
Chapter 11

Generating stable symmetric
tensegrities

11.1 Introduction

In this chapter we introduce and explain our catalogue, which is a computer program that
can show you over a hundred different tensegrities that are “highly symmetric” and which the
user can choose parameters to change its shape. Here we explain some of the group theory
that one needs to understand how to use the program as well as to understand the symmetry
of the tensegrity. Some examples of the catalogue can be seen in Subsection 11.7.4. One can
access the program at:

http://symmetric-tensegrity.com

11.2 Symmetric tensegrities.

We consider a configuration p = [p1; . . . ; pn] in d-dimensional space, where there is a group
G of symmetries on the set of points of p. We only insist, though, that G be a subgroup
of all of the symmetries of the configuration. One way of saying this is that G acts on the
configuration p. For example, in Figure 11.1 the dihedral group D3 acts on the six points
indicated. But we could just as well consider the cyclic group C3 as acting on the same six
points.

If the configuration is part of a tensegrity, then we also insist that the cables are trans-
formed to cables, struts to struts, and bars to bars under the group operations.

The notation for this situation is that if pi is a point in the configuration p and g is
a group element in G, then gpi is the image of the point pi under the action of the group
element g. If {gi, gj} represents a cable (or a strut or bar), then under this convention, the
action of the group element g on the cable is the unordered set {ggi, ggj} representing the
cable (strut or bar).
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Figure 11.1: A symmetric tensegrity in the plane

11.3 Some group definitions

When a group G acts on a configuration of points p, or any set for that matter, it is helpful
to make a few definitions that help us understand the situation. We say that G acts freely
on p if for all pi in p, gpi = pi implies that the group element g is the identity.

In the example with Figure 11.1, the dihedral group D3 acts freely on the configuration
of 6 points — as does the cyclic group C3.

We say that a subset T of the configuration p is a transitivity class if T = {gpi|g in G}
for some pi of the configuration. A transitivity class is sometimes called an orbit . Note
that transitivity classes form a partition of the points of the configuration — two transitivity
classes are either disjoint, or the same. Similarly we define transitivity classes of cables and
struts. If there is only one transitivity class (of vertices, say) then we say that G is transitive
(on the vertices) or acts transitively.

In the example of Figure 11.1, D3 acts transitively, and there are two transitivity classes
of cables, and one transitivity class of struts.

11.3.1 Highly symmetric tensegrities

One interesting special class of tensegrities are those where a group G of symmetries acts
transitively and freely. This means that there is a one-to-one correspondence between the
elements of G and the vertices p = [p1; . . . ; pn] of the tensegrity. Indeed choose any vertex
p1 and identify it with the identity element 1 of G. If we enumerate the elements of G =
(g1 = 1, g2, . . . , gn), then gi is identified with gip1 = pi, the i-th vertex of the configuration
p. For these tensegrities, we will show here that we can write the stress matrix in terms of
the right regular representation permutation matrix.

First we need to find a symmetric self-stress. Suppose that ω = [. . . ;ωij; . . . ] is a proper
self-stress for the tensegrity (G,p), and G is a finite group acting freely and transitively on
the vertices of p, as described above. Further, we will assume that the associated stress
matrix Ω is positive semi-definite of rank n − d − 1. Now, without changing the rank or
the positive semi-definiteness of the stress matrix, we can replace ω and thus Ω with the
average stress Σg∈Ggω, where gωij = ωkl when the image of the member {ij} is the member
{kl} under the action of g, and gω = [. . . ; gωij; . . . ]. Since the sum of positive semi-definite
quadratic forms is positive semi-definite, we have not introduced any negative eigenvalues in
the stress matrix, and since the rank cannot decrease in the averaging process, we have not
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changed the rank either. But the action of G is now invariant on the force coefficients. In
other words, gωij = ωij, for all members {ij} of G. So from now on we will assume that G
is invariant on the force coefficients ω and, of course, on the stress matrix Ω.

Consider one transitivity class of, say, cables. It has a representative of the form {1, c}
for c in G and we can identify the group element c with that transitivity class of cables. So
every cable in that transitivity class appears in the group {g, gc} as g varies over the elements
of G. Note the class will include the cable {c−1, c−1c} ≡ {1, c−1}, so we an also identify the
group element c−1 with the same transitivity class of cables.

Let ρR(c) denote the permutation matrix that corresponds to right multiplication by c−1

in the right regular representation. This implies that ρR(c)ei = ej if and only if gic
−1 = gj,

for the standard basis vectors ei, i = 1, . . . , n of Euclidean n-space. In other words, the (j, i)
entry of ρR(c), which is eTj ρR(c)ei, is 1 if and only if gic

−1 = gj, otherwise it is 0.

Note that ρR(c) is not necessarily a symmetric matrix. However, if gic
−1 = gj and

gjc
−1 = gi, then substituting we get gic

−1c−1 = gi, which implies that c2 = 1 in G. And if
c2 = 1 in G, ρR(c) is symmetric, otherwise it is not. Furthermore, no diagonal entry of ρR(c)
is 1 unless c = 1.

Consider two possibilities. Suppose c2 = 1 in G, and there is a cable from p1 to p2, where
p2 = cp1, c in G. Then there is a cable from pi to pj if and only if gic

−1 = gj (or equivalently
gic = gj), and there is a 1 in the (i, j) and (j, i) entries of ρR(c), and all the other entries are
0.

