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Abstract

The stiffness of tensegrity structures comes from two sources: the
change of force carried by members as their length is changed, and the
reorientation of forces as already stressed members are rotated. For any
particular tensegrity, both sources of stiffness may have a critical role
to play. This paper explores how the stiffness of two example tensegrity
structures changes as the level of prestress in a member varies. It is
shown that, for high levels of prestress, an originally stable tensegrity
can be made to have zero stiffness, or indeed be made unstable.

1 Introduction

Tensegrities form remarkable structures. They are frequently visually arrest-
ing (Heartney, 2009); and they can be designed to give ‘optimal’ structures
Masic et al. (2006). The present paper will discuss the stiffness of tenseg-
rity structures — the first order change of force carried as a structure is
deformed. There are two competing sources for a tensegrity’s stiffness, and
the balance between these sources changes as the prestress varies. Thus,
for instance, the paper will show that, for a particular ‘stable’ tensegrity,
increasing a low level of prestress will increase the stiffness; while for a high
level of prestress, a further increase in prestress may reduce the stiffness,
and even lead to a structure with zero or negative stiffness.

The definition of ‘tensegrity’ is a subject of debate (see, e.g., Motro,
2003). At one extreme is the mathematical definition (Roth and Whiteley,
1981; Connelly and Whiteley, 1996) that a tensegrity is a structure consisting
of ‘cables’ (members only able to resist tension), ‘struts’ (members only
able to resist compression, e.g. a contact force) and ‘bars’ (members able to
resist tension and compression. Others might insist that a tensegrity must
have compression members that do not touch, or must have an infinitesimal
mechanism. The present paper will not enter the debate on definition, except
to note that the basic formulation used here is valid for any prestressed
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structure, and that at least one of the tensegrities used as examples satisfies
even the most stringent definition of tensegrity.

By way of example, the paper will show results for the two tensegrity
structures shown in Figure 1. Tensegrity A is the classic example described
by Pugh (1976) as the ‘expanded octahedron’ tensegrity. It consists of j = 12
nodes, and b = 30 members, made up of 24 cables and 6 struts. Using an
extended Maxwell rule (Calladine, 1978) relating the number of infinitesimal
mechanisms m and states of self-stress s gives

m− s = 3j − b− 6 = 0. (1)

Tensegrity A has Th symmetry (in the Schoenflies notation, see e.g. Altmann
and Herzig, 1994), with symmetry elements that consist of four three-fold
axes, three two-fold axes, and three planes of reflection. Symmetry defines
the position of all nodes in terms of one reference node, shown in Figure 2:
for Tensegrity A to be prestressed (s 6= 0) the parameter p must take the
value 0.5, which can be confirmed by simple statics, or the use of matrix
methods, as described by Pellegrino and Calladine (1986) and Pellegrino
(1993). The presence of a state of self-stress guarantees, from (1), the ex-
istence of an infinitesimal mechanism (for this mode, to first order, nodal
movement results in zero extension of every member).

Tensegrity B is a variation on Tensegrity A, designed to not have an
infinitesimal mechanism. Six cables have been added between nodes so that
the cable net forms the edges of an (irregular) icosahedron. Thus the struc-
ture consists of j = 12 nodes, and b = 36 members, made up of 30 cables
and 6 struts, and the extended Maxwell rule gives

m− s = 3j − b− 6 = −6. (2)

In fact, m = 0 is guaranteed in this case as the cable-net alone forms the
edges of a convex triangulated polyhedra (Cauchy, 1813; Dehn, 1916), and
the addition of six internal struts can only add to the states of self-stress
to give s = 6. For Tensegrity B, the value p = 1/3 is chosen, as in this
case, the totally symmetric state of self-stress (which could be found by,
e.g., the methods described by Kangwai and Guest, 2000) has equal tension
coefficients (tension/length) in all cables.

Both Tensegrity A and Tensegrity B are ‘super-stable’, in the sense de-
fined by Connelly (1999). This means that prestress properties could not
be more benign — but despite this, it will be shown in Section 6 that both
structures can be made unstable for sufficiently high levels of prestress.

