanar axes. Then, take the segment of this line connecting
the intersection points on any two adjacent R-axes as the physical rigid link. Thus, in this shown
configuration, the linkage will be compacted into a line (segment). Once the linkage moves to the
other collapsible configuration, as shown in Fig. 2(b), a planar polygon will be formed by those
connecting segments. Examples of the segment and the corresponding polygon are illustrated in
Fig. 3. Practically, the rigid links have finite thickness and so in the first collapsed configuration,
the physical shape of the mechanism will be a bundle; in the second, the top view of the mechanism
forms a polygon.

Generally, it is desirable to minimize the distance between the extreme two intersection points
on the bundle line, and to maximize the area of the polygon defined by the link segments in the other
coplanar configuration. For this reason, one of the two collapsed states is preferred as the bundled
configuration, and the other as the deployed one. As can be seen in Fig. 2, the hinge-axis segments
(the common triangle edges highlighted with dash-dash-dot lines) are more compactly located in

3



Fig. 2(a) than in Fig. 2(b). Therefore, the length of the segment on the bundle line will be shorter in
Fig 2(a).

Different choices of the intersecting line result in different deployed shapes and sizes in the
second coplanar configuration. Figure 3 gives three examples. The Bricard linkage in Fig. 3 satisfies
AB = BC = A′B′ = B′C′.

(a) (b) (c)

Figure 3: Bundle-folding linkages form different deployed polygons

The bundle line intersects either a hinge-axis segment or its extension. In Fig. 3(a), the straight
line crosses AB, AC′, A′B′, A′C and the extensions of BC and B′C′, in addition, it is parallel with BB′.
The formed geometric shape in the other coplanar configuration is a hexagon which has three pairs
of parallel sides.

The straight line in Fig. 3(b) is BB′, intersecting two axes (AB and BC) at B, and two others (A′B′

and B′C′) at B′. There are only four intersection points of the line with the six axes. Therefore, in
the coplanar configuration on the right, the formed shape is a quadrangle.

In Fig. 3(c), the straight line crosses BC, AC′, A′C, A′B′, and the continuations of AB and B′C′.
The formed shape is a hexagon, however, the shape is more general than in Fig. 3(a).

It is obvious that when BB′ is the segment, which is the case in Fig. 3(b), the formed quadrangle is
more regular (a rhombus). Kinematic simulation of this case has been performed, as shown in Fig. 4.
A prototype is fabricated to validate the design. In Fig. 3(b), the bundle line forms a quadrangle in
the bottom collapsible configuration. In the example in Fig. 4, as the links must have some physical
shape and non-zero-area cross-sections, the outline of the mechanism varies a little. In the following
analysis, we will only focus on the shape formed by the line, since the link-shape can vary depending
on the detailed practical realisation.
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(a) Movement process of the CAD model

(b) Movement process of the prototype

Figure 4: Kinematic simulation and prototype experiment of a bundle-folding Bricard quadrangle

4. Deployed Shape Design of the Folded Bundle

When the intersecting line is along BB′, the deployed area will be a quadrangle. In this section,
the conditions of obtaining a linkage that yields a maximum deployed area are analyzed. Inverse
analysis is also performed, obtaining all the parameter sets yielding a bundle-folding Bricard mech-
anism with a given bundle length. It is well-known that among the quadrangles with the same
perimeter, the square has the maximum area. Therefore, we seek the conditions under which the
type III Bricard linkage will deploy into a square.

4.1. Deployable square
A general type III Bricard linkage is shown in Fig. 5. The bundle line is BB′. The common

point of BB′ and A′C is D, while BB′ and AC′ intersect at D′. The six rotation axes are AB, BC,
A′C, A′B′, B′C′, and AC′. As the linkage moves, the distance between B and B′ (which are not on
the same face of the octahedron) changes, while points D and D′ stay on the rigid intervals A′C and
AC′, respectively. The deployed quadrangle has its vertices at the positions of B, D, B′ and D′ in the
alternative collapsed configuration.