Alternatively, suppose c2 6= 1 in G, and there is a cable from p1 to p2, where p2 = cp1, c in
G. Then there is a cable from from pi to pj if and only if gic = gj (or equivalently gi = gjc

−1)
if and only if there is a 1 in the (i, j) entry of ρR(c). So the matrix ρR(c) + ρR(c−1) =
ρR(c) + ρR(c)T has a 1 in the (i, j) entry and the (j, i) entry if and only if there is a cable
between pi and pj.

Now consider the matrix

Ω(c) =

{
I − ρR(c) if c2 = 1;

2I − (ρR(c) + ρR(c−1)) = 2I − (ρR(c) + ρR(c)T) otherwise
(11.3.1)

where I is the n-by-n identity matrix. For this matrix it is clear that it is symmetric, the row
and column sums are 0 (since this is true for I − ρR(c), ρR(c) being a permutation matrix),
and the (i, j) and (j, i) entries are −1 if and only if there is cable between pi and pj. So Ω(c)
is a stress matrix with a force coefficient of 1 on the cables associated to the group element
c.

Note that the same definition and properties hold if c is a strut instead of a cable.

We now describe the stress matrix for a tensegrity that has a group G operate freely and
transitively on it. Choose one vertex, say p1, in the configuration and identify that vertex
with the identity 1 in G. Then consider c1, c2, . . . , ca in G that correspond to the transitivity
classes of cables in the tensegrity, and s1, s2, . . . , sb that correspond to the transitivity classes
of struts in the tensegrity. So, for example, there is a cable corresponding to the transitivity
class ck between pi and pj if and only if gick = gj or gic

−1
k = gj.

Define ωk = ω1i > 0, for k = 1, . . . , a, where {p1, pi} corresponds to the transitivity
class of cables given by ck, and ω is the starting equilibrium stress for the configuration p.
Similarly, define ω−k < 0 for k = 1, . . . , b for the struts.

235



The result of the definitions and the discussion above is that

Ω =
a∑
k=1

ωkΩ(ck) +
b∑

k=1

ω−kΩ(sk). (11.3.2)

11.4 Irreducible components.

Once the right regular representation of the group G is obtained, each of the terms in (11.3.2)
is an element of the right regular representation. Let PR be the matrix that conjugates the
right regular representation to the direct sum of irreducible representations. In other words
PRρRP−1R is the direct sum of irreducible representations as described in Theorem 9.5.4. By
restricting to the subspace corresponding to each summand of the decomposition of Theorem
9.5.4, we can replace each term ρR in the definition of Ω(c) and in Equation 11.3.2 with any
irreducible representation. If ρi, i = 1, . . . ,m are the irreducible representations of the group
G, then we define

Ωi(c) =

{
I − ρi(c) if c2 = 1;

2I − (ρi(c) + ρi(c
−1)) = 2I − (ρi(c) + ρi(c)

T) otherwise
(11.4.1)

and similar to Equation 11.3.2 we define the local stress matrix for representation i as

Ωi =
a∑
k=1

ωkΩi(ck) +
b∑

k=1

ω−kΩi(sk). (11.4.2)

We have effectively block-diagonalised the stress matrix, with d blocks for each d-dimensional
irreducible representation, which could thus be written as

PRΩP−1R = Ω1 ⊕
dim(ρ2)∑
j=1

Ω2 ⊕ . . . ⊕
dim(ρm)∑
j=1

Ωm

This brings us to one of the main points of using representation theory. Instead of
computing whether Ω is positive semi-definite of the appropriate rank directly, we see that it
is enough to compute whether each of the components Ωi is positive definite or positive semi-
definite. Furthermore, it is possible to keep track of the rank of Ω by keeping track of the
rank of each Ωi. This holds the possibility of greatly reducing the amount of computation,
and allows the possibility of first deciding on the stress with some desired properties, and
then calculating the configuration by determining the kernel of Ω, and even more easily by
calculating the kernel of each Ωi.

Let us label the trivial representation, which takes all the group elements into the identity,
as the first representation ρ1. Then we see that Ω1 = 0. Suppose that only one other
irreducible representation, say ρ2, is such that Ω2 is singular with a one dimensional kernel,
and that all the other representations Ωi for i = 3, . . . ,m are positive semi-definite. If the
dimension of ρ2 is d, then by Theorem 9.5.4, the ρ2 representation appears exactly d times in
the right regular representation ρR. So the kernel of Ω is d+ 1 dimensional, and it is positive
semi-definite. Under these conditions, it means that the associated tensegrity framework is
super stable in all dimensions up to affine motions.
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11.4.1 Example of the method.

Let us take G to be the dihedral group D3 with 6 elements, and the group elements corre-
sponding to cables to be c1 = C3σ, c2 = C2

3S and s1 = σ, using the notation of Subsection
9.5.9.

ρ3(C3) =

[
−1/2 −

√
3/2√

3/2 −1/2

]
, ρ3(s1) = ρ2(σ) =

[
1 0
0 −1

]
.

We then calculate

ρ3(c1) = ρ3(C3σ) =

[
−1/2

√
3/2√

3/2 1/2

]
, ρ3(c2) = ρ2(C

2
3σ) =

[
−1/2 −

√
3/2

−
√

3/2 1/2

]
.

Using Equation 11.4.1 we get

Ω3(c1) =

[
3/2 −

√
3/2

−
√

3/2 1/2

]
, Ω3(c2) =

[
3/2

√
3/2√

3/2 1/2

]
, Ω3(s1) =

[
0 0
0 2

]
.

