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Abstract

In this study, we lay the groundwork for a systematic investigation of the

rigidity and flexibility of rigid origami by using the mathematical model re-

ferred to as the panel-point model. Rigid origami is commonly known as a

type of panel-hinge structure where rigid polygonal panels are connected by

rotational hinges, and its motion and stability are often investigated from

the perspective of its consistency constraints representing the rigidity and

connection conditions of panels. In the proposed methodology, vertex coor-

dinates are directly treated as the variables to represent the rigid origami

in the panel-point model, and these variables are constrained by the condi-

tions for the out-of-plane and in-plane rigidity of panels. This model offers

several advantages including: 1) the simplicity of polynomial consistency

constraints; 2) the ease of incorporating displacement boundary conditions;
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and 3) the straightforwardness of numerical simulation and visualization. It

is anticipated that the presented theories in this article are valuable to a

broad audience, including mathematicians, engineers, and architects.

Keywords: Rigid origami, statics, rigidity, stability, prestress

1. Introduction1

1.1. Background2

This paper presents a methodology for the analysis of the rigidity and3

flexibility of rigid origami using a panel-point model. Rigid origami is a4

kind of panel-hinge structure where rigid polygonal panels are connected by5

rotational hinges referred to as the crease lines. In the panel-point model,6

a rigid origami is described by its vertex positions, rather than the folding7

angles, used in a previous related study [1]. It offers simple and systematic8

formulations of consistency constraints and their derivatives.9

Origami offers new topics and solutions to a wide range of fields in math-10

ematics [2, 3] and engineering [4, 5], and has been actively studied in recent11

years. In particular, rigid origami is subject to the strict requirement of12

folding without deformation of its faces, and the properties of rigid origami’s13

folding mechanisms are the subject of study in mathematics, physics and14

engineering.15

From a theoretical perspective, rigid origami is sometimes associated with16

rigidity theory, and sometimes with the kinematics and mechanics that de-17

scribe its motion. In kinematics and mechanics, the motion of a rigid origami18
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is investigated with respect to consistency constraints on the variables de-19

scribing a motion or a displacement of a rigid origami. To formulate the20

consistency constraints, a rigid origami is often modelled as a structure con-21

sisting of hinge-connected rigid panels or an equivalent linkage, and the vari-22

ables are selected to represent the (relative) displacements or positions of the23

components of the rigid origami model; e.g., folding angles [6], or displace-24

ments, or coordinates of nodes [7, 8, 9, 10]. The construction of a model or25

a mathematical representation of a rigid origami is a crucial step because it26

greatly affects the simplicity of the resultant symbolic and numerical calcu-27

lations, mechanism analysis, and folding simulation.28

The rigidity of rigid origami, which is the focus of this study, was recently29

introduced by He and Guest [1] using a folding angle formulation. Here we30

revisit this rigidity analysis, but using a panel-point model, which has a31

number of advantages. In contrast to the motion analysis of a rigid origami,32

which has been widely studied, rigidity theory investigates the conditions33

where a rigid origami is not foldable. The rigidity concepts employed in this34

study are similar to those of the structural rigidity theory for classical bar-35

joint frameworks [11, 12, 13]. In the original study [1], several levels of rigidity36

are discussed in accordance with the classical structural rigidity theory; first-37

order rigidity, static rigidity, prestress stability, and second-order rigidity.38

These rigidity concepts are also investigated for the panel-point model in this39

study by invoking the ideas used in the field of combinatorial rigidity [14, 15].40

While the treatment of the equations follows that in classical rigidity theory,41
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Table 1: Classification of models of rigid origami with respect to the choice of the variables
and the analysis type: Classification of the analysis is based on Ref. [16].

Analysis type Choice of variables
Vertex position description Folding angle description

Kinematic-based;
rigid faces and
crease lines without
rotational stiffness

Panel-point model Rotational hinge model
[1, 6, 17, 18]

Intermediate;
analysis with mixed
conditions in two
types of analysis

Rigid truss model [7]
Truss model with pyramid
framework [8]
Frame model [9, 10]

Mechanics-based;
elastic (plastic) faces
and crease lines

Bar and hinge model [19, 20]
Finite element model with
shell elements [20, 21]

this study contributes to the field by presenting a new construction and42

physical interpretation of a rigid origami model, which will also be useful43

to allow origami engineers to systematically develop a mechanism analysis44

using the proposed model.45

1.2. Analysis and models of rigid origami46

This section provides a comprehensive review of the characteristics of47

various models of rigid origami, and the advantages of the panel-point model48

are summarized. Models and mathematical representations of rigid origami49

can be classified with respect to their variables and the analysis types where50

they are used (see Table 1 and Fig. 1). The variables can be roughly classified51

into a vertex position description (nodal position description) or a folding52

angle description. The former uses the positions of the vertices or other53

specified parts of a rigid origami as variables. Therefore, it can directly54
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Figure 1: Models of rigid origami where the physical representation of the bodies for ex-
pressing the deformation of rigid origami are indicated by grey components and the phys-
ical representation of the constraints are indicated by black components; (a) Panel-point
model consisting of points constrained by panels. (b) Rotational hinge model consisting
of hinges constrained by panels. (c) Truss model consisting of nodes constrained by bars.
(d) Frame model consisting of frames constrained by hinges.
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represent the shape of an origami in three-dimensional space, and it is easy55

to introduce displacement boundary conditions and visualize the shape. The56

latter takes the folding angles of the crease lines (the complementary angles57

of the pairs of faces adjacent to the crease lines) as variables. Although the58

folding angle description is the simplest way to express the folding state,59

it is not easy to introduce boundary conditions because of the complicated60

nonlinear relationship of the vertex positions to the folding angles.61

Depending on the level of idealization of the structure, the analysis of62

rigid origami can be classified into three major types: kinematic-based anal-63

ysis, mechanics-based analysis, and intermediate analysis. Kinematic-based64

analysis assumes that each face is not deformed, and only the relative rota-65

tion of the faces at each crease line occurs as the deformation of an origami.66

Mechanics-based analysis considers elastic or plastic deformation of the faces67

under external loads or forced displacements, and often considers rotational68

stiffness of the crease lines; i.e., the physical properties of the materials and69

elements are incorporated. As an intermediate between the above two types,70

the analysis is also often performed to find an equilibrium state with external71

loads as considered in the mechanics-based analysis under the assumption of72

the rigid faces in the kinematic-based analysis. Further details on the various73

analyses and models can be found in Ref. [16].74

As shown in Table 1, the panel-point model is introduced for performing75

kinematic-based analysis in the vertex position description, which has not76

been covered so far. The vertex positions are explicitly treated as the vari-77
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ables, and these variables are constrained by the consistency constraints to78

guarantee the rigidity of panels. The consistency constraint equations are79

formulated in polynomial form with respect to the in-plane and out-of-plane80

deformation of each panel which correspond to length constraints and copla-81

nar constraints, respectively. Here, for each panel, the in-plane direction is82

parallel to the plane in which the panel is located, and the out-of-plane direc-83

tion is orthogonal to it. The former constraints are formulated to constrain84

the length of all boundary edges of a face and some diagonals when the face85

has more than three edges. The latter constraints are formulated so that for86

each constraint, four of the vertices of a face are on the same plane, and for87

a face with more than four edges, several coplanar constraints are imposed.88

The choice of vertex sets for the imposition of length and coplanar constraints89

is generically arbitrary, and it is shown that the choice does not affect the90

rigidity and flexibility considered in this paper although the distribution of91

internal forces corresponding to the constraints may change. Note that the92

length constraints are equivalent to the formulation used in the truss model93

or the bar-joint structures, while the coplanar constraints differ: the copla-94

nar constraints in the truss model are usually formulated as trigonometric95

equations, or small out-of-plane deformation is penalized by applying a high96

bending stiffness to the panels in the intermediate or the mechanics-based97

analysis.98

As a final comparison between the models used for the kinematic-based99

analysis in Table 1, Table 2 juxtaposes features of the point-panel model with100
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the rotational hinge model [1]. The notable advantages of the model used in101

this study are:102

1. the simplicity of consistency constraints, which are in polynomial form,103

2. the ease of incorporating displacement boundary conditions,104

3. the straightforwardness of numerical simulation and visualization,105

4. the intuitively comprehensible physical interpretation of loads and in-106

ternal forces.107

1.3. Structure of this article108

Section 2 presents the formulation of the length and coplanar constraints109

based on the structure of the underlying graph of a rigid origami. In Sec-110

tions 3 – 6, rigidity analysis of a rigid origami is presented following the111

definitions of rigidity and flexibility in Ref. [1]. First-order rigidity and flex112

are defined in Section 3 using first-order derivatives of the constraints. Sec-113

tions 4 and 5 introduce the idea of load and internal force in the context of114

rigidity analysis and discuss the static rigidity and prestress stability of the115

point-panel model. In addition, section 6 discusses second-order rigidity as116

the next level of rigidity. Although some studies have discussed higher-order117

flexibility in the bar-joint framework [22, 23], the present paper only consid-118

ers this up to second-order. Note that the displacement boundary conditions119

are not considered in Sections 3 – 6 for simplicity, but are introduced in120

Section 7. Finally, the conclusions of this paper are provided in Section 8.121
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Table 2: Comparison between a panel-point model (vertex position description) and a
rotational hinge model (folding angle description) in several aspects of symbolical analysis
and simulation.