In this paper, for both Tensegrity A and Tensegrity B, it will be assumed
that the struts are axially rigid, but the cables are axially flexible. For
each tensegrity, two contrasting material properties for the cables will be
considered. Firstly, a set of stiff cables will be considered, for which a
typical graph of tension against length is shown in Figure 3(a). A key
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Tensegrity A Tensegrity B
(a) (b)

Figure 1: Two tensegrities used as examples. Tensegrity A is the classic
‘expanded octahedron’ tensegrity, which has one state of self-stress and one
infinitesimal mechanism. Tensegrity B has the same arrangement of struts
and cables as Tensegrity A, except that it also has additional cables pulling
pairs of nodes closer together; Tensegrity B does not have an infinitesimal
mechanism.
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Figure 2: The coordinates of a single node for both Tensegrity A when
p = 1/2, and Tensegrity B when p = 1/3. For comparison, the vertices of a
regular icosahedron have p = 2/(1 +

√
5) = 0.618.
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Figure 3: Material properties for two contrasting sets of cables. In (a) the
cables are stiff, made of, for instance, steel, and t/l � dt/dl. In (b), the
cables are assumed to be compliant, made of, in this instance, an elastomer
where t/l 6� dt/dl. Note that, for a cable with the same cross-sectional area,
the values of force in (a) are likely to be very much higher than those in
(b), as the Young’s Modulus of a steel will be the order of a hundred times
stiffer than the Young’s Modulus of an elastomer.

dimensionless parameter in the stiffness formulation used in this paper, as
described in Section 2, is the ratio of the tension coefficient, t̂ = t/l to the
axial stiffness g = dt/dl,

ε =
t/l

dt/dl
. (3)

Locally to the working point of the cable, we can define a Young’s Modulus
E for the material, and a cross-sectional area of the cable A, so that the
axial rigidity is g = AE/l. Thus, we can define the parameter ε as a nominal
strain

ε =
t

AE
. (4)

For metallic cables, the slope g will be essentially linear before yield, and
hence for such stiff cables, ε must be less than the yield strain, and conse-
quently ε � 1. In Section 3 we will assume ε = 0.01.

A contrasting set of material properties will also be considered, when the
cables are compliant, being made of e.g. rubber, or some other elastomer.
For these materials, a typical graph of tension against length is shown in
Figure 3(b). Now the dimensionless parameter ε is not limited to being
much less than one. In Section 4 a value of 0.6 will be assumed.
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2 Stiffness formulation

The basic stiffness formulation that will be used is described in Guest (2006);
an identical formulation with an alternative notation is described in Skelton
and de Oliveira (2009). The tangent stiffness matrix K relates, to first order,
the displacements at each of the 12 nodes in the x-, y- and z-directions,
written as a vector d, to the applied load at each of the nodes, written as a
vector p,

Kd = p. (5)

The matrix K depends on the configuration of the structure, the axial stiff-
ness of the members (the slope g = dt/dl shown in Figure 3) and the tension
coefficient carried by the members (the slope t̂ = t/l shown in Figure 3). It
can be written as

K = AĜAT + S. (6)

In (6), A is the equilibrium matrix for the structure — a matrix of direction
cosines describing the equilibrium relationship between internal forces in
the members t and applied loads at nodes p, At = p (Pellegrino, 1993);
AT equivalently describes the first-order kinematic relationship between the
displacement of nodes d and the extensions of members e. Ĝ is a diagonal
matrix of modified axial stiffnesses, with an entry for each member i (1 ≤
i ≤ b),

ĝi = gi − t̂i, (7)

which can be written in terms of the nominal strain for the member, εi, as

ĝi = gi(1− εi). (8)

S is the (large) stress matrix for the structure. S can be written as the
Kronecker product of a small or reduced stress matrix Ω and a 3-dimensional
identity matrix I

S = Ω⊗ I (9)

and the coefficients of the small stress matrix are given by

Ωij =


−t̂i,j = −t̂j,i if i 6= j, and {i,j} a member,∑

k 6=i t̂ik if i = j,
0 if there is no connection between i and j.