Then the local stress matrix for the third representation is

Ω3 =

[
3
2
(ω1 + ω2)

√
3
2

(−ω1 + ω2)√
3
2

(−ω1 + ω2)
1
2
(ω1 + ω2) + 2ω−1

]
.

The second representation is one-dimensional, so we can use the character χ2 as in the
character table in Subsection 9.5.9 to calculate the following.

ρ2(c1) =
[
−1
]
, ρ2(c2) =

[
−1
]
, ρ2(s1) =

[
−1
]
.

Using Equation 11.4.1 we get

Ω2(c1) =
[
2
]
, Ω2(c2) =

[
2
]
, Ω2(s1) =

[
2
]

Then the local stress matrix for the second representation is

Ω2 =
[
2ω1 + 2ω2 + 2ω−1

]
.

We calculate the determinants of the local stress matrices, which we call the i-th stress
determinant ∆i = ∆i(ω1, . . . , ωa, ω−1, . . . , ω−b), for representation i.

∆3 = det(Ω3) = 3ω1ω2 + 3(ω1 + ω2)ω−1, ∆2 = det(Ω3) = 2ω1 + 2ω2 + 2ω−1.

We can normalize the stresses so that ω1 +ω2 = 1. Then ω2 = 1−ω1, and for 0 < ω1 < 1
and 0 < 1 − ω1 = ω2 < 1. Note that when ω1, ω2, and ω−1 are all positive Ω2 and Ω3 are
both positive definite. Then allow to ω−1 to decrease and become negative while fixing ω1

and ω2 = 1 − ω1. The polynomial ∆3 first becomes 0, changing from positive to negative,
when ω−1 = −ω1(1− ω1) > −1. The polynomial ∆2 first becomes 0, changing from positive
to negative, when ω−1 = −1 — see Figure 11.2. Thus when ω−1 = −ω1(1 − ω1), Ω2 is
positive definite, Ω3 is positive semi-definite with a 1-dimensional kernel, and Ω1 = 0 but is
1-dimensional. Thus in the full right regular representation Ω is positive semi-definite with a
3-dimensional kernel, since the 2-dimensional representation appears twice in the direct sum.
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0

−1

1

ω−1

 ω1= (1−ω2) ω−1 > 0

 ∆2 > 0, ∆3 > 0

 ∆2 < 0, ∆3 > 0

 ∆2 < 0, ∆3 < 0

 ω2 < 0 ω1 < 0

Figure 11.2: A determinant plot for the tensegrity shown in Figure 11.1. The vertical
axis is the strut force coefficient ω−1, and the horizontal axis shows the cable force
coefficients ω1 and ω2, normalised so that ω1 +ω2 = 1. The shaded region shows where
the force coefficients are proper, i.e. ω−1 < 0, ω1 > 0, ω2 > 0. The shaded region is split
into different regions depending on the signs of the stress determinants ∆2 and ∆3. The
quadratic line shows where ∆2 = 0, and the straight line shows where ∆3 = 0 (∆1 = 0
everywhere, by definition). We are interested in points where some stress determinants
are zero but the rest are all positive: for any value of ω1 this will be found by descending
from the horizontal axis until the first ∆i = 0 line is crossed, defining the value of ω−1
for equilibrium to be satisfied.
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Thus the associated tensegrity is (universally) rigid and prestress stable in all dimensions,
since there are at least 3 distinct stressed directions.

Notice that we started with the graph of the framework only, not the actual configuration
itself. Then we found the force coefficients corresponding to an equilibrium self-stress for
some configuration. To find the configuration, we first find a vector in the kernel of the third
local stress matrix Ω3,

Ω3 =

[
3
2

√
3
2

(1− 2ω1)√
3
2

(1− 2ω1)
1
2
− 2ω1(1− ω1)

]
.

For example, the following vector is in the kernel,[√
3
2

(1− 2ω1)
−3

2

]
=

[
x1
y1

]
= p1.

From the definition of Equation 11.3.1 it is clear that if we let pi = ρ3(gi)p1, then the
configuration p = [p1; . . . ; pn] will have an equilibrium self-stress with a 3-dimensional kernel,
and be positive semi-definite as desired when 0 < ω1 < 1. This gives a configuration as shown
in Figure 11.1.

11.5 Groups for 3-dimensional examples.

As with any representation of a group, one must decide on the initial description of the
group that will be represented into the group of matrices. For tensegrities in three-space, a
natural choice is to use certain permutation groups as the initial groups. One reason for this
is that permutations are unbiased as far as pointing to any particular representation. This
is helpful since the process that we describe here will be such that different representations
will be chosen for the configuration that displays the stress which has a stress matrix of
maximal rank as well as being positive semi-definite. But an even more relevant reason for
the permutation description is that the group multiplication is particularly convenient and
efficient to calculate. Also, properties of the underlying graph of the tensegrity can be read
off easily from the permutation description of the cable and strut generators ci and si.

A number of the groups that we will use are formed from the direct product of a per-
mutation group with the permutation group S2. For two groups G1 and G2, their direct
product, written as G1 × G2, is the set of pairs (g1, g2), and the group multiplication is given
by (g1, g2)(g

′
1, g
′
2) = (g1g

′
1, g2g

′
2), where g1, g

′
1 are in G1, and g2, g

′
2 are in G2. It is easy to check

that the required properties of a group are satisfied by G1 × G2. It might be useful to note
that the permutation group S2 is isomorphic with Z2, which is the group {1,−1} with group
multiplication being the multiplication of real numbers.