Panel-point model Rotational hinge model

Applicability any surfaces only for orientable surfaces

Forms of consis-
tency constraints

length and coplanar con-
straints in polynomial form

loop conditions in trigono-
metric equations

Compatibility
with boundary
condition

convenient for any form of
displacement boundary con-
ditions both symbolically
and numerically

impractical for analysis with
displacement boundary con-
ditions

Compatibility
with external
loads

straightforward for point
loads

straightforward for moments
applied to a crease line

Utility in flexibil-
ity and stability
analysis

convenient for symbolic anal-
ysis on local rigidity, generic
rigidity, and stability

convenient for symbolic anal-
ysis on local rigidity, generic
rigidity, and stability

Utility in folding
simulation

convenient for numerical
simulation by integration
over a field of first-order flex

convenient for numerical
simulation by integration
over a field of first-order flex

Utility in visual-
ization and con-
struction

convenient for visualization
due to the explicit represen-
tation of vertex position in
Euclidean space

need to transfer the folding
angles to Euclidean coordi-
nates using the dimension of
faces
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2. Modelling122

Here, the modelling of the point-panel model is introduced. An example123

of a realization is shown in Fig. 2(a).124

Definition 2.1. A hypergraph G is a finite nonempty set of objects called125

vertices together with a (possibly empty) set of subsets of distinct vertices126

of G called hyper edges.127

The underlying graph G for a rigid origami is a hypergraph with a cyclic128

order (either forward or backward) of each hyper edge, called a cyclic hyper129

edge. The vertices in a cyclic hyper edge form a panel in a cyclic sequence.130

A realization p of an underlying graph G (or written as G(p)) is a rigid131

origami where nv vertex position vectors p1, p2, . . . , pnv ∈ R3 are assembled132

into a column vector p ∈ R3nv
(suppose the number of vertices is nv). In133

this study, the following notation is used to denote a vector of vectors for134

convenience:135

p = (p1; p2; . . . ; pnv) =



p1

p2
...

pnv


.

We use a ’hyper edge’ not to represent a panel but to refer to a sequence136

of vertices that can form a panel, including the case where these vertices137

are placed in an unfavourable way, such as a non-coplanar arrangement. For138

example, the hypergraph shown in Fig. 2(a) has 8 cyclic hyper edges, each139
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Figure 2: (a) An underlying graph of a rigid origami in the point-panel model, which has 8
cyclic hyper edges a–h. (b) A planar realization of (a), where the lower-case roman labels
indicate the correspondence between the hyper edges of (a) and the panels of (b).

of which forms a panel in the cyclic order:140

{1, 4, 5}, {1, 5, 6, 2}, {2, 6, 7, 3}, {4, 8, 5},

{5, 8, 9, 6}, {3, 7, 10, 12}, {4, 11, 8}, {8, 11, 12, 10, 9}.

A realization p needs to satisfy coplanar constraints and length constraints141

to guarantee the planarity of the panel and to fix the dimension of the panel,142

respectively. We investigate the rigidity of rigid origami for any realization p143

satisfying the given coplanar and length constraints except for some special144

cases where the coplanarity or the dimension of a panel may not be guar-145

anteed. In other words, the coplanar and length constraints are assigned146

before the realization p is determined. These constraints are imposed on the147

vertices on each cyclic hyper edge in two ways referred to as: 1) elementary148
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Figure 3: Realizations of a five sided panel under 2 elementary coplanar constraints and 7
elementary length constraints fixing 5 boundary lines and 2 diagonals connecting vertices
1 and 3, and vertices 1 and 4; (a), (b) Two different generic realizations obtained under
the same set of dij for the elementary length constraints. (c) A non-generic realization
with colinear vertices 1 – 4 where the elementary coplanar constraints are not enough to
ensure coplanarity of the panel.

constraints and 2) elementary + additional constraints149

(1) Elementary coplanar and length constraints150

The elementary coplanar constraints are imposed on m− 3 sets of four of151

m vertices on each cyclic hyper edge with m sides. For example, the model152

in Fig. 2, with 8 cyclic hyper edges, has 6 coplanar constraints. The coplanar153

constraints are represented as cubic polynomial equations, as described be-154

low, that ensure that the vertices on each cyclic hyper edge are coplanar. For155

a single hyper edge with m vertices, m − 3 elementary coplanar constraints156

are assigned so that at least three vertices in any single coplanar constraint157

are shared with at least one other coplanar constraint, and the constraint158
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over pi, pj, pk, pl is written as:159

f c(i, j, k, l) = ⟨(pj − pi)× (pk − pi), pl − pi⟩ = 0

for all selected i, j, k, l ∈ Z+, i, j, k, l ≤ nv,

(1)

where the symbol ⟨·, ·⟩ stands for a inner product of vectors. f c in the above160

equation is the signed volume of the parallelepiped formed by pj − pi, pk − pi161

and pl − pi. Although the order of four vertices in Eq. (1) is not crucial,162

we assume that vertices i, j, k, l are arranged in this order in a cyclic hyper163

edge. Then, the coplanar constraints f c for all hyper edges are assembled164

into an nc column vector f c ∈ Rnc
, where nc is the total number of coplanar165

constraints for the entire rigid origami. Note that the coplanarity of the166

vertices may not be guaranteed by the elementary coplanar constraints for167

a realization where some vertices are colinear, as for the example shown in168

Fig. 3(c), but such pathological cases are excluded from the discussion here.169

Elementary length constraints are assigned to fix the lengths of all bound-170

ary lines and m − 3 diagonals of each panel with m sides. The m − 3171

length constraints on diagonals should be chosen in a way such that any172

p (p ∈ Z+, 2 ≤ p ≤ m− 1) vertices of this panel have 2p− 3 of these length173

constraints. Each of these constraints is a quadratic polynomial equation174

over p with the form:175

f l(i, j) =
1

2

(
⟨pi − pj, pi − pj⟩ − d2ij

)
= 0

for all selected i, j ∈ Z+, i < j ≤ nv.

(2)
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dij ∈ R is the distance between pi and pj which is positive and satisfy the176

triangle inequality. The collection of elementary length constraints f l for177

the entire rigid origami is written by an nl column vector f l ∈ Rnl
, where178

nl is the total number of elementary length constraints for the entire rigid179

origami. Note that the shape of a panel with more than three sides cannot180

be uniquely determined in a realization p under the elementary coplanar and181

length constraints as shown in Figs. 3(a) and 3(b), both of which have the182

same constraints.183

(2) Elementary + additional coplanar and length constraints184

We can also impose coplanar and length constraints on all possible sets of185

vertices on each cyclic hyper edge. Constraints added to elementary coplanar186

and length constraints are referred to as the additional coplanar constraints187

and the additional length constraints, respectively. The number of the addi-188

tional coplanar constraints on each m-sided panel is
(
m
4

)
− m + 3, and the189

number of the additional length constraints is (m− 2)(m− 3)/2. These ad-190

ditional coplanar and length constraints are written by an nca column vector191

f ca ∈ Rnca
and an nla column vector f la ∈ Rnla

, respectively, where nca and192

nla are the total numbers of additional coplanar and length constraints for the193

entire rigid origami, respectively. When the additional coplanar and length194

constraints are assigned in addition to the elementary coplanar and length195

constraints, the shape of each panel is uniquely determined in a realization p196

although there are many redundant constraints with respect to the rigidity of197

rigid origami. The redundancy is reflected in the rank of the rigidity matrix198
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defined below.199

Definition 2.2. (1) Let f = (f c; f l; f ca; f la). The solution space P of200

realizations p is defined as:201

P = {p ∈ R3nv |f(p) = 0

for a given set of dij in the length constraints},

where dij are the distances which are included in nl + nla length con-202

straints and are subject to the triangle inequality.203

The extended solution space P̃ is also defined as:204

P̃ = {p ∈ R3nv |f(p) = 0

for all admissible dij in the length constraints}.

Here, ‘admissible’ dij are any possible distances subject to the triangle205

inequality.206

(2) The rigidity matrix of the entire rigid origami is the Jacobian of f :207

df

dp
=

d(f c; f l; f ca; f la)

dp
,

which is the (nc + nl + nca + nla)× 3nv matrix whose (i, j) component is208

the first-order partial derivative of the i-th component of f with respect209

to the j-th component of p (i, j ∈ Z+, i ≤ nc+nl+nca+nla, j ≤ 3nv).210

Note that df/ dp is independent of any dij.211
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(3) p ∈ P is a panel-wise generic realization if the determinant of a sub-212

matrix of df/ dp consisting of the rows and columns corresponding to213

the constraints and the vertices of each cyclic hyper edge (i.e., a rigidity214

matrix of each panel) is zero only if for any q ∈ P̃ , the determinant of215

the corresponding submatrix of df/ dq is zero.216

Note that the displacement boundary conditions are not considered in the217

construction of the theories in Sections 3 – 6 for simplicity. The instructions218

for the formulation of the additional constraints representing the displace-219

ment boundary conditions and the extension of the idea of rigidity under the220

boundary conditions are given in Section 7.221

Proposition 2.3 below is a quick note on the invariance of the rank of the222

rigidity matrix with respect to choices of vertices in the coplanar constraints223

and diagonals in the length constraints.224

Proposition 2.3. (Invariance of the rank of rigidity matrix) Different choices225

of coplanar and length constraints have no effect on the rank of the rigidity226

matrix at a panel-wise generic realization:227

(1) Additional constraints forming f ca and f la do not change the rank of the228

rigidity matrix:229

rank

(
d(f c; f l)

dp

)
= rank

(
df

dp

)
.

(2) Different choices of vertices for elementary coplanar constraints do not230

change the rank of the rigidity matrix. In order words, suppose there are231
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two choices of coplanar constraints f c1 and f c2 :232

rank

(
d(f c1 ; f l)

dp

)
= rank

(
d(f c2 ; f l)

dp

)
.

(3) Different choices of diagonals for elementary length constraints do not233

change the rank of the rigidity matrix. In other words, suppose there are234

two choices of diagonals f l1 and f l2 :235

rank

(
d(f c; f l1)

dp

)
= rank

(
d(f c; f l2)

dp

)
.

