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Abstract

Using group representation theory, a simplified criterion for the
detection of finite symmetric mechanisms is presented.

1 Introduction

The identification of finite mechanisms in statically and kinematically inde-
terminate structures is, in general, a difficult problem. However, Kangwai
and Guest (1999) showed that in certain cases finiteness of mechanisms could
be found using only symmetry arguments and a linear analysis. Here we revi-
sit Kangwai and Guest’s method to show that their symmetry arguments can
be straightforwardly stated in terms of representations of mechanisms and
states of self-stress in the point group of the structure, giving an immediate
assessment of the finiteness of mechanisms for many cases.

For any kinematically indeterminate structure, it is possible to find a set
of mechanisms, i.e., displacements which to first order cause no deformation
of structural elements. (Here it is usual to exclude rigid body motions.)
Mechanisms may be either finite, in which case there is a continuous displa-
cement path that is compatible at every point with zero deformation of the
structure, or infinitesimal, in which case there is deformation at second or
higher order. Determination of the finite nature of a mechanism in general
requires non-linear analysis (Tarnai, 1989; Calladine and Pellegrino, 1992;
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Salerno, 1992; Connelly and Servatius, 1994; Tarnai and Szabó, 2000; Gar-
cea et al., 2005). Kuznetsov (2000) has stressed the difficulties that may arise
with ‘singular’ (e.g., highly symmetric) configurations, but nonetheless, the
behaviour at points of high symmetry is often a useful guide to that of phy-
sical systems, where the symmetry may be only approximate. Kangwai and
Guest (1999) introduced, for specific symmetric cases, a criterion that could
determine the finiteness of a mechanism based on purely first-order analysis
combined with a symmetry argument, and has proved to be applicable to a
wide variety of structures (Kovács et al., 2004; Fowler and Guest, 2005). We
show here that there is a simple and general way of determining finiteness
according to this criterion, obviating the need for explicit calculation in every
particular case.

The difficult cases for determining finiteness of mechanisms are those
where structures are also statically indeterminate, and hence have states of
self-stress, i.e., sets of internal stresses in self-equilibrium in the absence of
externally applied loads. The symmetry finiteness criterion, as stated by
Kangwai and Guest (1999) is as follows.

Proposition 1 If a mechanism is fully-symmetric in some subgroup of the
symmetry group of the structure, with no equisymmetric state of self-stress,
then that mechanism must be finite.

However, the converse does not always hold: if such an equisymmetric state
of self-stress exists, then the mechanism may be stiffened, and hence be only
infinitesimal, or may still be finite. A celebrated example where the converse
of the proposition would not apply is the Connelly-Servatius (1994) cusp
mechanism.

The present paper reformulates the symmetry finiteness criterion in a
way that avoids the need to consider sub-groups of the symmetry group of
the structure. Statement and proof of the new formulation in cases where
there is a mechanism belonging to a non-degenerate representation follows
in Section 2. This covers all cases that have been analysed so far with the
symmetry finiteness criterion. For completeness, the present paper briefly
considers, in Section 3, the consequences of degeneracy. Section 4 contains a
number of examples of the criterion.

2 A symmetry finiteness criterion based on

representations

For mechanisms that belong to a non-degenerate representation, it can be
shown that the following proposition is equivalent to the symmetry criterion
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stated by Kangwai and Guest.

Proposition 2 A mechanism that belongs to a non-degenerate representa-
tion will be finite if, in the point group of the undisplaced object, there is
neither a state of self-stress that is equisymmetric with the mechanism, nor
a totally symmetric state of self-stress.

The proposition can be proved as follows.
Suppose that a structure has a configuration with point-group symmetry

G, and in that configuration has mechanisms spanning the (reducible) re-
presentation Γ(m) of G, and states of self-stress spanning the representation
Γ(s). We will initially concentrate on one member of the set of mechanisms,
m1, a mechanism with non-degenerate, irreducible representation Γm1 . We
can assume that the mechanism is not totally symmetric, as if it were, Propo-
sition 1 would apply directly: a totally symmetric mechanism will be finite if
there is no equisymmetric state of self-stress. Displacement of the structure
along m1 gives a new configuration with point group symmetry H1; H1 is a
subgroup of G defined entirely by Γm1 . (Using notation that will be defined
in Section 3, H1 is the kernel of G under Γm1 .)