Figure 6 illustrates a general bundle-folding Bricard quadrangle together with the construction
of the Bricard linkage. The two collapsed configurations are displayed in Fig. 6: ABCA′B′C′ and
ABC∗A′∗B

′
∗C
′, respectively. Triangle ABC′ is assumed to be the fixed base link. An asterisk denotes

the position of a moving point in the second coplanar configuration. The octahedron vertices B′ and
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Figure 5: A general Bricard linkage and its BB′ bundle

C rotate about AC′ and AB, respectively. Therefore, B′ and B′∗ are symmetric with respect to AC′,
i.e., |B′D′| = |B′∗D′|. Similarly, |BD| = |BD∗|. The distance between points on the same rigid link
does not change. Hence, |B′D| = |B′∗D∗|, as a segment on the rigid panel A′B′C. So, with known
length of BB′ and location of D and D′, the lengths of the four sides of the quadrangle BD′B′∗D∗ can
be obtained.

Figure 6: The formed quadrangle and the Bricard linkage

4.1.1. Geometric conditions
The Bricard linkage in Fig. 6 must satisfy the following three geometric conditions for the quad-

rangle BD′B′∗D∗ to be a square.

(i) AC′, A′C and BB′ have a common point, D = D′

(ii) This intersection, D, is at the midpoint of BB′

(iii) ∠C′DB′ = 45◦

(i) D = D′⇔ |BD′|= |BD∗| & |B′∗D′|= |B′∗D∗|
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Proof
Sufficiency. Because B′D belongs to the rigid body A′B′C, |B′D| = |B′∗D∗|. Similarly |B′D′| =
|B′∗D′|, since B′D′ stays on another rigid panel, AB′C′. If D = D′, then |B′D| = |B′D′|. Therefore,
|B′∗D∗|= |B′∗D′|, i.e., the two sides of the quadrangle at B′∗ are equal. As |BD∗|= |BD|, when D=D′,
|BD∗|= |BD′|, i.e., the quadrangle has a kite shape.
Necessity. Obvious: |BD′|= |BD∗| is equivalent to |BD|= |BD′|, so D coincidences with D′. �

Once condition (i) is met, there exists one symmetry axis, BB′1, of the deployed quadrangle.
Moreover, when D = D′, OD ⊥ BB′, as shown in Fig. 7. Proof of the statement is illustrated in
Appendix A.

Figure 7: AC′, A′C and BB′ intersect at a same point

(ii) D = D′ is the midpoint of BB′⇔ BD′B′∗D∗ is a rhombus

Proof
Sufficiency. When, in addition to Condition (i), D = D′ is the midpoint of BB′, |BD|= |B′D|, and so
|BD|= |B′∗D|. The four sides of the quadrangle are equal and BD′B′∗D∗ is a rhombus.
Necessity. If BD′B′∗D∗ is a rhombus, then its four sides are equal, and so are |BD| and |B′D|. There-
fore, D and D′ coincide and divide BB′ in two equal segments. �

By adding constraint (ii), a second mirror-symmetry axis is defined, Fig. 8. So the quadrangle
has four equal edge length, in other words, it is a rhombus.

(iii) ∠C′DB′ = 45◦⇔ BD′B′∗D∗ is a square

Proof
Sufficiency. Since the rigid panel AB′C′ rotates around axis AC′ in Fig. 8, ∠B′DB′∗ = 2∠C′DB′ in
the other coplanar configuration, and ∠BDB′∗ = 180◦−∠B′DB′∗. When ∠C′DB′ = 45◦, ∠B′DB′∗ is a
right angle. BD′B′∗D∗ is a square as it is a rhombus that includes a right angle (see Fig. 9).
Necessity. Obvious. �

4.1.2. Dependence of the geometric parameters
With the above three geometric conditions satisfied, only two of the five Bricard-geometry pa-

rameters are independent. In the following, the relationships among the five geometric parameters
of the Bricard linkage are derived.
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Figure 8: The formed rhombus

Figure 9: The formed square

First, conditions (i) and (ii) are assumed. We show that then there are three independent param-
eters determininng the mechanism geometry.