Proof. The proof is included in the proof of Proposition 3.3.236

Example 1. Consider the example shown in Fig. 2(b) with 20 boundary lines237

of panels and 12 vertices. The number of elementary coplanar, elementary238

length, additional coplanar, and additional length constraints are nc = 6,239

nl = 26, nca = 3, and nla = 7, respectively. The size of p is 3nv = 36.240

Hence, df/ dp is a 39 × 36 matrix. At the planar realization shown in241

Fig. 2(b), rank (df/ dp) = 27, while at ’most’ non-planar panel-wise generic242

realizations, rank (df/ dp) = 30.243

3. Rigidity matrix and first-order rigidity244

For a coplanar constraint over four vertices pi, pj, pk, pl on the same245

hyper edge, non-zero submatrices of the rigidity matrix are calculated from246
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Eq. (1) as:247

∂f c(i, j, k, l)

∂pi
= {(pj − pk)× (pl − pk)}T,

∂f c(i, j, k, l)

∂pj
= −{(pk − pl)× (pi − pl)}T,

∂f c(i, j, k, l)

∂pk
= {(pl − pi)× (pj − pi)}T,

∂f c(i, j, k, l)

∂pl
= −{(pi − pj)× (pk − pj)}T,

for selected i, j, k, l ∈ Z+, i, j, k, l ≤ nv.

(3)

Also, for a length constraint written as Eq. (2):248

∂f l(i, j)

∂pi
= (pi − pj)

T,

∂f l(i, j)

∂pj
= (pj − pi)

T,

for selected i, j ∈ Z+, i < j ≤ nv.

(4)

An entire rigidity matrix df/ dp is obtained by assembling the derivatives of249

constraints. For example, two rows of the rigidity matrix of the rigid origami250

in Fig. 2, whose vertex coordinates are not fixed, are shown below:251

∂f c(1, 2, 6, 5)

∂p
=

[
{(p2 − p6)× (p5 − p6)}T −{(p6 − p5)× (p1 − p5)}T 0 0

−{(p1 − p2)× (p6 − p2)}T {(p5 − p1)× (p2 − p1)}T 0 0 0 0 0 0

]
,

252

∂f l(1, 2)

∂p
=

[
(p1 − p2)

T (p2 − p1)
T 0 0 0 0 0 0 0 0 0 0

]
.

18



Every 0 in the above equations is a 1×3 zero row vector in the above matrix253

form.254

Definition 3.1. Suppose the rank of the rigidity matrix is:255

rank

(
df

dp

)
= q (q ∈ Z+, q ≤ min(nc + nl, 3nv − 6))

at a realization p ∈ P . Here, nv, nc, and nl are the number of vertices,256

elementary coplanar constraints, and elementary length constraints, respec-257

tively.258

A rigid origami G(p) is first-order rigid if q = 3nv − 6.259

A first-order flex p′ = (p′1; p
′
2; . . . ; p

′
nv) ∈ R3nv

is a vector in the nullspace260

of df/ dp whose dimension is 3nv − q; i.e, p′ satisfies:261

df

dp
p′ = 0. (5)

A trivial first-order flex is:262

p′i = Api + u, i ∈ Z+, i ≤ nv, (6)

where A ∈ R3×3 and u ∈ R3 are a fixed skew-symmetric matrix and a fixed263

translation vector common to all vertices, respectively. The dimension of264

space of trivial first-order flex is 6 without displacement boundary conditions.265

Remark 3.2. The panel-wise genericity of a realization p in Definition 2.2266

implies the first-order rigidity of each panel.267
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Proposition 3.3 below and the several following propositions show the268

invariance in the first-order and second-order analyses. This invariance in-269

dicates that, as long as the realization is panel-wise generic, the proposed270

panel-point model is robust to the choices of coplanar and length constraints271

that may be differently set by users of the model.272

Proposition 3.3. (Invariance of first-order flex) Different choices of coplanar273

and length constraints have no effect on the space of first-order flex at a274

panel-wise generic realization:275

(1) Additional coplanar and length constraints do not change the space of276

first-order flex. In other words, df/ dp and d(f c; f l)/ dp have the same277

nullspace:278

d(f c; f l)

dp
p′ = 0 ⇔ df

dp
p′ = 0.

(2) Different choices of vertices for elementary coplanar constraints do not279

change the space of first-order flex. In order words, suppose there are280

two choices of coplanar constraints f c1 and f c2 , they satisfy the following281

relation:282

d(f c1 ; f l)

dp
p′ = 0 ⇔ d(f c2 ; f l)

dp
p′ = 0.

(3) Different choice of diagonals for elementary length constraints do not283

change the space of first-order flex. In other words, suppose there are284

two choices of diagonals to form the elementary length constraints f l1
285
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and f l2 , they satisfy the following relation:286

d(f c; f l1)

dp
p′ = 0 ⇔ d(f c; f l2)

dp
p′ = 0.

Proof. As mentioned in Remark 3.2, as long as the realization is panel-wise287

generic, any first-order flex restricting the motion of each panel has only a288

rigid-body motion. Therefore, additional constraints and different choices of289

coplanar and length constraints do not change the space of first-order flex290

relating to a single panel. Since the space of first-order flex for the entire291

rigid origami is the intersection of the spaces of first-order flex restricting292

each panel, it is preserved under all different choices of coplanar constraints293

and length constraints.294

For the rigid origami shown in Fig 2, the size of df/ dp is 39 × 36. At295

a panel-wise planar realization in Fig. 2(b), rank (df/ dp) = 27, hence the296

dimension of the space of non-trivial first-order flex is 3. At ‘most’ non-planar297

panel-wise generic realizations, rank (df/ dp) = 30, and the rigid origami is298

first-order rigid.299

4. Static Rigidity300

This section considers the behavior of a rigid origami from the viewpoint301

of static rigidity. We introduce a restricted set of external loads and internal302

forces that are work-conjugate to a first-order flex and an internal deforma-303

tion, respectively. The idea of ‘internal force’ and ‘internal deformation’ are304
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similar to the stress and strain in elasticity. The difference and connection305

are shown later in this section.306

In the point-panel model, the internal deformation e ∈ Rnc+nl+nca+nla
of307

a rigid origami is defined after Definition 2.2 as:308

e = f(p), p ∈ R3nv

. (7)

That is to say:309

e(p) = 0 only if p ∈ P . (8)

Suppose that the rigid origami is associated with a second or higher-order310

differentiable strain energy U(e) ∈ R which is only dependent on the internal311

deformation e and satisfies:312

U(0) = 0, U(e) > 0 if e ̸= 0. (9)

In addition, suppose the rigid origami is subject to a second or higher-order313

differentiable scalar potential V (p) which is only dependent on the position314

of vertices p.315

From the perspective of analytical mechanics, the total potential energy316

of the rigid origami is U+V . At the equilibrium state, the following equation317

holds:318

d(U + V )

dp
=

dU

de

df

dp
+

dV

dp
= 0. (10)

Then, the internal force and load are denoted by the column vectors ω ∈319
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Rnc+nl+nca+nla
and l ∈ R3nv

, respectively, which are defined as:320

ω =
dU

de
, l = −dV

dp
. (11)

Hence, the equilibrium equation is:321

df

dp

T

ω = l. (12)

For a rigid origami G(p), if there is an internal force ω satisfying Eq. (12) for322

a given load l, we say G(p) can resolve load l. In correspondence with the323

types of the constraints, ω is decomposed as ω = (ωc; ωl; ωca; ωla) where324

ωc ∈ Rnc
, ωl ∈ Rnl

, ωca ∈ Rnca
, and ωla ∈ Rnla

are associated with f c, f l,325

f ca, and f la, respectively.326

If the load l = 0, the internal force is referred to as a self-stress ωs:327

df

dp

T

ωs = 0. (13)

The internal work done by the internal force ω with the first-order internal328

deformation df/ dp · p′ is zero:329

δWin =

〈
ω,

df

dp
p′
〉

= 0. (14)

According to the principle of virtual work, the external work done by the330
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load l with the first-order flex p′ is also zero:331

δWex = ⟨l, p′⟩ = 0. (15)

Proposition 4.1. (Invariance of the load that can be resolved) At a panel-332

wise generic realization, different choices of coplanar or length constraints333

have no effect on the space of load that can be resolved, while can only334

change the internal force distribution. Note that additional coplanar and335

length constraints increase the dimension of internal force:336

(1) Additional coplanar and length constraints do not change the load that337

can be resolved. In other words, there is an internal force ω ∈ Rnc+nl+nca+nla
338

that can resolve a load l ∈ R3nv
if and only if there is a pair of internal339

forces ωc ∈ Rnc
and ωl ∈ Rnl

that can resolve l:340

df

dp

T

ω = l ⇔ d(f c; f l)

dp

T

(ωc; ωl) = l.

(2) Different choices of vertices for elementary coplanar constraints do not341

change the load that can be resolved. In other words, suppose there are342

two choices of coplanar constraints f c1 and f c2 , there is an internal force343

ωc1 ∈ Rnc
that can resolve a load l ∈ R3nv

with ωl ∈ Rnl
if and only if344

there is an internal force ωc2 ∈ Rnc
that can resolve l with ωl:345

d(f c1 ; f l)

dp

T

(ωc1 ; ωl) = l ⇔ d(f c2 ; f l)

dp

T

(ωc2 ; ωl) = l.
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(3) Different choices of diagonals for elementary length constraints do not346

change the load that can be resolved. In other words, suppose there347

are two choices of diagonals to form the elementary length constraints348

f l1 and f l2 , there is an internal force ωl1 ∈ Rnl
that can resolve a load349

l ∈ R3nv
with ωc ∈ Rnc

if and only if there is an internal force ωl2 ∈ Rnl
350

that can resolve l with ωc:351

d(f c; f l1)

dp

T

(ωc; ωl1) = l ⇔ d(f c; f l2)

dp

T

(ωc; ωl2) = l.