We use the following six groups plus the dihedral groups, which will be described in later
subsections. See Table 9.5 for further notes about these groups.

i.) The alternating group on 4 symbols A4. This is the group of even permutations of
the symbols {1, 2, 3, 4}. A permutation is even if it can be written as an even number
of transpositions, where a transposition interchanges exactly 2 symbols, leaving all the
others fixed. If a permutation is not even, then it is call an odd permutation. It is a
nice exercise to show that the even permutations form a group. The order of A4 is 12.
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ii.) The symmetric group on 4 symbols S4. This is the group of all permutations of the
symbols {1, 2, 3, 4}, and has order 24.

iii.) The alternating group on 5 symbols A5. This is the group of all even permutations of
the symbols {1, 2, 3, 4, 5} and has order 60.

iv.) The group A4 × S2. It has order 24. Note that this group has the same order as S4,
but it is not isomorphic to S4, since, for example, S4 has an element of order 3, whereas
A4 × S2 does not.

v.) The group S4 × S2. It has order 48.

vi.) The group A5 × S2. It has order 120.

11.6 Presentation of groups.

Another method that can be used to define a group is what is called a presentation of a
group G. This is a list of generators a, b, . . . for G, together with what are called relations
r1, r2, . . . . These are finite products of the generators and their inverses, called words , such
that each word is equal to the identity in G. The group G is defined by this presentation in
the sense that if any other group H has the property that it is has corresponding generators
satisfying the same relations, then H is homomorphic to G. The presentation is written as
G = {a, b, · · · | r1 = r2 = · · · = 1}.

As an example, the cyclic group Cn can be defined by the presentation with one generator
a, and one relation an = 1, so Cn = {a | an = 1}. For another example the alternating group
A5 has the presentation, A5 = {a, b | a2 = b3 = (ab)5 = 1}.

11.7 Representations for groups of interest

To generate tensegrities, we need all the irreducible representation of the group we are work-
ing with, even though we may be interested only in the 3-dimensional (or possibly the 2-
dimensional) representations. We give some of the ideas here that we use to generate those
irreducible representations.

Here we will give concrete examples of matrices ρi(g) that form an irreducible represen-
tation for the dihedral groups, and for each of the groups listed in Section 11.5. In order to
compute any element ρi(g) for g in G it is enough to do it for the generators g1, . . . .We have
included the character tables for all of the groups that we are considering, and this can be
used to check the correctness of the choices that we will describe next for the gi.

11.7.1 Dihedral groups.

The dihedral group Dn can be defined as the full group of rotational symmetries of the regular
polygon in space. It is not too hard to see that Dn has the presentation Dn = {r, s | rn =
s2 = (sr)2 = 1}. Rotation by 2π/n, denoted as Cn, corresponds to r, and rotation by π
about some suitable axis in the plane of the polygon C2 corresponds to s.

The following is the character table for Dn. It is usual to distinguish the case when n is
odd, and when n is even. In both cases the elements r and s generate Dn.
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Groups Dn, n odd n ≥ 3.

Dn 1 rk(k = 1, . . . , n−1
2

) s
Dn = (n2) E Ck

n C2

A1 = χ1 1 1 1
A2 = χ2 1 1 −1

Ej = ψj 2 2 cos(2πjk
n

) 0
(j = 1, . . . , n−1

2
)

There are (n+ 1)/2 conjugacy classes and irreducible representations. It is clear that r and
s generate Dn, and that rasb; a = 0, 1, . . . , n− 1; b = 0, 1 enumerate Dn.

Since the characters χ1 and χ2 are one-dimensional, we can regard them as representations.
Let ρj, j = 1, . . . , n−1

2
denote the representation corresponding to the character ψj. Then we

define

ρj(r) =

[
cos(2πj

n
) − sin(2πj

n
)

sin(2πj
n

) cos(2πj
n

)

]
, ρj(s) =

[
1 0
0 −1

]
.

It is easy to check that the trace of each of these matrices is the character of the corresponding
group element.

Groups Dn, n even n ≥ 4.

Dn 1 rk(k = 1, . . . , n
2
− 1) rn/2 s rs

Dn = (n22) E Ck
n C

n/2
n C ′2 C ′′2

A1 = χ1 1 1 1 1 1
A2 = χ2 1 1 1 −1 −1
B1 = χ3 1 (−1)k (−1)n/2 1 −1
B2 = χ4 1 (−1)k (−1)n/2 −1 1

Ej = ψj 2 2 cos(2πjk
n

) 2(−1)n/2 0 0
(j = 1, . . . , n

2
− 1)

There are n/2 + 3 conjugacy classes and irreducible representations. Again r and s generate
Dn, and rasb; a = 0, 1, . . . , n− 1; b = 0, 1 enumerate Dn.

Since the characters χ1, χ2, χ3, χ4 are one-dimensional, we can regard them as represen-
tations. Let ρj, j = 1, . . . , n

2
− 1 denote the representation corresponding to the character ψj.

Then, as before, we define

ρj(r) =

[
cos(2πj

n
) − sin(2πj

n
)

sin(2πj
n

) cos(2πj
n

)

]
, ρj(s) =

[
1 0
0 −1

]
.

It is again easy to check that the trace of each of these matrices is the character of the
corresponding group element.

11.7.2 Basic non-dihedral representations.

In each of the cases below we have indicated that products of the generators ga1g
b
2g
c
3 . . . can

be used to enumerate the group G. For example for the group S4, each gi permutes the set
{1, . . . , i}. So the same is true for ga1g

b
2 . . . g

c
i . So if we are given any g in G as a permutation,
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choose the integer c so that g−ci permutes the symbol i to the same symbol as g. Then c is
the exponent of gi in the decomposition g = ga1g

b
2 . . . g

c
3. Continuing this way one can easily

determine all the exponents a, b, . . . c. A similar idea works for the other groups A4 and A5

as well.