When D = D′ and |BD|= |DB′|, points B and B′ are symmetric with respect to OD, Fig. 8. Due
to OD ⊥ BB′, we have |OB| =

√
|OD|2 + |BD|2 = |OB′| =

√
|OD|2 + |B′D|2. It can be concluded,

from the construction of the type III Bricard linkage, that A and A′ are located on the intersection of
the tangent lines from B and B′, which are also symmetric with respect to OD. In Fig. 10, there are
two pairs of points of tangency: P1, P2 and P′1, P′2, on the tangents from B and B′, respectively.

The angles ∠P2OB and ∠P′2OB′ are, respectively,

cosβ1 =
R
|OB|

(1)

cosβ2 =
R
|OB′|

(2)

where β1,β2 ∈ [0,180◦]. Because |BD|= |B′D|, we have β1 = β2.
If ∠P1OP′1 = φ , then ∠P2OP′1 = 2β1 +φ and ∠P′2OP1 = 2β2 +φ , which gives

∠P2OA = ∠P′2OA′ =
2β1 +φ

2
= δ (3)
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Figure 10: D locates in the middle of BB′

Since R = lA cosδ = l′A cosδ ,

lA = l′A (4)

In the following, we derive R as a function of lA, θ and r.
From lA = l′A we have ∠OAB′ = ∠OA′B′. So,

κ1 +κ2 = κ1 +∠OAB′+κ2−∠OA′B′ = ∠OAA′+∠OA′A. (5)

where κ1 = ∠B′AA′ and κ2 = ∠B′A′A. Therefore, κ = π−κ1−κ2 = θ , which means that points O,
A, A′, B′ are on the same circle, and so is B.

Figure 11: Relationship among lA, θ and r

Because A and A′ are symmetric with respect to the line OD, the latter must pass through the
center, O′ of this circle. For its diameter, we have

d =
lA

cos
θ

2

(6)

From the circle with radius r,

|OD|= r

sin(
θ

2
+ arcsin

r
lA
)

(7)
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we have

|O′D|= 1
2

d−|OD| (8)

and

∠DO′B = arccos
|O′D|

1
2

d
= arccos(1−

2r cos
θ

2

sin
θ

2

√
l2
A− r2 + cos

θ

2
r
) (9)

Because all the points are located on a circle, the central angle ∠BO′B′ is 2 times of the angle of
circumference ∠OAB′. So

τ = ∠OAB′ =
1
2

arccos(1−
2r cos

θ

2

sin
θ

2

√
l2
A− r2 + cos

θ

2
r
) (10)

Since the circle with radius R is tangent to AB′,

R = lA sinτ (11)

In the second step, all the three conditions from the previous subsection constrain the mechanism.
So, B′∗ will locate on OD and θ becomes a function of lA and r,

θ = 90◦−2arcsin
r
lA

(12)

4.2. Bricard linkages with the same bundle length
In the following, we obtain a Bricard linkage that can be deployed into a square for a given length

of the bundle.
From the above calculations, the deployed square can be determined by two parameters, e.g., r

and lA in (12). There are infinitely many linkages that can be deployed into a square and folded into
a bundle with same length. By varying the above equations, the relationship among r, lA and BB′ is
obtained,

4
√

2rlA

cos(45◦− arcsin
r
lA
)
−8r2 = |BB′|2 (13)

Therefore, with given BB′ and r, lA can be calculated with (13). The other parameters can be
obtained from (12), (11), and (4).

5. Case studies

Two case studies are reported in this section. The first outlines a procedure to obtain a Bricard
linkage deployable into a square shape. The second describes several different Bricard linkages with
the same bundle length but different geometric parameters.
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5.1. Case I
In this case study, we start from a general Bricard linkage, then constrain the deployed shape to

a square by adding the constraints step by step.
We take the Bricard linkage in Fig. 5 as the model. The 5 parameters of the initial mechanism

are R = 35 mm, r = 20 mm, lA = 70 mm, l′A = 50 mm, θ = 55◦. The bundle line is BB′ as usual, the
deployed shape is in Fig. 6.