Let G consist of symmetry operations Ri, i = 1 . . . |G| and let the charac-
ters of Γm1 be χm1(Ri). Then H1 is a subgroup of G, of order |H1| = |G|/2,
comprising those operations Ri of G for which χm1(Ri) = +1. It is easy to
see that this condition on the characters defines a group. As the characters
of a non-degenerate irreducible representation obey the group multiplication
table, i.e., χ(Ri)χ(Rj) = χ(Rk) for RiRj = Rk, the set of operations with
character +1 is closed under multiplication, includes the identity, contains an
inverse for every operation in the set, and inherits the associative property
from G.

Suppose that Γ(s) is not empty, and consider a state of self-stress with
irreducible representation Γs, say, as a candidate for ‘blocking’ Γm1 , i.e.,
stiffening the mechanism m1. There are three possibilities:

(i) Γs is the totally symmetric representation, Γ0, in G;

(ii) Γs is Γm1 in G;

(iii) Γs is neither Γ0 nor Γm1 in G.

As a non-degenerate and non-totally symmetric irreducible representa-
tion, Γm1 has character +1 for exactly half of the operations Ri of G, and
character −1 for the other half (by orthogonality with Γ0). For convenience,
we will choose an ordering of the operations such that χm1(Ri) = +1 for
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i = 1, . . . , |G|/2, and χm1(Ri) = −1 for i = |G|/2 + 1, . . . , |G|. With this
ordering, let the characters of the representation of the state of self-stress,
Γs, be χs(Ri) = αi and χs(R(|G|/2+i)) = βi for i = 1, . . . , |G|/2 with

α =

|G|/2∑
i=1

αi ; β =

|G|/2∑
i=1

βi.

The various characters are summarized in the table below.

G R1 · · · R|G|/2 R|G|/2+1 · · · R|G|
Γ0 +1 · · · +1 +1 · · · +1
Γm1 +1 · · · +1 −1 · · · −1
Γs α1 · · · α|G|/2 β1 · · · β|G|/2

In case (i), we have αi = βi = +1, and Γs = Γ0 in both G and H1. In
case (ii), αi = −βi = +1, and Γs = Γ0 in H1, but not G. In case (iii),
orthogonality of Γs to Γ0 gives

α + β = 0,

and orthogonality to Γm1 gives

α− β = 0,

and hence α = β = 0; α = 0 implies that Γs remains orthogonal to Γ0

(and hence to Γm1) in H1. Thus in case (i) state of self-stress s may block
mechanism m1 in both G and H1; in case (ii) s may block m1 in H1; in case
(iii) s does not block m1. Notice that the above applies equally to degenerate
and non-degenerate Γs. Case-by-case consideration has therefore shown the
truth of Proposition 2.

Details of the identification of Γm1 and its associated group H1 can be
filled in from standard character and descent in symmetry tables (e.g. Atkins,
Child and Phillips (1970); Salthouse and Ware (1972); Altmann and Herzig
(1994)).

So far we have considered a single non-degenerate mechanism. If the
configuration that has G symmetry allows several such mechanisms, but
displacement occurs along only one of them, the above reasoning applies
directly. If, instead, displacement is along some linear combination of such
mechanisms, the consequences are easily worked out. For example, suppose
that we have mechanisms m1 and m2 of distinct symmetries in G, Γm1 and
Γm2 . Displacement along a linear combination of m1 and m2 can be analysed
with the help of the character table below, where the operations of G have
been separated into equal-sized blocks according to their characters for the
irreducible representations Γm1 and Γm2 .
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Figure 1: The descent in symmetry from G arising from displacement along
mechanisms m1 and m2, alone and in combination.