Group S4.

S4 1 (123) (12)(34) (1234) (12)
O = (432) E 8C3 3C2 6C4 6C ′4
Td = (43m) E 8C3 3C2 6S4 6σd
A1 = χ1 1 1 1 1 1
A2 = χ2 1 1 1 −1 −1
E = χ3 2 −1 2 0 0
T1 = χ4 3 0 −1 1 −1
T2 = χ5 3 0 −1 −1 1

We describe all the elements of S4 so that they can be enumerated easily with the following
generators. Let

g1 = (12), g2 = (123), g3 = (1234)

in disjoint cycle notation. Then it is easy to check that ga1g
b
2g
c
3, for a = 0, 1, b = 0, 1, 2, c =

0, 1, 2, 3, are all distinct. Thus these are the 2 · 3 · 4 = 24 elements of S4.
There are two irreducible 3-dimensional representations of S4. They both can be thought

of as symmetries of the unit 3-dimensional cube. One representation ρ4 is the set of rotations
that are symmetries of the cube. Use the numbers 1, 2, 3, 4 to label the vertices of the cube,
where opposite vertices have the same label.

1→ ±

1
1
1

 , 2→ ±

−1
1
1

 , 3→ ±

 1
−1

1

 , 4→ ±

 1
1
−1

 .
It is easy to check that any rotation of the cube corresponds to a permutation of these labels,
and that this correspondence is a group isomorphism from S4 to the rotations of the cube.
We calculate the matrices implied by the above correspondence as follows.

ρ4(g1) =

−1 0 0
0 0 1
0 1 0

 , ρ4(g2) =

 0 1 0
0 0 −1
−1 0 0

 , ρ4(g3) =

0 0 −1
0 1 0
1 0 0

 .
For the representation ρ5 we make the correspondence between permutation elements and

a subset of the vertices of the cube that form a regular tetrahedron. Then ρ5 corresponds to
the full symmetry group of the tetrahedron. To make definite the correspondence we define
the following correspondence.

1→

1
1
1

 , 2→

 1
−1
−1

 , 3→

−1
1
−1

 , 4→

−1
−1

1

 .
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We calculate the matrices implied by the above correspondence as follows.

ρ5(g1) =

1 0 0
0 0 −1
0 −1 0

 , ρ5(g2) =

 0 1 0
0 0 −1
−1 0 0

 , ρ5(g3) =

 0 0 1
0 −1 0
−1 0 0

 .
From these correspondences it is possible to look at any particular symmetry operation,

and be able to determine the corresponding permutation in S4.
Now consider the 2-dimensional irreducible representation ρ3 of S4. It is possible to check

that the following correspondence will work.

ρ3(g1) =

[
−1 0

0 1

]
, ρ3(g2) =

[
−1/2 −

√
3/2√

3/2 −1/2

]
, ρ3(g3) =

[
1/2 −

√
3/2

−
√

3/2 −1/2

]
.

(The group elements g1 = (12), g2 = (123) generate the symmetric group S3, which has a
2-dimensional representation which are the transformation matrices corresponding to sym-
metry operations acting on a triangle. From the character table, we can determine that
ρ3((12)(34)) = 1 and so ρ3((12)) = ρ3((34)), and thus ρ3((1234)) = ρ3((123)(34)) = ρ3((123))ρ3((34)) =
ρ3((123))ρ3((12)).)

The non-trivial 1-dimensional representation ρ2 of S4, can be read from the character
table, observing that it is [1] for even permutations, and [−1] for odd permutations.

ρ2(g1) =
[
−1
]
, ρ2(g2) =

[
1
]
, ρ2(g3) =

[
−1
]
.

Group A4.

A4 1 (123) (132) (13)(24)
T = (23) E 4C3 4C2

3 3C2

A = χ1 1 1 1 1
1E = χ2 1 −1+i

√
3

2
−1−i

√
3

2
1

2E = χ3 1 −1−i
√
3

2
−1+i

√
3

2
1

T = χ4 3 0 0 −1

Since the alternating group of even permutations on four symbols A4 is a subgroup of S4,
most of the work for finding the irreducible representations is done. One new feature is that
this group has two non-trivial irreducible one-dimensional complex representations. When

g1 = (123), g2 = (12)(34), g3 = (13)(24),

then ga1g
b
2g
c
3 for a = 0, 1, 2, b = 0, 1, c = 0, 1 enumerate all the elements of A4, similar to the

case for S4.
For the 3-dimensional irreducible representation ρ4 of A4, we can simply restrict to the

subset of either irreducible 3-dimensional representation of S4. So we get the following.

ρ4(g1) =

 0 1 0
0 0 −1
−1 0 0

 , ρ4(g2) =

1 0 0
0 −1 0
0 0 −1

 , ρ4(g3) =

−1 0 0
0 1 0
0 0 −1

 .
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The other two irreducible representations ρ2 and ρ3, which are complex, are the following.

ρ2(g1) =
[
−1/2 + i

√
3/2
]
, ρ2(g2) =

[
1
]
, ρ2(g3) =

[
1
]
,

and
ρ3(g1) =

[
−1/2− i

√
3/2
]
, ρ3(g2) =

[
1
]
, ρ3(g3) =

[
1
]
.