(10)

In this formulation, t̂i,j is the tension coefficient (t/l) in the member that
runs between nodes i and j (there will be a unique mapping between the
pair (i, j) and the bar numbering described above for Ĝ). It was shown in
Schenk et al. (2007) that, for a self-stressed structure, the stress matrix S
must have a nullity of at least 12 (and, it turns out, exactly 12 for both
Tensegrity A and Tensegrity B), and can provide no stiffness to any of the 6
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rigid body modes, or to any of the 6 affine deformation modes, i.e., modes
in which the body is deformed uniformly by stretching or shear.

For both Tensegrities A and B, the stiffness matrix K is a symmetric
matrix of dimension 36×36. In fact, for the results reported here, a change of
coordinates was used to condense out two sets of freedoms from the original
36: the 6 rigid-body modes, and the 6 modes that correspond to extension
of the struts. The effect of this is to leave an 24 × 24 symmetric matrix,
for which the eigenvalues are then found. These 24 eigenvalues have at
most 10 distinct values (as can be predicted by a symmetry analysis of the
original system, as described by Kangwai et al., 1999). Condensing out
the six modes corresponding to extensions of struts essentially makes the
assumption that the struts are rigid. An alternative procedure would have
been to have given the struts a stiffness of, say, 1000 times the value of
the stiffness of the cables, and worked with the original 36 × 36 matrix.
This would have given essentially the same set of 24 eigenvalues, plus an
additional 6 eigenvalues which are approximately 1000 times as large, and
6 zero eigenvalues corresponding to rigid body modes.

The complete set of eigenvalues for varying levels of prestress will be
reported in Section 6, but first the paper will concentrate on just two modes,
shown in Figure 4. Mode 1 corresponds to the infinitesimal mechanism for
Tensegrity A, and is an eigenmode of the stiffness matrix for all levels of
prestress. Mode 2 is a shear mode, and is actually an eigenmode only for a
prestress corresponding to a nominal strain ε = 1; however, for other levels
of prestress results are reported for the eigenmode which is closest to this.

3 Stiff cables/low relative prestress

This section will consider the results that are appropriate for cases where the
stiffness of the cables g is much greater than the current tension coefficient,
t/l, for instance the case shown in Figure 3(a). This would be typical of
tensegrities constructed with, e.g., steel cables. We will assume a nominal
strain ε = t/AE = 0.01 in the cables of tensegrity A, and the 24 equivalent
cables of tensegrity B (the additional cables in tensegrity B have a lower
level of tension for equilibrium, and hence a lower nominal strain). In fact,
a value of ε = 0.01 may be very large in these circumstances, and would
correspond to a high tensile steel cable being stressed close to yield.

The results for the eigenvalues associated with Mode 1 and Mode 2 are
presented in Table 1(a).

For Tensegrity A, Mode 1 is the most flexible mode (has the smallest
eigenvalue), which reflects the fact that this is an infinitesimal mechanism,
and to the first-order approximation of the stiffness matrix, there is no
change in the length of any member for this mode. Thus the ‘material’
stiffness can contribute nothing to the stiffness, and the stiffness is entirely
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Mode 1 Mode 2
(a) (b)

Figure 4: The two modes considered in detail in Sections 3, 4 and 5. The
modes are shown for Tensegrity A, but almost identical modes can be defined
for Tensegrity B. (a) Mode 1 is the infinitesimal mechanism for Tensegrity
A. (b) Mode 2 is a shear mode, with the structure shearing in the x-z plane;
two other identical modes in the x-y and x-z planes exist.

generated from the reorientation of already stressed members. The stiffness
of Mode 1 is proportional to the level of prestress in the structure, which
will be clearly shown later in Figure 6(a.i).