Proof. From Eq. (15), the space of load that can be resolved is the orthogo-352

nal complement of the space of first-order flex, which is invariant to different353

choices of coplanar or length constraints as shown in Proposition 3.3. There-354

fore, the space of load that can be resolved is also invariant to different choices355

of coplanar or length constraints. In other words, the load can be resolved356

only by the components of ω corresponding to the predefined elementary357

coplanar and length constraints, and the remaining components of ω form358

the self-stress.359

Next, we explain how the distribution of internal forces changes with the360

additional coplanar and length constraints or the different choices of ver-361

tices of elementary coplanar constraints or diagonals of elementary length362

constraints. First, the change of the internal force distribution for the addi-363

tional coplanar and length constraints is shown. Suppose there is an ω1 in364

the elementary and additional constraints that can resolve l, then ω1 could365
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be decomposed as described in the following equation:366

ω1 = (ωc
1; ω

l
1; ω

ca
1 ; ωla

1 )

= (ωc
1 − ωc

2; ω
l
1 − ωl

2; 0
ca; 0la) + (ωc

2; ω
l
2; ω

ca
1 ; ωla

1 ),

(16)

where ωc
2 and ωl

2 make the second term in the right-hand side of Eq. (16) a367

self-stress. In the following, such decomposition is referred to as a transition368

between internal forces in different choice of diagonals. Similarly, suppose369

(ωc
1; ω

l
1; 0

ca; 0la) can resolve l in a set of elementary coplanar constraints,370

we have the transition between different choices of elementary coplanar con-371

straints described as:372

(ωc1
1 ; ωl

1; 0
ca1) = (ωc1

1 + ωc1
2 ; ωl

1; ω
ca1
1 )− (ωc1

2 ; 0l; ωca1
1 )

= (ωc2
1 ; ωl

1; ω
ca2
1 )− (ωc1

2 ; 0l; ωca1
1 )

= (ωc2
1 − ωc2

2 ; ωl
1; 0

ca2) + (ωc2
2 ; 0l; ωca2

1 )− (ωc1
2 ; 0l; ωca1

1 ),

(17)

where ωc2
1 and ωca2

1 satisfy:373

d(f c2 ; f ca2)

dp

T

(ωc2
1 ; ωca2

1 ) =
d(f c1 ; f ca1)

dp

T

(ωc1
1 + ωc1

2 ; ωca1
1 ) (18)

for the additional coplanar constraints f ca. ωc1
2 and ωc2

2 makes the second374

and third terms in the right-hand side of Eq. (17) self-stresses. There is also375

a similar transition between internal forces in different choices of elementary376
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length constraints described as follows:377

(ωc
1; ω

l1
1 ; 0

la1) = (ωc
1; ω

l1
1 + ωl1

2 ; ω
la1
1 )− (0c; ωl1

2 ; ω
la1
1 )

= (ωc
1; ω

l2
1 ; ω

la2
1 )− (0c; ωl1

2 ; ω
la1
1 )

= (ωc
1; ω

c2
1 − ωl2

2 ; 0
la2) + (0c; ωl2

2 ; ω
la2
1 )− (0c; ωl1

2 ; ω
la1
1 ),

(19)

where ωl2
1 and ωla2

1 satisfy:378

d(f l2 ; f la2)

dp

T

(ωl2
1 ; ω

la2
1 ) =

d(f l1 ; f la1)

dp

T

(ωl1
1 + ωl1

2 ; ω
la1
1 ). (20)

ωl1
2 and ωl2

2 makes the second and third terms in the right-hand side of379

Eq. (19) self-stresses.380

Definition 4.2. A rigid origami is statically rigid if it can resolve every load.381

A rigid origami is independent if there is only zero self-stress. A rigid origami382

is isostatic if it is first-order rigid and independent.383

Theorem 4.3. (1) A rigid origami is statically rigid if and only if it is first-384

order rigid.385

(2) (Maxwell count) If the dimension of the space of first-order flex and386

self-stress are denoted by nf and ns, respectively, then:387

nf − ns = 3nv − (nc + nl + nca + nla). (21)
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Figure 4: (a) Forces at vertices obtained from the internal force corresponding to the
coplanar constraint for a panel. (b) Forces at vertices obtained from the internal force
corresponding to the length constraint for a boundary line or a diagonal.

In the rest of this section, the physical meanings of load l, first-order388

internal deformation de = df / dp · p′, and internal force ω are clarified. A389

load l is the work conjugate of a first-order flex p′, hence is in the form of390

concentrated force on each vertex.391

Here, the physical meanings of first-order internal deformation and in-392

ternal force are explained in simplified forms. Suppose vertices 1, 2, 3, 4393

are coplanar, the first-order internal deformation dec ∈ R for the coplanar394

constraint over p1, p2, p3, p4 is:395

dec =
df c(1, 2, 3, 4)

d(p1; p2; p3; p4)
(p′1; p

′
2; p

′
3; p

′
4)

= ⟨(p2 − p3)× (p4 − p3), p′1⟩ − ⟨(p3 − p4)× (p1 − p4), p′2⟩

+ ⟨(p4 − p1)× (p2 − p1), p′3⟩ − ⟨(p1 − p2)× (p3 − p2), p′4⟩ .

(22)
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It means that the internal force ωc ∈ R for each coplanar constraint, which396

is defined as the work-conjugate of a first-order internal deformation, is397

a uniform pressure. df c(1, . . . , 4) / d(p1; . . . ; p4)
Tωc is hence in the form398

of concentrated force on corresponding vertices perpendicular to the panel399

(Fig. 4(a)):400

df c(1, 2, 3, 4)

d(p1; p2; p3; p4)

T

ωc =



(p2 − p3)× (p4 − p3)

(p3 − p4)× (p1 − p4)

(p4 − p1)× (p2 − p1)

(p1 − p2)× (p3 − p2)


ωc. (23)

Suppose there is a length constraint between vertices 1, 2, the first-order401

internal deformation del ∈ R for the length constraint over p1 and p2 is:402

del =
df l(1, 2)

d(p1; p2)
(p′1; p

′
2) = ⟨p1 − p2, p′1 − p′2⟩ . (24)

It means that the internal force ωl ∈ R for each length constraint is an ax-403

ial force per unit length which is often referred to as a ‘force density’ [24].404

df l(1, 2) / d(p1; p2)
Tωl is hence in the form of concentrated force on corre-405

sponding vertices parallel to the boundary line or diagonal (Fig. 4(b)):406

df l(1, 2)

d(p1; p2)

T

ωl =

 p1 − p2

p2 − p1

ωl or
df a(1, 2)

d(p1; p2)

T

ωa =

 p1 − p2

p2 − p1

ωa. (25)
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5. Prestress stability407

This section considers a rigid origami that is not first-order rigid, but is408

rigid, and elucidates how the stability of these structures is changed when409

prestress or load is added. For these purposes, we carry out the second-order410

analysis of the total potential energy U + V introduced at the beginning of411

Section 4.412

5.1. Unloaded case413

Assume U and V have continuous second-order partial derivatives, the414

second-order differential (or the Hessian matrix) of U+V with respect to the415

coordinates of vertices is written as follows with a slight abuse of notation416

for a product of a tensor and a vector:417

d2(U + V )

dp2
=

df

dp

Td2U

de2

df

dp
+

dU

de

d2f

dp2
+

d2V

dp2
, (26)

where d2U / de2 and d2V / dp2 are the Hessian matrix of U and V with418

respect to e and p, respectively. The Hessian of constraints d2f / dp2 is an419

order 3 tensor with dimension (nc+nl+nca+nla)×3nv×3nv. Each component420

of this Hessian d2fk / dp
2 ∈ R3nv×3nv

(k ∈ Z+, k ≤ nc + nl + nca + nla) is421

the Hessian matrix for a single coplanar or length constraint denoted by fk.422

Since l = −dV / dp, Eq. (26) can be rewritten as follows:423

d2(U + V )

dp2
=

df

dp

Td2U

de2

df

dp
+

dU

de

d2f

dp2
− dl

dp
. (27)
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A sufficient condition for U + V to be strictly local minimum at an424

equilibrium state, which implies that the equilibrium state is stable, is that425

d2(U + V ) / dp2 is positive definite for any nonzero perturbation δp:426

δpTd
2(U + V )

dp2
δp > 0 for any nonzero δp ∈ R3nv

. (28)

The above derivation shows how d2(U + V ) / dp2 works as the ‘stiffness’ of427

a rigid origami. However, if the variation δ(U + V ) = 0 for a perturbation428

δp, higher order information of energy might be necessary to determine the429

stability along this perturbation.430

Furthermore, d2U / de2 is positive definite in Eq. (26) from the require-431

ment in Eq. (9):432

δeTd
2U

de2
δe > 0 for any nonzero δe ∈ Rnc+nl+nca+nla

, (29)

where δe is the variation of e due to the perturbation δp. For an infinitesimal433

δp, δe = df / dp · δp at a realization p, and the first term in the right-hand434

side of Eq. (26) is positive semidefinite:435

δpTdf

dp

Td2U

de2

df

dp
δp ≥ 0 for any nonzero δp ∈ R3nv

,

δpTdf

dp

Td2U

de2

df

dp
δp = 0 only if δp is a nonzero first-order flex.