Note that when these complex representations appear in the stress matrix, the imaginary
parts vanish because each time a group element appears, so does its inverse with the same
real coefficient and the representation for the inverse is the complex conjugate.

Group A5.

A5 1 (12345) (13524) (123) (12)(34)
I E 12C5 12C2

5 20C3 15C2

A = χ1 1 1 1 1 1
T1 = χ2 3 τ τ ′ 0 −1
T2 = χ3 3 τ ′ τ 0 −1
G = χ4 4 −1 −1 1 0
H = χ5 5 0 0 −1 1

We use the numbers τ = (1 +
√

5)/2 (the golden ratio) and τ ′ = (1 −
√

5)/2. Note that
ττ ′ = −1, τ + τ ′ = 1, τ 2 − τ − 1 = (τ ′)2 − τ ′ − 1 = 0. It is also worth noting that
cos(2π/5) = −τ ′/2 and cos(4π/5) = −τ/2.

Similar to the previous cases, we define the following group elements.

g1 = (123), g2 = (12)(34), g3 = (13)(24), g4 = (12345)

Then ga1g
b
2g
c
3g
d
4 , for a = 0, 1, 2, b = 0, 1, c = 0, 1, d = 0, 1, 2, 3, 4, enumerate A5.

To find the 3-dimensional representations of the permutation groupA5, following the ideas
used for S4, we partition the vertices of the regular dodecahedron into 5 sets of 4 vertices,
where each of those sets form a regular tetrahedron, and the tetrahedra are permuted by any
rotation of the dodecahedron.

The following are one of two choices for the vertices of the dodecahedron partitioned into
the 5 tetrahedra.

T1 =


 1
−1

1

 ,
 0

τ
−τ ′

 ,
−τ ′0
−τ

 ,
−ττ ′

0

 , T2 =


−1

1
1

 ,
 0
−τ
−τ ′

 ,
 τ ′

0
−τ

 ,
 τ
−τ ′

0

 ,

T3 =


 1

1
−1

 ,
 0
−τ
τ ′

 ,
−τ ′0

τ

 ,
−τ−τ ′

0

 , T4 =


−1
−1
−1

 ,
0
τ
τ ′

 ,
τ ′0
τ

 ,
ττ ′

0

 ,

T5 =


1

1
1

 ,
−1
−1

1

 ,
 1
−1
−1

 ,
−1

1
−1

 .

We identify each tetrahedron Ti with i, for i = 1, 2, 3, 4, 5, and any rotation of the dodeca-
hedron corresponds uniquely to an even permutation of the set {1, 2, 3, 4, 5}. Then it is easy
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to calculate that the corresponding representation on the generators gj defined above.

ρ3(g1) =

0 1 0
0 0 1
1 0 0

 , ρ3(g2) =

−1 0 0
0 −1 0
0 0 1

 ,
ρ3(g3) =

1 0 0
0 −1 0
0 0 −1

 , ρ3(g4) =
1

2

 1 τ ′ τ
−τ ′ −τ −1
τ 1 τ ′

 .
We can check that this is the representation ρ3 in the character table by computing traces of
the appropriate matrices above. In particular χ3(g4) = τ ′.

For the representation ρ2, we observe that if we interchange τ and τ ′ everywhere (which
corresponds to the other possible choice for partitioning the vertices between tetrahedra),
then we get another representation as described by the following generators.

ρ2(g1) =

0 1 0
0 0 1
1 0 0

 , ρ2(g2) =

−1 0 0
0 −1 0
0 0 1

 ,
ρ2(g3) =

1 0 0
0 −1 0
0 0 −1

 , ρ2(g4) =
1

2

 1 τ τ ′

−τ −τ ′ −1
τ ′ 1 τ

 .
It is clear that this is the representation corresponding to χ2, since χ2(g4) = τ

To find the four-dimensional representation ρ4, we can consider the transformation ma-
trices of a regular 4-dimensional simplex (consisting of 5 vertices) in 4-space corresponding
to even permutations of the vertices. We choose the following vectors for the vertices of the
4 simplex (centred on the origin).

1→


−1
−1

1

−1/
√

5

 , 2→


1
−1
−1

−1/
√

5

 , 3→


−1

1
−1

−1/
√

5

 , 4→


1
1
1

−1/
√

5

 , 5→


0
0
0

4/
√

5

 .
We then calculate the following matrices for the generators above.

ρ4(g1) =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 , ρ4(g2) =


−1 0 0 0

0 1 0 0
0 0 −1 0
0 0 0 1

 ,

ρ4(g3) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , ρ4(g4) =
1

4


−3 1 1 −

√
5

1 1 −3 −
√

5

−1 3 −1
√

5√
5
√

5
√

5 −1

 .
Note that if we rescale the last coordinate of each of the vectors in the 4-simplex above by
replacing

√
5 by 1, then the corresponding representation will have all rational entries, but

will not be into the orthogonal group. This implies that some of the polynomials calculated
later will eventually have only rational coefficients.
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For the irreducible 5-dimensional representation ρ5, we can calculate the following matri-
ces for the gi’s.

ρ5(g1) =


−1

2
−1

2
0 0 0

3
2
−1

2
0 0 0

0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

 , ρ5(g2) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 −1

 ,

ρ5(g3) =


1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1

 , ρ5(g4) =


1−3
√
5

16
−1−

√
5

16
1+
√
5

8
−1

4
1−
√
5

8
−3−3

√
5

16
−1+3

√
5

16
−3+

√
5

8
−
√
5
4

3+
√
5

8
−3−3

√
5

8
3−
√
5

8
−1

2
0 −1

2

−3
4

−
√
5
4

0 1
2

1
2

−3+3
√
5

8
−3−

√
5

8
−1

2
−1

2
0

 .