G R1 · · · R|G|/4 R′
1 · · · R′

|G|/4 R′′
1 · · · R′′

|G|/4 R′′′
1 · · · R′′′

|G|/4

Γ0 +1 · · · +1 +1 · · · +1 +1 · · · +1 +1 · · · +1
Γm1 +1 · · · +1 +1 · · · +1 −1 · · · −1 −1 · · · −1
Γm2 +1 · · · +1 −1 · · · −1 +1 · · · +1 −1 · · · −1
Γm1 × Γm2 +1 · · · +1 −1 · · · −1 −1 · · · −1 +1 · · · +1
Γs α1 · · · α|G|/4 β1 · · · β|G|/4 γ1 · · · γ|G|/4 δ1 · · · δ|G|/4

The operations {R1 . . . R|G|/4} + {R′
1 . . . R′

|G|/4} constitute the group H1

which is reached from G by a pure m1 distortion. Similarly the group H2

reached from G by a pure m2 distortion consists of the R and R′′ operations.
The R operations by themselves define the group H1×2, which is reached
from G by a displacement along a generic combination of m1 and m2. The
relationships between the various subgroups of G are shown schematically in
Figure 1. By definition, Γm1 and Γ0 become totally symmetric in H1, and
Γm2 and Γ0 become totally symmetric in H2. In the group H1×2, Γm1 , Γm2 ,
Γm1×Γm2 and Γ0 become totally symmetric. Now consider a candidate state
of self-stress, s. Its characters are defined in the table, and we define the
partial sums

α =

|G|/4∑
i=1

αi ; β =

|G|/4∑
i=1

βi ; γ =

|G|/4∑
i=1

γi ; δ =

|G|/4∑
i=1

δi.

There are five possibilities for Γs:
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(i) Γs is the totally symmetric representation, Γ0, in G: αi = βi = γi =
δi = +1, and Γs = Γ0 in G and all subgroups. Thus state of self-stress
s may block mechanism m1 and m2 in any combination.

(ii) Γs is Γm1 in G: αi = βi = −γi = −δi = +1, and Γs = Γ0 in H1 and
H1×2, but not H2. Thus, s may block all but pure m2.

(iii) Γs is Γm2 in G: αi = −βi = γi = −δi = +1, and Γs = Γ0 in H2 and
H1×2, but not H1. Thus, s may block all but pure m1;

(iv) Γs is Γm1×Γm2 in G: αi = −βi = −γi = δi = +1, and Γs = Γ0 in H1×2,
but not H1 or H2. Thus s may block all but pure m1 or pure m2.

(v) Γs is none of the above. Orthogonality gives:

α + β + γ + δ = 0

α + β − γ − δ = 0

α− β + γ − δ = 0

α− β − γ + δ = 0

and hence α = 0, implying that Γs remains orthogonal to Γ0 in H1, H2

and H1×2. Hence, s does not block m1, m2, or any combination of m1

and m2.

This reasoning can be extended to apply Proposition 2 to any combination
of non-degenerate mechanisms.

3 Mechanisms described by degenerate re-

presentations

When a mechanism is d-fold degenerate, the symmetry possibilities for dis-
tortion and blocking by states of self-stress are more involved, as the system
can visit different subgroups of G by following different combinations of the
d components of the mechanism. An established notation for the relations
between the various groups is used, for example, in vibrational spectroscopy
(McDowell, 1965), and can be used to frame some general remarks on how
degenerate and non-degenerate mechanisms are blocked.

Let the irreducible representation of the mechanism be the d-fold dege-
nerate Γmd. The lowest symmetry group, reached by a generic combination
of the d components of the mechanism, is the kernel of Γmd. The kernel is
an invariant subgroup of G and consists simply of those elements of G whose
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characters for Γmd are equal to d. For any degenerate representation, the ker-
nel is easily identified from the character table. In the kernel, Γmd reduces
to d copies of Γ0. In the present context, it can be seen that, if no state
of self-stress becomes totally symmetric in the kernel, then all combinations
of the d components of md are finite mechanisms. Given that the kernel is
not necessarily equal to the trivial group C1, it is possible therefore for a
system to support a number of states of self-stress that cannot block a given
degenerate finite mechanism.