For Tensegrity B, Mode 1 is not the most flexible mode. The additional
cables added, when compared with tensegrity A, have ensured that Mode
1 is no longer an infinitesimal mechanism, and the stiffness of this mode is
now far higher than the stiffness of the shear mode, Mode 2.

4 Compliant cables/high relative prestress

This section will consider the results that are appropriate for cases where the
stiffness of the cables g is of a similar order to the value of the current ten-
sion coefficient t/l, for instance the case shown in Figure 3(b). This would
be typical of tensegrities constructed with cables made of rubbers or other
elastomers, or perhaps helically wound springs. Structures constructed in
this way are unlikely to be used for civil engineering structures, but might be
appropriate for highly compliant structures, e.g. tensegrity robots (Aldrich
et al., 2003; Mirats Tur and Hernàndez Juan, 2009) or tensegrity springs
(Azadi et al., 2009). Furthermore, demonstation models are often con-
structed with elastomeric cables (Pugh, 1976; Connelly and Back, 1998).
We will assume a nominal strain ε = t/AE = 0.6 in the cables of Tenseg-
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(a) Low prestress, ε = 0.01.

all ×AE Tensegrity A Tensegrity B
Mode 1 0.03 3.15
Mode 2 0.48 0.48

(b) High prestress, ε = 0.6.

all ×AE Tensegrity A Tensegrity B
Mode 1 1.96 4.97
Mode 2 0.34 0.40

Table 1: Eigenvalues of the stiffness matrix for two levels of prestress for the
two tensegrities shown in Figure 1. Results are presented for the two modes
shown in Figure 4.

rity A, and the 24 equivalent cables of Tensegrity B.
The results for the eigenvalues associated with Mode 1 and Mode 2 are

presented in Table 1. For both Tensegrity A and Tensegrity B, the shear
mode, Mode 2, is now the most flexible mode. Now the infinitesimal mecha-
nism no longer dominates the behaviour of Tensegrity A, and the stiffness of
this mode, Mode 1, is not as markedly different between Tensegrity A and
Tensegrity B.

5 Zero-free-length cables

An extreme value of prestress is considered in this Section. When springs
are wound helically, it is possible for them to be wound with pretension,
where the coils of the spring are pressed against themselves when the spring
is not loaded. For the correct level of pretension, the spring can be wound so
that it has the tension/length properties shown in Figure 5: such springs are
commonly used for static balancing, see, e.g., French and Widden (2000);
Herder (2001).

If zero-free-length springs were used for either Tensegrity A or Tenseg-
rity B, then the resultant structure has a zero stiffness mode. For this case,
ε = 1 for all cables, and (neglecting the rigid struts) Ĝ = 0. Thus, in the
formulation given in (6), the term AĜAT is zero, and only the stiffness
resulting from the stress matrix S remains. However, this can provide no
stiffness for shear modes, and thus Mode 2 has zero stiffness. Furthermore,
the results of Schenk et al. (2007) show that this is not just a local phe-
nomenon, and the structure could be deformed without limit, without any
load being applied. In practice, of course, friction, and the limitations of the
working length of the springs, will become important (Schenk et al., 2006).

8



tension

length

slo
pe

 t =
 t/l

^

ll0

t local slope
 g = AE/l

Figure 5: Material properties for a ‘zero-free-length’ spring. The spring is
prestressed when coiled at length l0. Initially, as tension is applied, this
prestress is removed at approximately constant length. Then, within the
working range, the spring has a tension proportional to its length, and hence
t̂ = t/l = dt/dl = g.

Note that the existence of a zero stiffness shear mode for ε = 1 cannot
be generalised to all tensegrities, as it depends critically on the orientation
of the rigid struts. This is further discussed in Schenk et al. (2007).