(30)

In this subsection, the prestress stability is discussed assuming there is436

no load (dV / dp = 0).437
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Definition 5.1. At a realization p, a rigid origami G(p) is prestress stable438

if there is a positive definite matrix E ∈ R(nc+nl+nca+nla)×(nc+nl+nca+nla) and439

a vector ωs ∈ Rnc+nl+nca+nla
such that:440

df

dp

T

ωs = 0 (31)

and441

K =
df

dp

T

E
df

dp
+ ωs · d

2f

dp2
(32)

is positive-definite where ωs·d2f / dp2 ∈ R3nv×3nv
is the sum of ωs

k[d
2fk / dp

2] ∈442

R3nv×3nv
for all k ∈ Z+, k ≤ nc + nl + nca + nla.443

Physically, E is the local elasticity matrix, which is the Hessian of the444

predefined energy function. K is the tangent stiffness matrix or total stiffness445

matrix. ωs · d2f / dp2 or ω · d2f / dp2 is called the stress matrix. We say a446

self-stress ωs or an internal force ω stabilizes a rigid origami if it leads to a447

positive definite stiffness K.448

Proposition 5.2. (Stress test) At a realization p, a rigid origami G(p) is449

prestress stable if and only if there is a self-stress ωs ∈ Rnc+nl+nca+nla
such450

that the stress matrix ωs · d2f / dp2 is positive definite over the space of451

first-order flex:452

p′T
(
ωs · d

2f

dp2

)
p′ =

〈
ωs, p′Td

2f

dp2
p′
〉

> 0 for any first-order flex p′, (33)

where p′T[d2f / dp2]p′ is an nc + nl + nca + nla column vector whose k-th453

32



component is p′T[d2fk / dp
2]p′ (k ∈ Z+, k ≤ nc + nl + nca + nla).454

Proof. Necessity: if G(p) is prestress stable, the quadratic form of a first-455

order flex in the left-hand side of Eq. (33) should be greater than zero, hence456

the stress matrix is positive definite over the space of first-order flex.457

Sufficiency: We show that if there exists a self stress ωs such that ωs ·458

d2f / dp2 is positive definite over the space of first-order flex,459

K(γ) =
df

dp

T

E
df

dp
+ γωs · d

2f

dp2
(34)

would be positive definite by choosing a sufficiently small γ > 0. First,460

consider the case where a perturbation δp is a first-order flex. In this case,461

clearly δpTK(γ)δp > 0 for any γ > 0. Next, consider the case where δp is462

not a first-order flex. Here, suppose the Euclidean norm of δp is ∥δp∥ = 1.463

Since the set of δp with ∥δp∥ = 1 is compact, the expression below has a464

positive lower bound, i.e., there exists ε > 0 such that:465

δpTdf

dp

T

E
df

dp
δp ≥ ε, (35)

and we have466

δpT

[
ωs · d

2f

dp2

]
δp ≥ −

∥∥∥∥ωs · d
2f

dp2

∥∥∥∥ , (36)
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where ∥ωs · d2f / dp2∥ is the matrix norm. Then, we can choose:467

0 < γ <
ε∥∥∥∥ωs · d

2f

dp2

∥∥∥∥ (37)

so that δpTK(γ)δp > 0 for any δp with ∥δp∥ = 1. Furthermore, when468

∥δp∥ ̸= 1, we could choose the same γ for δp / ∥δp∥.469

Corollary 5.3. When the dimension of non-trivial first-order flex is nf > 0,470

the bases of the space of first-order flex are denoted by p̄′
1, p̄′

2, . . . , p̄′
nf ∈471

R3nv
, and these bases are assembled into a 3nv × nf matrix as:472

P̄ ′ = [p̄′
1 p̄′

2 · · · p̄′
nf ] . (38)

From Proposition 5.2, a rigid origami G(p) is prestress stable if and only if:473

P̄ ′T
[
ωs · d

2f

dp2

]
P̄ ′ ∈ Rnf×nf

is positive definite. (39)

Proposition 5.4. (Invariance of prestress stability) At a panel-wise generic474

realization, different choices of coplanar or length constraints have no effect475

on the prestress stability:476

(1) Additional constraints do not change the prestress stability. In other477

words, there is a self-stress ωs ∈ Rnc+nl+nca+nla
that can stabilize the478

rigid origami G(p) if and only if there is a pair of self-stresses ωsc ∈ Rnc
479
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and ωsl ∈ Rnl
that can stabilize G(p):480

p′T
[
ωs · d

2f

dp2

]
p′ > 0 ⇔ p′T

[
(ωsc; ωsl) · d

2(f c; f l)

dp2

]
p′ > 0

for any first-order flex p′.

(2) Different choices of vertices for elementary coplanar constraints do not481

change the prestress stability. In other words, suppose there are two482

choices of coplanar constraints f c1 and f c2 , there is a self-stress ωsc1 ∈483

Rnc
that can stabilize the rigid origami G(p) with ωsl ∈ Rnl

if and only if484

there is a self-stress ωsc2 ∈ Rnc
that can stabilize the rigid origami G(p)485

with ωsl:486

p′T
[
(ωsc1 ; ωsl) · d

2(f c1 ; f l)

dp2

]
p′ > 0 ⇔ p′T

[
(ωsc2 ; ωsl) · d

2(f c2 ; f l)

dp2

]
p′ > 0

for any first-order flex p′.

(3) Different choices of diagonals for elementary length constraints do not487

change the prestress stability. In other words, suppose there are two488

choices of diagonals f l1 and f l2 , there is a self-stress ωsl1 ∈ Rnl
that can489

stabilize the rigid origami G(p) with ωsc ∈ Rnc
if and only if there is a490

self-stress ωsl2 ∈ Rnl
that can stabilize G(p) with ωsc ∈ Rnc

:491

p′T
[
(ωsc; ωsl1) · d

2(f c; f l1)

dp2

]
p′ > 0 ⇔ p′T

[
(ωsc; ωsl2) · d

2(f c; f l2)

dp2

]
p′ > 0

for any first-order flex p′.
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Proof. As mentioned in the proof of Proposition 3.3, the motion of each492

panel is restricted to a rigid-body motion in a first-order flex. In addition,493

the transition of internal forces between different choices of coplanar and494

length constraints are explained in the proof of Proposition 4.1. From these495

properties, it can be said that the self-stress of the additional constraints496

within a single panel can be resolved locally by the self-stress corresponding497

to the elementary coplanar and length constraints, and the additional diag-498

onals have no effect on the stability. Hence, we only need to prove that the499

quadratic form does not change for different choices of coplanar or length500

constraints within a single panel, since the procedure for a single panel can501

be repeated to all possible choices of constraints.502

Suppose there is a pair of self-stresses ωsc1
1 and ωsl

1 that can stabilize the503

rigid origami. Applying the transition of internal forces within a single panel,504

we have:505

(ωsc1
1 ; ωsl

1 ; 0
sca′1) = (ωsc1

1 + ωsc1
2 ; ωsl

1 ; ω
sca′1
1 )− (ωsc1

2 ; 0sl; ω
sca′1
1 )

= (ωsc2
1 ; ωsl

1 ; ω
sca′2
1 )− (ωsc1

2 ; 0sl; ω
sca′1
1 )

= (ωsc2
1 − ωsc2

2 ; ωsl
1 ; 0

sca′2) + (ωsc2
2 ; 0sl; ω

sca′2
1 )− (ωsc1

2 ; 0sl; ω
sca′1
1 ),

(40)

where ω
sca′1
1 and ω

sca′2
1 are the self-stresses of additional coplanar constraints506

within the specified single panel, whose components are zero outside507

the specified panel, corresponding to the different choices of elementary508
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coplanar constraints f c1 and f c2 , respectively. Then, ωsc1
2 and ωsc2

2 makes509

the second and third terms in the right-hand side of Eq. (40) self-stresses510

with zero components outside the specified panel, respectively. Since511

a self-stress within a single panel has no contribution to the stiffness, the512

quadratic form over the stress matrix does not change for different choices513

of coplanar constraints within a single panel. Exactly the same procedure514

can be used for different choices of length constraints, and the proof for the515

length constraints is omitted since it is straightforward from the proof for516

the coplanar constraints.517

5.2. Loaded case518

In this subsection, we consider the case where the load l(p) that can be519

resolved and considered as the function of p is applied on a rigid origami. In520

this case, Definition 5.1 is modified as follows:521

Definition 5.5. At a realization p, a rigid origami G(p) is stable under load522

l(p) if there is a positive definite matrix E ∈ R(nc+nl+nca+nla)×(nc+nl+nca+nla)
523

and a vector ω ∈ Rnc+nl+nca+nla
such that:524

df

dp

T

ω = l (41)

and525

K =
df

dp

T

E
df

dp
+ ω · d

2f

dp2
− dl

dp
(42)

is positive-definite526
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Proposition 5.6. (Stress test under a load) Restrict the perturbation at a527

realization p to the space of first-order flex; i.e., assume that the deformation528

only occurs in the direction of a first-order flex. Then, a rigid origami G(p)529

is stable under the load l(p) if and only if there is a stress ω ∈ Rnc+nl+nca+nla
530

such that the stress matrix ω · d2f / dp2 is positive definite over the space of531

first-order flex. Equivalently, a rigid origami is stable if and only if there is532

a stress ω such that:533

P̄ ′T
[
ω · d

2f

dp2

]
P̄ ′ ∈ Rnf×nf

is positive definite, (43)

where P̄ ′ ∈ R3nv×nf
is the matrix of the bases of first-order flex defined in534

Eq. (38).535

Proof. From Proposition 5.2, a rigid origami G(p) is stable under the load536

l(p) that can be resolved if and only if there is a stress ω ∈ Rnc+nl+nca+nla
537

which leads to a positive definite ω · d2f / dp2 − dl / dp over the space of538

first-order flex. Since a first-order flex p′ is orthogonal to l, the quadratic539

form p′T[dl / dp]p′ = 0 for any p′, and thus, ω ·d2f / dp2−dl / dp is positive540

definite.541

Remark 5.7. If the perturbation is considered in any direction, Proposi-542

tion 5.6 no longer holds. However, in practice, the effect of the material543

term, which is the first term of the right-hand side of Eq. (42), is usually544

larger than that of the load term, which is the third term of the right-hand545

side of Eq. (42). Therefore, in many practical cases where the perturbation546
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is not restricted, a rigid origami is stable if there is a stress ω satisfying547