Unlike the non-degenerate case, the symmetries accessible to a degenerate
mechanism are not necessarily restricted to the kernel group. By particular
choices of combination, it may be possible to retain symmetry elements ad-
ditional to those in the kernel, and thus produce configurations belonging
to point groups of which the kernel is a subgroup. The accessible groups
are the cokernels of Γmd; McDowell (1965) discusses the identification of co-
kernels, and lists them for the degenerate representations of a number of
spectroscopically important point-groups.

The existence of cokernels for some degenerate representations widens
the scope for finite degenerate mechanisms. Even in cases where the generic
mechanism is blocked in the kernel, there may be combinations of the d
components that access a cokernel in which no state of self-stress is totally
symmetric, and by Proposition 1, those specific combinations will remain
finite.

As an example, consider a hypothetical system of D6h symmetry where
Γ(m) = E2g and Γ(s) = A2g. The relevant rows of the D6h character table
are shown below.

D6h E 2C6 2C3 C2 3C ′
2 3C ′′

2 i 2S3 2S6 σh 3σd 3σv

A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1
E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0

McDowell gives the kernel of E2g as C2h, and this can be confirmed by inspec-
tion of the table above, as the four columns with character +2 are those for
E, C2, i and σh. It can also be seen by inspection that Γ(s) = A2g becomes
totally symmetric in C2h and hence we cannot state that the pair of mecha-
nisms is finite. However, the cokernel of E2g is D2h (McDowell, 1965), and as
the table shows, A2g is not totally symmetric in D2h (four characters are +1,
four characters are −1 under these operations). Therefore it is guaranteed
that the combination of components that lead from D6h to D2h is a finite
mechanism.
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4 Examples

4.1 Structure stiffened by self-stress

Figure 2 shows a planar pin-jointed framework that has been analysed by
Kangwai and Guest (2000). Considered in two dimensions, a structure with
this connectivity is generically both statically and kinematically determinate,
but in the configuration shown has one state of self-stress and one mechanism.
The planar structure has point group C3v, with

Γ(m) = A2, Γ(s) = A1.

The single mechanism has the symmetry of an in-plane rotation of a central
triangle, and the state of self-stress corresponds to a totally symmetric dis-
tribution of tensions in the bars. As the single state of self-stress is totally
symmetric in C3v, it can in principle stiffen any mechanism, and inspection,
or a formal analysis of the tangent stiffness (see, e.g., Guest, 2005) shows
that the mechanism is indeed stiffened.

We can also consider a structure in three dimensions that has the same set
of connections. In a generic configuration, such a structure has three mecha-
nisms, and no state of self-stress. Clearly these mechanisms must be finite.
However, in the particular planar configuration shown, the structure attains
D3h symmetry, where it has a single state of self-stress and four mechanisms.
The symmetry form of the Maxwell rule for pin-jointed frameworks (Fowler
and Guest, 2000) gives a full account, and yields

Γ(m)− Γ(s) = A′
2 + A′′

2 + E ′′
2 − A′

1.

As, by inspection, Γ(s) = A′
1 ≡ Γ0, the four mechanisms span

Γ(m) = A′
2 + A′′

2 + E ′′
2 .

The state of self-stress is fully symmetric in this configuration, and hence
can stiffen all mechanisms; analysis of the tangent stiffness shows that this
stiffening is effective for all four mechanisms.

4.2 Prestressable finite mechanism

Figure 3 shows a classic example of a type of pin-jointed structure (Tarnai,
1980) that satisfies Maxwell’s rule for pin-jointed frames (Calladine, 1978),
but nevertheless admits a finite mechanism. The structure shown has a
hexagonal ring of bars, connected in triangulated fashion to a rigid base. Its
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Figure 2: (a) A planar structure in which all mechanisms are stiffened by
a state of self-stress; (b) the mechanism, showing directions of infinitesimal
nodal displacement; (c) the state of self-stress, showing relative bar tensions.
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Figure 3: A ring structure with a finite mechanism.

point group is C3v, and as Kangwai and Guest (1999) have shown, the single
mechanism has symmetry

Γ(m) = B1

and the single state of self-stress has

Γ(s) = B2.

It follows immediately from Proposition 2 that the mechanism is finite: there
is neither an equisymmetric nor a totally symmetric state of self-stress here.
The B1 mechanism leads to C3v configurations where the state of self-stress
has A2 symmetry.