6 Discussion

Sections 3, 4 and 5 have shown how the dominant (softest) modes of Tenseg-
rity A and Tensegrity B change as the relative level of prestress changes,
described by the nominal strain ε. A complete overview of the stiffness
changes is provided by the plots of the eigenvalues of the stiffness matrix
for 0 ≤ ε ≤ 1 given in Figure 6. In these plots, the eigenvalues have been
normalised in two ways. In (a) the stiffness of the material remains constant,
and ε is changed by varying the tension, t; however, to compare different ma-
terials, it may be more realistic to consider (b), where the tension t carried
by the cables is held constant, and ε is changed by varying cable stiffness
AE.

Figure 6 clearly shows that, for Tensegrity A, the most flexible mode
for low values of ε is the infinitesimal mechanism shown as Mode 1, while
for high values of ε the most flexible mode is the shear mode shown as
Mode 2. In Tensegrity A, all cables are symmetrically equivalent, and so
this example shows in a particularly clean way what we would expect to
see for every tensegrity. For small values of ε, the key understanding of the
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Figure 6: The complete set of eigenvalues λ of the stiffness matrix K for
Tensegrity A (a.i and a.ii) and Tensegrity B (b.i and b.ii) for varying values
of ε = t/AE. The eigenvalues for Mode 1 and Mode 2 are shown bold. For
(a.i) and (b.i) the results are presented as λ × L/EA, i.e., the stiffness of
the cables is preserved as level of prestress varies. For (a.ii) and (b.ii) the
results are presented as λ× L/EA× 1/ε = λ× L/t, i.e., the tension in the
cables is preserved as the cable stiffness varies. Assuming that the struts are
rigid, and neglecting rigid-body modes, there are 24 eigenvalues in each plot,
although symmetry ensures that there are at most only 10 distinct values.
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structural behaviour comes about from understanding the equilibrium of
the structure and the material properties, and hence the ‘material’ stiffness
AGAT, where G = Ĝ for t = 0. By contrast, for large values of ε, the
understanding of the stiffness that comes from the stress matrix S is key,
i.e., it is dominated by the stiffness that results from the reorientation of
already stressed members.

If we were to extend the graphs in Figure 6 for ε > 1, we can see that
both Tensegrity A and Tensegrity B would have a stiffness matrix with a
negative eigenvalue, and hence even these super-stable tensegrities can be
made unstable.

It should be noted that the results in Figure 6 are actually not valid
for ε = 0, except for the zero value of the eigenvalue corresponding to
Mode 1 for Tensegrity A. For any other mode of deformation, the calculation
assumes some cables will go into compression, when in reality they would
become slack. Different cables will go slack for different modes, and there
is no longer a consistent tangent stiffness at this point. However, Roth
and Whiteley (1981) show that all of these deformations will in fact have a
positive stiffness.

7 Conclusion

The present paper shows that the stiffness of structures, and in particular
tensegrity structures, depends not only on the connectivity, geometry and
material properties of the structure, but also upon the level of prestress
that the structure carries, with the dimensionless parameter ε playing a key
descriptive role. The key novelty of the present paper is to introduce the
parameter ε, and show how the stiffness of two carefully chosen tensegrity
structures vary as ε varies from 0 to 1. Traditional structural materials
require ε � 1, but with the development of soft and compliant structures,
choice of ε might be a critical factor in design.

Acknowledgements

I would like to thank R. Pandia Raj for his help with plotting the pictures
of tensegrities.

References

Aldrich, J., Skelton, R., and Kreutz-Delgado, K. (2003). Control synthesis
for a class of light and agile robotic tensegrity systems. In Proceedings of
the American Control Conference, Denver, Colorado, June 4–6 2003.

11



Altmann, S. L. and Herzig, P. (1994). Point-Group Theory Tables. Claren-
don Press, Oxford.

Azadi, M., Behzadipour, S., and Faulkner, G. (2009). Antagonistic variable
stiffness elements. Mechanism and Machine Theory, 44(9):1746–1758.

Calladine, C. R. (1978). Buckminster Fuller’s “Tensegrity” structures and
Clerk Maxwell’s rules for the construction of stiff frames. International
Journal of Solids and Structures, 14:161–172.

Cauchy, A. L. (1813). Recherche sur les polyèdres — premier mémoire.
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