Eq. (43). In this case, P̄ ′T[ω · d2f / dp2]P̄ ′ corresponds to the total stiffness548

matrix in the ’weakest’ direction.549

Proposition 5.8. (Invariance of stability under load) At a panel-wise generic550

realization, different choices of coplanar or length constraints have no effect551

on the stability under load which only depends on p; i.e., (1) additional552

constraints do not change the stability, (2) different choices of vertices for553

elementary coplanar constraints do not change the stability, and (3) different554

choices of diagonals for elementary length constraints do not change the555

stability.556

Proof. This proposition can be proved directly from the proof of Proposi-557

tion 5.4.558

5.3. Hessian tensor559

In this subsection, explicit calculation of the Hessian tensor d2f / dp2 is560

shown. First, the Hessian matrix of a coplanar constraint is shown. Accord-561

ing to Eq. (3), nonzero components of the Hessian matrix of a coplanar con-562

straint f c(i, j, k, l) over pi, pj, pk, pl for selected i, j, k, l ∈ Z+, (i, j, k, l ≤563
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nv) on a hyper edge are:564

d2f c(i, j, k, l)

d(pi; pj; pk; pl)2
=



0 [pk − pl]× [pl − pj]× [pj − pk]×

[pl − pk]× 0 [pi − pl]× [pk − pi]×

[pj − pl]× [pl − pi]× 0 [pi − pj]×

[pk − pj]× [pi − pk]× [pj − pi]× 0


,

(44)

where [·]× represents a cross product matrix generated from a vector, for565

example:566

[pi − pj]× =


0 pjz − piz piy − pjy

piz − pjz 0 pjx − pix

pjy − piy pix − pjx 0

 , (45)

where pix, piy, and piz are the x, y, and z-coordinates of vertex i (i ∈ Z+, i ≤567

nv). Also, from Eq. (4), nonzero components of the Hessian matrix of a568

length constraint f l(i, j) between pi and pj are calculated for selected i, j ∈569

Z+, (i < j ≤ nv) as:570

∂2f l(i, j)

∂p2i
=

∂2f l(i, j)

∂p2j
= I,

∂2f l(i, j)

∂pi∂pj
=

∂2f l(i, j)

∂pj∂pi
= −I, (46)

where I is the 3× 3 identity matrix. Each component of the Hessian tensor571

d2fk / dp
2 ∈ R3nv×3nv

(k ∈ Z+, k ≤ nc + nl + nca + nla) is assembled from572

the second-order partial derivatives calculated as in Eqs. (44) and (46).573
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6. Second-order rigidity574

In this section, we discuss the second-order rigidity and show its link with575

prestress stability. The second-order rigidity is an extension of first-order576

rigidity, derived from differentiating the constraints twice.577

Definition 6.1. For a rigid origami G(p), a second-order flex (p′, p′′) ∈578

(R3nv
, R3nv

) is the solution of the equation with a slight abuse of notation579

for a product of a tensor and a vector below:580


df

dp
p′ = 0

p′Td
2f

dp2
p′ +

df

dp
p′′ = 0

(p′ is non-trivial). (47)

If there is no solution for a second-order flex, we say G(p) is second-order581

rigid, otherwise second-order flexible.582

Proposition 6.2. The following statements show the connection between583

the second-order rigidity and the self-stress or the prestress stability.584

(1) A first-order flex p′ can be extended to a second-order flex p′′ if and only585

if for all self-stress ωs,586

p′T
[
ωs · d

2f

dp2

]
p′ = 0. (48)

(2) A rigid origami G(p) is second-order rigid if and only if for any first-order587
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flex p′ there is a self-stress ωs(p′) such that:588

p′T
[
ωs(p′) · d

2f

dp2

]
p′ > 0. (49)

(3) If the rank of rigidity matrix for a given rigid origami G(p) satisfies:589

rank

(
df

dp

)
= 3nv − 7 or rank

(
df

dp

)
= nc +nl +nca +nla − 1, (50)

then G(p) is prestress stable if it is second-order rigid.590

Proof. Statement (1): a first-order flex can be extended to a second-order591

flex if and only if there exists a solution for the linear system below:592

df

dp
p′′ = −p′Td

2f

dp2
p′, (51)

which means the right hand side of the above equation should lie in the593

column space of the rigidity matrix, hence is orthogonal to any self stress ωs
594

in the left null space.595

Statement (2): from the inverse negative of statement (1), a rigid origami596

is second-order rigid if and only if, for any non-trivial first order-flex p′, there597

is a self-stress ωs(p′) such that:598

p′T
[
ωs(p′) · d

2f

dp2

]
p′ ̸= 0. (52)

Either this quadratic form is positive, or can be made positive by replacing599
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ωs with −ωs.600

Statement (3): from statement (2), for any first-order flex p′ there is a601

self-stress ωs(p′) such that:602

p′T
[
ωs(p′) · d

2f

dp2

]
p′ > 0. (53)

When the dimension of the space of first-order flex is 1, clearly the self-stress603

for a basis of the first-order flex stabilizes this rigid origami.604

Next, when the dimension of the space of self-stress is 1, denote a basis605

of the space of self-stress as ω̄s
1. If this rigid origami is not prestress stable,606

there exists a first-order flex p′ such that for all choice of γ,607

p′T
[
γω̄s

1 ·
d2f

dp2

]
p′ = 0, (54)

which contradicts with the condition of second-order rigidity.608

Corollary 6.3. From Proposition 6.2, a rigid origami G(p) is second-order609

rigid if and only if there is no common solution for all the quadratic forms610

below:611

xT

(
P̄ ′T

[
ω̄s

i ·
d2f

dp2

]
P̄ ′
)
x = 0. (55)

It can be seen from Proposition 6.2 that, prestress stability requires a612

single self-stress such that the quadratic form is positive for every first-order613

flex, while the second-order rigidity requires a “suitable” self-stress for every614

first-order flex such that the quadratic form is positive. Physically, such a615
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self-stress “blocks” a possible second-order flex for a given first-order flex.616

Proposition 6.4. (Invariance of the second-order rigidity) Different choices617

of coplanar or length constraints have no effect on the second-order rigidity618

at a panel-wise generic realization:619

(1) Additional constraints do not change the space of second-order flex. In620

other words, there is a self-stress ωs ∈ Rnc+nl+nca+nla
that can block a621

first-order flex p′ ∈ R3nv
if and only if there is a pair of self-stresses622

ωsc ∈ Rnc
and ωsl ∈ Rnl

that can block p′:623

p′Td
2f

dp2
p′ +

df

dp
p′′ = 0 ⇔ p′Td

2(f c; f l)

dp2
p′ +

d(f c; f l)

dp
p′′ = 0,

p′T
[
ωs · d

2f

dp2

]
p′ > 0 ⇔ p′T

[
(ωsc; ωsl) · d

2(f c; f l)

dp2

]
p′ > 0.

(2) Different choices of vertices for coplanar constraints do not change the624

space of second-order flex. In other words, suppose there are two choices625

of coplanar constraints f c1 and f c2 , there is a self-stress ωsc1 ∈ Rnc
that626

can block a first-order flex p′ ∈ R3nv
with ωsl ∈ Rnl

if and only if there627

is a self-stress ωsc1 ∈ Rnc
that can block p′ with ωsl:628

p′Td
2(f c1 ; f l)

dp2
p′ +

d(f c1 ; f l)

dp
p′′ = 0 ⇔ p′Td

2(f c2 ; f l)

dp2
p′ +

d(f c2 , f l)

dp
p′′ = 0,

p′T
[
(ωsc1 ; ωsl) · d

2(f c2 ; f l)

dp2

]
p′ > 0 ⇔ p′T

[
(ωsc2 ; ωsl) · d

2(f c2 ; f l)

dp2

]
p′ > 0.

(3) Different choices of diagonals for generically proper length constraints do629

not change the space of second-order flex. In other words, suppose there630
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are two choices of diagonals f l1 and f l2 , there is a self-stress ωsl1 ∈ Rnl
631

that can block a first-order flex p′ ∈ R3nv
with ωsc ∈ Rnc

if and only if632

there is a self-stress ωsl1 ∈ Rnl
that can block p′ with ωsc:633

p′Td
2(f c; f l1)

dp2
p′ +

d(f c; f l1)

dp
p′′ = 0 ⇔ p′Td

2(f c; f l2)

dp2
p′ +

d(f c; f l2)

dp
p′′ = 0,

p′T
[
(ωsc; ωsl1) · d

2(f c; f l1)

dp2

]
p′ > 0 ⇔ p′T

[
(ωsc; ωsl2) · d

2(f c, f l2)

dp2

]
p′ > 0.