Following the finite mechanism eventually takes the structure to an in-
teresting point of kinematic bifurcation, where the hexagon has degenerated
into a triangle, as shown in Figure 4. At this point, a new pair of states
of self-stress spanning the E representation emerges (Kangwai and Guest,
1999), and hence Γ(m) becomes

Γ(m) = A1 + E

with
Γ(s) = A2 + E.

The new states of self-stress do not affect the conclusion that there must
be a finite A1 mechanism leading out of this configuration. However, we
cannot deduce the existence of further finite mechanisms: the new states
of self-stress are equisymmetric with the new mechanisms, and hence could
stiffen generic combinations. In fact, in this case, there are three additional
finite paths leading away from the bifurcation point, each of which retains Cs

symmetry about one of the σv reflection planes of the C3v geometry (Kumar
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Figure 4: The ring structure shown in Figure 3 displaced along the mecha-
nism path until a point of kinematic bifurcation has been reached.

(a) (b)

(c) (d)

Figure 5: A plan view showing the finite paths leading out of the point of
kinematic bifurcation shown in Figure 4; non-foundation joints are shown
with a ring, foundation joints without a ring. The displaced structure in (a)
retains C3v symmetry, while those shown in (b), (c) and (d) each have Cs

symmetry about one of the σv reflection planes of the C3v geometry.
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and Pellegrino, 2000). Cs is the cokernel of E in C3v, whereas the kernel is the
trivial group C1. The paths are shown in Figure 5. Symmetry analysis shows
only that stiffening of the mechanism is predicted, but not that it must occur.
As always, symmetry is most powerful when showing that a phenomenon
is forbidden, and hence detecting here when mechanisms must be finite,
as blocking is not allowed, rather than when they may be infinitesimal, as
blocking is permitted.

Acknowledgements

SDG acknowledges the support of the Leverhulme Trust, PWF the support
of the Royal Society through the RS/Wolfson Research Merit Award Scheme.

References

Altmann, S. L. & Herzig, P. (1994) Point-group theory tables. Oxford: Cla-
rendon Press.

Atkins, P.W., Child, M.S. & Phillips, C.S.G (1970) Tables for Group Theory.
OUP, Oxford, 1970.

Calladine, C.R. (1978) Buckminster Fuller’s “Tensegrity” structures and
Clerk Maxwell’s rules for the construction of stiff frames. International Jour-
nal of Solids and Structures 14, 161-172.

Calladine, C. R. & Pellegrino, S. (1992) Further remarks on first-order in-
finitesimal mechanisms. International Journal of Solids and Structures 29,
2119–2122.

Connelly, R. & Servatius, H. (1994) Higher-order rigidity — what is the pro-
per definition? Discrete & Computational Geometry 11, 193–200.

Fowler, P. W. & Guest, S. D. (2000) A symmetry extension of Maxwell’s
rule for rigidity of frames. International Journal of Solids and Structures
37, 1793–1804.

Fowler, P.W. & Guest, S.D. (2005) A symmetry analysis of mechanisms in
rotating rings of tetrahedra. Proceedings of the Royal Society: Mathematical,
Physical & Engineering Sciences 461, 1829–1846.

Garcea, G., Formica, G. & Casciaro, R. (2005) A numerical analysis of infi-
nitesimal mechanisms. International Journal for Numerical Methods in En-
gineering 62, 979–1012.

12



Guest, S. D. (2005) The stiffness of prestressed frameworks: a unifying ap-
proach. To be published in International Journal of Solids and Structures

Kangwai, R. D. & Guest, S. D. (1999) Detection of finite mechanisms in
symmetric structures. International Journal of Solids and Structures 36,
5507–5527.

Kangwai, R. D. & Guest, S. D. (2000) Symmetry Adapted Equilibrium Ma-
trices. International Journal of Solids and Structures 36, 1525–1548.

Kumar, P. & Pellegrino, S. (2000) Computation of kinematic paths and bifur-
cation points. International Journal of Solids and Structures 37, 7003–7027.
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