From (4) and (11), adding the first two constraints, we have

lA = l′A = 50 mm (14)
R = 33.77 mm (15)

The bundle and the corresponding deployed rhombus are shown in Fig. 12. When θ = 90◦ −
2arctan

r
lA

= 42.84◦, the obtained shape is a square as described in Fig. 13.

(a) (b)

Figure 12: A Bricard linkage unfolding into a rhombus

(a) (b)

Figure 13: A Bricard linkage unfolding into a square

5.2. Case II
With the same given length |BB′|= 200 mm and different values r, several Bricard linkages are

obtained, each of them deployable into a square.
When r = 110 mm, from (13), the other parameters are calculated as lA = l′A = 213.35 mm,

θ = 27.93◦, R = 179.47 mm. The construction of the Bricard linkage and the formed square is
shown in Fig. 14.
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Figure 14: Construction of the Bricard linkage with BB′ = 200 mm and r = 110 mm

Next, we use r = 70.71 mm, lA = 184.78 mm, θ = 45◦, and R = 130.66 mm. This is a special
case, since D and D∗ are midpoints of AC′ and A′∗C∗ respectively, Fig. 15.

Figure 15: Construction of the Bricard linkage with BB′ = 200 mm and r = 70.71 mm

When r = 45 mm, lA = 188.82 mm, θ = 62.42◦, and R = 97.87 mm, the two collapsed configu-
rations are shown in Fig. 16.

Figure 16: Construction of the Bricard linkage with BB′ = 200 mm and r = 45 mm

It can be seen that, under the condition that the bundle length is constant, the smaller the value

of r, the nearer point D∗ is to C∗. When r =

√
2

4
|BB′|, D is in the midpoint of A′C and AC′.

A 3D printed prototype of the Bricard linkage in Fig. 14 has been fabricated where the cross
section of each bar is nearly a rectangle, but slightly modified to avoid collisions during the motion.
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Kinematic experiment of the movement of the bundle-folding Bricard linkage is performed as shown
in Fig. 17. The formed square is marked with a dotted line in Fig. 17(c).

(a) (b) (c)

Figure 17: Prototype experiment of a bundle-folding Bricard square

6. Conclusion

Using the capability of the type III Bricard linkage to be coplanar in two configurations, a family
of mechanisms has been proposed, each of which can be folded into a bundle and deployed into
a planar polygon. The functional relationships among the bundle length, the deployed shape, and
the parameters of the Bricard linkage have been analyzed, and the geometric conditions for the
construction of a deployable square have been derived. Case studies have been performed, presenting
the procedure of obtaining a deployed square, with several choices of the Bricard linkage with the
same bundle length and deployed shape.

Although the paper focuses on the construction of deployable quadrangles, with a different
choice of the bundle line the mechanism can be also deployed as a hexagon. The proposed line-
intersection method can also be applied on other linkages to obtain a bundle folding mechanism.
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Appendix A

Consider the construction in Fig. 5, in the following, every line in the figure will be parame-
terized. The coordinates of their intersections (the points B, B ′, D, and D ′) as a function of the
coordinates of the points A and A′ and the radii r and R are computed.

Without loss of generality, take the origin, O, of the coordinate system to be at the center of
the concentric circles of radius r and R such that A and A′ respectively lie in the third and fourth
quadrants.
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Recall that the line connecting points P and Q can be parameterized as

LPQ(t) = P+ t(P−Q)

where P and Q are the position vectors of P and Q relative to a coordinate system with origin at O.
Given two such lines defined by pairs of points (P,Q) and (P ′,Q ′), the coordinates of the intersection
of these lines relative to a coordinate frame attached at O can be found by solving the equation

LPQ(t) = LP ′Q ′(t
′)

for the parameters t and t ′.
Explicitly, this gives

P+ t(P−Q) = P ′+ t ′(P ′−Q ′) ,

or (
t
t ′

)
= [P−Q,Q ′−P ′]−1(P ′−P) . (16)

The point of intersection is then

X = LPQ
(
eT

1 [P−Q,Q ′−P ′]−1(P ′−P)
)

= LP ′Q ′
(
eT

2 [P−Q,Q ′−P ′]−1(P ′−P)
)
.