Proof. The proof has been included in the proof of Proposition 5.4.634

7. Displacement boundary condition635

This section introduces the procedure for incorporating the boundary con-636

ditions assigned to the vertex displacements. Let nb ∈ Z+ denote the number637

of displacement boundary conditions, and the corresponding constraints on638

p are written by using the nb column vector fb as:639

fb(p) = 0. (56)

Then, the rigidity of a rigid origami under the boundary constraints is in-640

vestigated by adding fb to f as f = (f c; f l; f ca; f la; fb). The definitions641

of the first-order flex, the second-order flex, and most of the rigidity in the642

previous sections remain unchanged by this extension of f except for the643

first-order rigidity.644

Definition 7.1. A rigid origami G(p) is first-order rigid if it has no first-645
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Figure 5: A planar rigid origami with a single degree-3 interior vertex which is first-
order flexible and prestress stable. Different self-stress affects the stability. (a) Labelling
of vertices, (b) Distribution of self-stress which achieves a stable equilibrium state, (c)
Distribution of self-stress which achieves an unstable equilibrium state (+ and − symbols
next to the edges represent positive and negative self-stresses, respectively, corresponding
to tension and compression axial force (or force density) along edges of the rigid origami)

order flex or only trivial first-order flex. Note that especially when fb re-646

stricts all the trivial first-order flexes, a rigid origami G(p) is first-order rigid647

if rank(d(f c; f l; f ca; f la; fb) / dp) = 3nv.648

It is also clear from the proofs that the invariance of the rigidity and stability649

with respect to the choices of the constraints is guaranteed even when the650

boundary conditions are assigned.651

The standard procedure in structural engineering for incorporating a sim-652

ple displacement boundary condition pix = const., piy = const., or piz =653

const. (i ∈ Z+, i ≤ nv) can also be employed; i.e., the columns of the rigidity654

matrix and the components of the Hessian tensor corresponding the con-655

strained coordinates are removed and the size of the vectors representing the656

first-order and second-order flexes are reduced if they exist. In the following657

examples, this approach is used.658
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Example 2. Consider a planar rigid origami with a single degree-3 interior659

vertex in Fig. 5. The coordinates of vertices are given as:660

vertex 1: (0, 0, 0), vertex 2: (1, 0, 0),

vertex 3:

(
−1

2
,

√
3

2
, 0

)
, vertex 4:

(
−1

2
, −

√
3

2
, 0

)
.

To constrain the overall rigid-body motion, the y, z coordinates of vertex 2,661

the z coordinate of vertex 3 and the x, y, z coordinates of vertex 4 are fixed.662

Note that this is one of the possible boundary conditions for constraining the663

rigid-body motion.664

The rigidity matrix for this planar degree-3 vertex example under above665

boundary conditions has the size of 6 × 6, and its components are provided666

in Appendix A.1. The rank of the rigidity matrix is 5, and the first-order667

flex, self-stress, load that can be resolved, and internal force corresponding668
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to load can be written as follows:669

p′ = a



0

0

1

0

0

0


, ωs = b



3

3

3

−1

−1

−1


, l =



c1

c2

0

c3

c4

c5


,

ω =



3b− c1 +
1
3
c2 + c4 + c5

3b+ c4 + c5

3b+ 2
3
c2 + c4 + c5

−b− c4 − 1
3
c5

−b+ 2
3
c1 − 2

9
c2 +

2
3
c3 +

1
3
c4 − 1

3
c5

−b1


,

a, b, c1, c2, c3, c4, c5 ∈ R,

where the components of the self-stress and the internal force correspond670

to the length constraints between vertices (1, 2), (1, 3), (1, 4), (2, 3),671

(2, 4), (3, 4), from top to bottom. The physical meaning is clear: the672

only non-trivial first-order flex is a out-of-plane motion at vertex 1 when the673

above mentioned boundary condition is assigned. The self-stress is cyclically674

symmetric to vertex 1.675

To analyze the prestress stability and the stability under the load that can676
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be resolved, Propositions 5.2 and 5.6 are applied to the rigid origami in Fig. 5.677

The stress matrices under the given displacement boundary conditions are678

calculated in Appendix A.1, and the quadratic forms over a first-order flex679

are:680

p′T
[
ωs · d

2f

dp2

]
p′ = 9a2b,

p′T
[
ω · d

2f

dp2

]
p′ = (9b− c1 + c2 + 3c4 + 3c5) a

2.

If there is no load, the rigid origami is stable when b > 0 (Fig. 5(b)), while681

it is unstable when b < 0 (Fig. 5(c)). This stress distribution in the stable682

equilibrium state – the interior edges are in tension and the external edges683

are in compression, is well-known in the study of tensegrity structures. On684

the other hand, if external load is applied, the rigid origami is stable when685

9b−c1+c2+3c4+3c5 > 0, where the positive −c1+c2+3c4+3c5 > 0 leads to686

the above stable stress distribution. It should be noted that the same example687

is investigated using a rotational hinge model (folding angle description) in688

Ref. [1], and the results for the stress tests are different; the quadric forms689

in the unloaded case and loaded case are identical in the rotational hinge690

model while they are different in the panel-point model. This difference is691

attributed to the range of loads that can be considered in each model. The692

panel-point model can consider loads that tensile/compress the entire rigid693

origami in-plane, as in this example, whereas the rotational hinge model does694

not.695
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Figure 6: A rigid origami with two degree-4 interior vertices with 8 vertices, 13 panel
boundary lines (solid line), and 4 diagonals (dotted line).

Example 3. A rigid origami with two interior degree-4 vertices shown in696

Fig. 6 is considered, which has 8 vertices, 7 crease lines, 6 boundary lines, and697

4 diagonals. It is second-order flexible at the planar and three-dimensional698

realization with specified boundary conditions, and it is second-order rigid699

by adding an extra boundary condition. The hyper edges of the underlying700

graph of this rigid origami are listed below.701

{1, 3, 4}, {1, 4, 5}, {2, 6, 7}, {2, 7, 8},

{1, 2, 8, 3}, {1, 5, 6, 2}.

Here, planar and three-dimensional realizations are considered, and the x702

and y-coordinates of vertices are listed as follows:703

vertex 1: (−1, 0), vertex 2: (1, 0), vertex 3: (−3, 2), vertex 4: (−3, 0),

vertex 5: (−3, −2), vertex 6: (3, −2), vertex 7: (3, 0), vertex 8: (3, 2).

At the planar realization, the z-coordinates of all the vertices are 0 while at704

the three-dimensional realization, the z-coordinates of vertices 1, 2 are 2 and705
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those of vertices 3 – 8 are 0.706

First, to constrain the rigid-body motion of the rigid origami, the x and z-707

coordinates of vertices 2, 4 and the y and z-coordinates of vertex 6 are fixed.708

Then, the size of rigidity matrix is 19×18 consisting of 2 coplanar constraints709

and 17 length constraints, and at the planar realization, rank (df / dp) =710

15. Therefore, the dimensions of the non-trivial first-order flex and the self-711

stress are nf = 3 and ns = 4, respectively. A first-order flex and a self-712

stress are provided in Appendix A.2 with the parameters a1, a2, a3 ∈ R713

and b1, b2, b3, b4 ∈ R, respectively. The matrices P̄ ′T[ω̄s
i · d2f / dp2]P̄ ′

714

(i = 1, 2, 3, 4) are also shown in Appendix A.2 for the investigation of the715

second-order rigidity. At the unloaded planar realization, Eq. (55) for all716

i = 1, 2, 3, 4 are summarized into the following equations:717


a21 − 10a1a2 + 7a22 + a23 = 0,

5a21 − 14a1a2 + 8a22 = 0.

The common solutions for the above equations are:718

(a1, a2, a3) = (2a, a, ±3a), (4a, 5a, ±3a) for any a ∈ R.

Hence, this planar rigid origami is second-order flexible, and the first-order719

flex in the direction described in the above equation can be extended to a720

second-order flex.721

On the other hand, at the three-dimensional realization, rank (df / dp) =722
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16, and the dimensions of the non-trivial first-order flex and the self-stress723

are nf = 2 and ns = 3, respectively. At the unloaded three-dimensional724

realization, Eq. (55) for all the bases of self-stress are summarized into the725

following equation:726

a21 − a22 = 0.

The solutions for the above equation are:727

(a1, a2) = (a, ±a) for any a ∈ R.

Hence, this three-dimensional rigid origami is second-order flexible, and the728

first-order flex in the direction described in the above equation can be ex-729

tended to a second-order flex.730

Next, a further boundary condition is added to the three-dimensional rigid731

origami. The extra boundary condition is assigned so that the z coordinate732

of vertex 1 is fixed. The size of the rigidity matrix is reduced to 19× 17, and733

rank (df / dp) = 16. Therefore, the dimensions of the non-trivial first-order734

flex and the self-stress are nf = 1 and ns = 3, respectively. In the unloaded735

case, the quadratic form over a first-order flex is:736

p′T
[
ωs · d

2f

dp2

]
p′ = 4 (b2 − b3) a

2.

Hence, this rigid origami is second-order rigid and prestress stable when737

b2 > b3.738
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8. Conclusions739

This article has introduced a methodology for analyzing the rigidity and740

flexibility of a rigid origami, which is described in terms of the Euclidean coor-741

dinates of its vertices. The efficiency of this methodology has been validated742

through a series of examples, including the cases with and without displace-743

ment boundary conditions. Furthermore, we have demonstrated that the744

key quantities in rigidity analysis remain invariant regardless of the choice745

of coplanar and length constraints. The only quantity that changes due to746

the different choices of constraints is the internal force distribution, and the747

transition of the distribution is also shown. While this article has primarily748

focused on rigidity analysis, the panel-point model can also be applied to749

analysis of the higher-order and finite flexibility of rigid origami, given that750

the constraints are formulated in the polynomial forms. The panel-point751

model captures the kinematics of rigid origami more completely than the752

truss model by introducing coplanar constraints and is more directly appli-753

cable to CAD and numerical analysis. Furthermore, it covers a wide range754

of structures and mechanisms consisting of flat panels connected by hinges755

and pins, not limited to rigid origami, due to its formulation of constraints.756
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Appendix A. Detailed calculations of derivatives762

Appendix A.1. Calculations for Example 2763

The rigidity matrix for Example 2 under the given boundary conditions764

is:765

df

dp
=



−1 0 0 1 0 0

1
2

−
√
3
2

0 0 −1
2

√
3
2

1
2

√
3
2

0 0 0 0

0 0 0 3
2

−3
2

√
3
2

0 0 0 3
2

0 0

0 0 0 0 0
√
3


.