One warning about this representation is that not all the matrices are orthogonal. (In par-
ticular ρ5(g4) is not orthogonal.)

The representation ρ5 was constructed by taking first what is called the tensor product
ρ2 ⊗ ρ2 and then calculating what is called the symmetric component. This turns out to be
equivalent to the 6-dimensional representation that is the sum ρ5 + ρ1 of the 5-dimensional
representation ρ5 we are looking for and the trivial representation ρ1. We can project this
6-dimensional representation onto ρ5 easily.

To check that the matrices have been calculated correctly, one can observe that A5 =
{a, b | a2 = b2 = (ab)5 = 1} is a presentation of A5. If one has a group G, which is not
the identity, and the relations in the presentation above are satisfied by some pair of the
group elements a and b in G, which generate all of G, then G is isomorphic to the group A5.
(It turns out that A5 has no non-trivial homomorphic group images, i.e. it is simple, so we
know that any such group is isomorphic to A5.) In our case, we can take a = (12)(34) and
b = (235) in disjoint cycle notation. Then a = g2, b = g2g4, ab = g4. So we can verify that
our matrices are chosen properly by checking the relations for the corresponding matrices.
The characters are also easily checked.

Groups A4 × S2, S4 × S2, and A5 × S2.

For the direct product with S2, there is the generator of order 2 that commutes with all of
the elements of the group, which can be multiplied with all the other elements easily.

A4 × S2 1 (123) (132) (13)(24) −1 −(132) −(123) −(13)(24)
Th = (m3) E 4C3 4C2

3 3C2 i 4S6 4S2
6 3σd

Ag = χ1 1 1 1 1 1 1 1 1

Eg = χ2 1 −1+i
√
3

2
−1−i

√
3

2
1 1 −1−i

√
3

2
−1+i

√
3

2
1

Eg = χ3 1 −1−i
√
3

2
−1+i

√
3

2
1 1 −1+i

√
3

2
−1−i

√
3

2
1

Tg = χ4 3 0 0 −1 3 0 0 −1
Au = χ5 1 1 1 1 −1 −1 −1 −1

Eu = χ6 1 −1+i
√
3

2
−1−i

√
3

2
−1 −1 −−1−i

√
3

2
−−1+i

√
3

2
1

Eu = χ7 1 −1−i
√
3

2
−1+i

√
3

2
−1 −1 −−1+i

√
3

2
−−1−i

√
3

2
1

Tu = χ8 3 0 0 −1 −3 0 0 1
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S4 × S2 1 (123) (12) (1234) (12)(34) −1 −(1234) −(123) −(12)(34) −(12)
Oh = (m3m) E 8C3 6C2 6C4 3C2 i 6S4 8S6 3σh 6σd
A1g = χ1 1 1 1 1 1 1 1 1 1 1
A2g = χ2 1 1 −1 −1 1 1 −1 1 1 −1
Eg = χ3 2 −1 0 0 2 2 0 −1 2 0
T1g = χ4 3 0 −1 1 −1 3 1 0 −1 −1
T2g = χ5 3 0 1 −1 −1 3 −1 0 −1 1
A1u = χ6 1 1 1 1 1 −1 −1 −1 −1 −1
A2u = χ7 1 1 −1 −1 1 −1 1 −1 −1 1
Eu = χ8 2 −1 0 0 2 −2 0 1 −2 0
T1u = χ9 3 0 −1 1 −1 −3 −1 0 1 1
T2u = χ10 3 0 1 −1 −1 −3 1 0 1 −1

A5 × S2 1 (12345) (13524) (123) (12)(34) −1 −(13524) −(12345) −(123) −(12)(34)
Ih E 12C5 12C2

5 20C3 15C2 i 12S10 12S3
10 20S6 15σ

Ag = χ1 1 1 1 1 1 1 1 1 1 1
T1g = χ2 3 τ τ ′ 0 −1 3 τ ′ τ 0 −1
T2g = χ3 3 τ ′ τ 0 −1 3 τ τ ′ 0 −1
Gg = χ4 4 −1 −1 1 0 4 −1 −1 1 0
Hg = χ5 5 0 0 −1 1 5 0 0 −1 1
Au = χ6 1 1 1 1 1 −1 −1 −1 −1 −1
T1u = χ7 3 τ τ ′ 0 1 −3 −τ ′ −τ 0 1
T2u = χ8 3 τ ′ τ 0 −1 −3 −τ −τ ′ 0 1
Gu = χ9 4 −1 −1 1 0 −4 1 1 −1 0
Hu = χ10 5 0 0 −1 1 −5 0 0 1 −1

Some notation here does double duty. For example, when the symbol i appears as one
of the numbers in the character table, it represents the complex number whose square is
−1. When it appears as the name of group element, it denotes inversion, which is a group
operation which multiplies each coordinate by −1. (It corresponds to −I, the negative
of the identity matrix.) The symbols T (with subscripts), when they name a particular
representation, are not to be confused with our labeling of tetrahedra. The symbols Cn
denote rotation of 2π/n about a line in 3-space as well as cyclic groups of order n. The
symbol σ is used to signify reflection about a plane in 3-space, and it should not be confused
with C2, which is not a reflection, although both have order 2 as group elements. The symbol
S with subscripts corresponds to reflection about a plane, followed by a rotation about a line
perpendicular to that plane.