(17)

This equation will be used multiple times.
Let

A = ‖A‖uA , r = ‖r‖ur and R = ‖R‖uR (18)

respectively denote vectors from the origin to A and to points on the circles of radius ‖r‖ = r and
‖R‖= R. Without loss of generality, each unit vector in the above expressions can be taken to be of
the form

u(θ) =
(

cosθ

sinθ

)
(19)

where θ is given a subscript that matches that of u.
The relative position vector from a point R on the circle of radius R to A is

p = A−R . (20)

There are only two lines that pass through A and are tangent to the circle of radius R. These points
of tangency on the circle are defined as RA

le f t and RA
right .

The condition that the line between each of these points is tangent to the circle is that

(A−RA) ·RA = 0 (21)

for both the subscript ‘left’ and ‘right’.
In terms of unit vectors and angles that is

cos(θA−θR) = uA ·uR =
‖R‖
‖A‖

. (22)

The angular difference |θA−θR| will always be less than π/2 because it will be an interior angle in
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Figure 18: Illustration of when θA−θR is positive and negative

the triangle formed by O, A, and the point of tangency. However, the sign of θA−θR will depend on
which side of the line OA the point R lies in. If R is to the left, then this difference will be positive.
If it is to the right, it will be negative. Let RA

right and RA
le f t denote these two scenarios, as depicted in

Fig. 18.
Consequently, since θA, ‖R‖= R and ‖A‖ are all known, we can find R once θR is obtained from

one of the two formulas

θ
le f t
R = θA− cos−1

(
R
‖A‖

)
and θ

right
R = θA + cos−1

(
R
‖A‖

)
. (23)

From here the points Rle f t and Rright are obtained from

RA
le f t = Ru

(
θ

le f t
R

)
and RA

right = Ru
(

θ
right
R

)
. (24)

Everything mentioned above for the large circle of radius R also applies for the small circle of radius
r, culminating in

rA
le f t = r u

(
θ

le f t
r

)
and rA

right = r u
(

θ
right
r

)
. (25)

In Fig. 5, A is in quadrant 3 and A′ is in quadrant 4. The line passing through A and B is the
same as the one passing through A and RA

le f t . The line passing through A′ and B is the same as that

passing through A′ and RA′
le f t . Then using (17), the point of intersection, which is B, is computed as

B = LA,RA
le f t

(
eT

1 [A−RA
le f t ,R

A′
le f t−A ′]−1(A ′−A)

)
. (26)

Similarly, the position of the point B′ can be found as

B′ = LA′,RA′
right

(
eT

1 [A
′−RA′

right ,R
A
right−A]−1(A−A′)

)
. (27)

The line between B and B′ can be parameterized as LB,B′(t). The point where this line intersects the
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line LA′,rA′
le f t

(t1) is D. An expression for the coordinates of D can be found using (17). Similarly, the

coordinates of D′ can be found as the intersection between the line LA,rA
right

(t2) and LB,B′(t). This
too is calculated using (17).

The expressions for the left side of the statement can be described as

D = D′, (28)

the right side is equivalent to
D · (B−B′) = 0 . (29)

Numerical simulations have been performed to prove the equivalence of (28) and (29). In the
simulations, values of four parameters(lA, l′A, r, and θ ) are set as input. Therefore, the value of R can
be solved using (28). It turns out that (29) is always true when substituting the obtained parameters
into it. Necessity is proved by value of R solving from (29) can always guarantee (28) is true.

It can also be found from the simulations that there are four independent parameters determining
the mechanism geometry when D = D ′ is satisfied.
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