The rows are for length constraints between vertices (1, 2), (1, 3), (1, 4),766

(2, 3), (2, 4), (3, 4), from top to bottom.767

The Hessian matrix for each length constraint under the given fixed768
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boundary condition is calculated as:769

d2f l(1, 2)

dp2
=



1 0 0 −1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−1 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

d2f l(1, 3)

dp2
=



1 0 0 0 −1 0

0 1 0 0 0 −1

0 0 1 0 0 0

0 0 0 0 0 0

−1 0 0 0 1 0

0 −1 0 0 0 1


,

d2f l(1, 4)

dp2
=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

d2f l(2, 3)

dp2
=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 −1 0

0 0 0 −1 1 0

0 0 0 0 0 1


,

d2f l(2, 4)

dp2
=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

d2f l(3, 4)

dp2
=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.
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Hence, the stress matrix for the self-stress is:770

ωs · d
2f

dp2
= b



9 0 0 −3 −3 0

0 9 0 0 0 −3

0 0 9 0 0 0

−3 0 0 1 1 0

−3 0 0 1 1 0

0 −3 0 0 0 1


,
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and the stress matrix for the stress under the load that can be resolved is:771

ω · d
2f

dp2
=b



9 0 0 −3 −3 0

0 9 0 0 0 −3

0 0 9 0 0 0

−3 0 0 1 1 0

−3 0 0 1 1 0

0 −3 0 0 0 1


+ c1



−1 0 0 1 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

1 0 0 −1
3

0 0

0 0 0 0 0 0

0 0 0 0 0 0



+ c2



1 0 0 −1
3

0 0

0 1 0 0 0 0

0 0 1 0 0 0

−1
3

0 0 1
9

0 0

0 0 0 0 0 0

0 0 0 0 0 0


+ c3



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 2
3

0 0

0 0 0 0 0 0

0 0 0 0 0 0



+ c4



3 0 0 −1 −1 0

0 3 0 0 0 −1

0 0 3 0 0 0

−1 0 0 1
3

1 0

−1 0 0 1 0 0

0 −1 0 0 0 0


+ c5



3 0 0 −1 −1 0

0 3 0 0 0 −1

0 0 3 0 0 0

−1 0 0 1
3

1
3

0

−1 0 0 1
3

2
3

0

0 −1 0 0 0 2
3


.

Appendix A.2. Calculations for Example 3772

In this section, Example 3 is considered. When the x and z-coordinates773

of vertices 2, 4 and the y and z-coordinates of vertex 6 are fixed, the size of774
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rigidity matrix is 19 × 18 consisting of 2 coplanar constraints and 17 length775

constraints where the last 17 rows are for length constraints between vertices776

(1, 2), (1, 3), (1, 4), (1, 5), (2, 6), (2, 7), (2, 8), (3, 4), (4, 5), (5, 6), (6, 7),777

(7, 8), (3, 8), (1, 8), (1, 6), (2, 3), (2, 5), from top to bottom. At the planar778

realization, rank (df / dp) = 15, and a first-order flex and a self-stress can779
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be written for a1, a2, a3, b1, b2, b3, b4 ∈ R as:780

p′ =



0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

−3 3 0

0 0 0

0 0 0

0 0 0

−3 3 0




a1

a2

a3

 , ωs =



0 0 0 0

0 0 0 0

6 4 5 −1

3 0 2 0

0 0 0 0

3 0 1 1

3 2 1 −1

0 0 0 0

3 2 2 −2

−3 0 −1 0

−3 0 −1 0

−1 0 −1
3

1
3

−3 −1 −1 1

−3 −1 −1 1

−1 0 0 0

0 −1 −1 1

0 −1 0 0

0 0 −1 0

0 0 0 −1





b1

b2

b3

b4


.

where the columns of coefficient matrices of (a1, a2, a3)
T and (b1, b2, b3, b4)

T
781

are the bases of the first-order flex and the self-stress. The self-stresses cor-782

responding to the coplanar constraints are always zero in the planar realiza-783

59



tion. At the unloaded planar realization, the matrices P̄ ′T[ω̄s
i · d2f / dp2]P̄ ′

784

(i = 1, 2, 3, 4) in Eq. (55) are:785

P̄ ′T
[
ω̄s

1 ·
d2f

dp2

]
P̄ ′ = 6


−1 5 0

5 −7 0

0 0 −1

 , P̄ ′T
[
ω̄s

2 ·
d2f

dp2

]
P̄ ′ = 2


−5 7 0

7 −8 0

0 0 0

 ,

P̄ ′T
[
ω̄s

3 ·
d2f

dp2

]
P̄ ′ = 2


−1 5 0

5 −7 0

0 0 −1

 , P̄ ′T
[
ω̄s

4 ·
d2f

dp2

]
P̄ ′ = −2


−5 7 0

7 −8 0

0 0 0

 .

On the other hand, at the three-dimensional realization, rank (df / dp) =786

16, and a first-order flex and a self-stress can be written for a1, a2, b1, b2, b3 ∈787
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R as:788

p′ =



1 0

0 0

−1 0

1 0

0 0

−2 0

0 0

0 1

0 0

0 −1

0 0

0 0

0 0

−3 0

3 0

0 0

0 0

−3 0



 a1

a2

 , ωs =



0 1
2 −1

2

0 1
2 −1

2

3 3 0

1 −1
2

1
2

0 0 0

0 −1
2

3
2

0 3
2 −1

2

0 0 0

1 3
2 −3

2

0 1 −1

0 1 −1

0 1
6

1
6

0 −1 1

0 −1 1

1
3

1
6 −1

6

−1 −1 1

−1 0 0

0 −1 0

0 0 −1




b1

b2

b3

 .

At the unloaded three-dimensional realization, the matrices P̄ ′T[ω̄s
i ·d2f / dp2]P̄ ′

789
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(i = 1, 2, 3) in Eq. (55) are:790

P̄ ′T
[
ω̄s

1 ·
d2f

dp2

]
P̄ ′ = O, P̄ ′T

[
ω̄s

2 ·
d2f

dp2

]
P̄ ′ = 36

 −1 0

0 1

 ,

P̄ ′T
[
ω̄s

3 ·
d2f

dp2

]
P̄ ′ = 4

 1 0

0 −1

 .

When the extra boundary condition is assigned so that the z coordinate791

of vertex 1 is fixed, the size of the rigidity matrix is reduced to 19 × 17, and792

rank (df / dp) = 16. A first-order flex and a self-stress can be written for793
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a, b1, b2, b3 ∈ R as:794

p′ =



0

0

0

0

0

0

a

0

−a

0

0

0

0

0

0

0

0



, ωs =



0 1
2 −1

2

0 1
2 −1

2

3 3 0

1 −1
2

1
2

0 0 0

0 −1
2

3
2

0 3
2 −1

2

0 0 0

1 3
2 −3

2

0 1 −1

0 1 −1

0 1
6

1
6

0 −1 1

0 −1 1

1
3

1
6 −1

6

−1 −1 1

−1 0 0

0 −1 0

0 0 −1




b1

b2

b3

 .

This self-stress is the same as that of the three-dimensional realization before795

adding the extra boundary condition.796
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Appendix B. Major notation797

Table B.3: Table of major notation

Rigid origami

G an underlying hypergraph of a rigid origami

pi the position vector of vertex i in R3

p = (p1; p2; . . . ; pnv) the 3nv column vector of the assemblage of pi for

all vertices

f c the nc column vector representing the elementary

coplanar constraints

f l the nl column vector representing the elementary

length constraints

f ca the nca column vector representing the additional

coplanar constraints

f la the nla column vector representing the additional

length constraints

f = (f c; f l; f ca; f la) the nc+nl+nca+nla column vector of the assem-

blage of f c, f l, f ca, and f la

fb the nb column vector representing the displace-

ment boundary conditions

dij distance between vertex i and j
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P the solution set of p under the coplanar con-

straints and the fully braced length constraints for

fixed dij

O(p) a neighbourhood at p in the solution space P

p′ a first-order flex

p̄′
1, p̄

′
2, . . . , p̄

′
nf bases of the space of first-order flex

ωc, ωsc the nc column vectors representing an internal

force and a self-stress associated with the elemen-

tary coplanar constraint f c

ωl, ωsl the nl column vectors representing an internal

force and a self-stress associated with the elemen-

tary length constraint f l

ωca, ωsca the nca column vectors representing an internal

force and a self-stress associated with the addi-

tional coplanar constraint f ca

ωla, ωsla the nla column vectors representing an internal

force and a self-stress associated with the addi-

tional length constraint f la

ω = (ωc; ωl; ωca; ωla) the nc+nl+nca+nla column vector of the assem-

blage of ωc, ωl, ωca, and ωla

ωs = (ωsc; ωsl; ωsca; ωsla) the nc+nl+nca+nla column vector of the assem-

blage of ωsc, ωsl, ωsca, and ωsla

ω̄s
1, ω̄

s
2, . . . , ω̄

s
ns bases of the space of self-stress
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U a general strain energy of a rigid origami

V a general potential which a rigid origami is subject

to

e an internal deformation corresponding to the con-

straints f

l a load work-conjugate to a first-order flex p′

δp a perturbation of position of vertices

Parameters

i, j, k, l flexible positive integers within a certain range

m, n, q fixed positive integers in a statement

a1, a2, . . . , an n real parameters (n ∈ Z+)

b1, b2, . . . , bn n real parameters (n ∈ Z+)

c1, c2, . . . , cn n real parameters (n ∈ Z+)

ε, δ real numbers in all forms of ε− δ expressions

nv number of vertices of a rigid origami

nc number of elementary coplanar conditions for an

entire rigid origami

nl number of elementary length constraints for an

entire rigid origami

nca number of additional coplanar constraints for an

entire rigid origami

nla number of additional length constraints for an en-

tire rigid origami
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nf dimension of the space of non-trivial first-order

flex of a rigid origami

ns dimension of the space of self-stress of a rigid

origami

nb number of displacement boundary conditions
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