Each of these groups G × S2 has twice the number of elements as G, twice the number of
conjugacy classes as G, and twice the number of irreducible representations as G. For each
conjugacy class say [g] of G, [(g, 1)] and [(g,−1)] are distinct conjugacy classes of G×S2. For
each representation ρ of G and g in G, ρ1((g, 1)) = ρ(g), ρ1((g,−1)) = ρ(g), and ρ2((g, 1)) =
ρ(g), ρ2((g,−1)) = −ρ(g) defines two other corresponding irreducible representations of G ×
S2. In the enumeration generators of the elements of G, we can add one extra element, say
g0 = −1. Then ga0g

b
1, . . . , where a = 0, 1, b = . . . , enumerate G.

This completes the description of our six basic groups.
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11.7.3 Determinant plots.

We are now in a position to follow the method shown in Section 11.4 (illustrated by the
example in Section 11.4.1) for the basic groups described above, as we have an explicit set of
matrices that form each irreducible representation of each of our six groups.

Suppose we have chosen the group G and two group elements c1 and c2 in G that generate
it (c1 and c2 will correspond to two transitivity classes of cables in the final tenesgrity we
construct). This means that every element of G can be written as a product of some number
of these two group elements in some order, and is necessary if we wish the final stress matrix
that we construct to be positive semi-definite, given that the tensegrity is connected by struts
and cables. We also choose s1 in G not equal to any of c1, c

−1
1 , c2, c

−1
2 , which will correspond

to the transitivity class of the strut.
From the definition in (11.4.2), for each irreducible representation ρi, we form the matrix

Ωi = Ωi(ω1, ω2, ω−1) in terms of the real variables ω1, ω2, ω−1.

Ωi = ω1Ωi(c1) + ω2Ωi(c2) + ω−kΩi(sk).

When ω1 > 0, ω2 > 0, ω−1 ≥ 0 it is easy to see that Ωi is positive definite for ρi not the trivial
representation. This is because the graph of the tensegrity that it defines is connected and
effectively has only cables. So the only kernel vector comes from the trivial representation.

We now define the following, which we call the i-th determinant polynomial corresponding
to the non-trivial irreducible representation ρi of G,

∆i(ω1, ω2, ω−1) = det(Ωi(ω1, ω2, ω−1)).

Notice that ∆i is implicitly a function of the choice of c1, c2 and s1, and when ω1 > 0, ω2 >
0, ω−1 ≥ 0, then ∆i(ω1, ω2, ω−1) > 0 for all i 6= 1. Since we are ultimately interested in when
ω1 > 0, ω2 > 0, we can normalize the force coefficients by dividing all the ωi’s by ω1 +ω2, and
this has the effect that we may assume that ω1 +ω2 = 1. Thus we are essentially considering
the two variable polynomial ∆i(ω1, 1− ω1, ω−1).

Define the following region in (ω1, ω−1) space

R = R(c1, c2, s1) = {(ω1, ω−1) | 0 < ω1 < 1, ∆i(ω1, 1− ω1, ω−1) > 0, for all i 6= 1}.

Each region R is convex, because the sum of positive definite matrices is positive definite.
This means that if (ω1, ω−1) and (ω′1, ω

′
−1) are in R, then so is any point on the line segment

connecting them ((tω1 + (1− t)ω1, tω
′
−1 + (1− t)ω′−1), where 0 ≤ t ≤ 1).

Next fix ω1 > 0 and ω2 = 1 − ω1 > 0, and vary ω−1. As ω−1 → −∞ eventually Ω
must have a negative eigenvalue. So every vertical ray from the horizontal axis, starting
in the interval from 0 to 1, must eventually leave R. So that point on the lower boundary
of R corresponds to a force coefficient ω−1 < 0 where, for some i, Ωi is singular, but still
positive semi-definite (indeed, every point on the boundary of R corresponds to a positive
semi-definite Ω).

The zero set of each of the polynomials ∆i corresponds to values of the force coefficients
where Ωi is singular, and the boundary of R must be part of that zero set. The i for
which ∆i(ω1, 1 − ω1, ω−1) = 0 indicates which representation ρi corresponds to the singular
Ωi(ω1, ω2, ω−1). So the result of this analysis is that for fixed ω1, ω2, the critical force co-
efficient ω−1, and the representation ρi to go with it, can be found by finding the smallest
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magnitude negative root of the polynomials ∆i(ω1, ω2, ω−1). We refer to that representation
ρi as the winner .

Typical cases are shown later in figures 11.3 to 11.9. Each figure shows in (a) a perspective
view of the resultant tensegrity, and in (b) the determinant plot showing the choice of stresses
to generate the tensegrity by a cross, on the boundary of R. For each of the cases shown,
the winning representation is 3-dimensional, giving a positive-definite stress matrix that is
rank-deficient by 4. In each tensegrity, the cables are shown in red and blue (blue carrying the
force coefficient ω1, red carrying ω2). Examples are shown for the groups A4,A4×S2,S4,S4×
S2,A5,A5 × S2.

For each figure 11.3 to 11.9, the choice of struts and cables, c1, c2, s1, is given. However, to
understand how those choices can be made, we need to define equivalence classes of tensegrity
Cayley graphs, as described in the next section.

11.7.4 Cayley graphs.

We have seen that if we are given the elements c1, c2, s1 in one of our groups G, it is possible
determine those geometric representations of a tensegrity, where c1 and c2 correspond to
transitivity classes of cables, and s1 corresponds to a transitivity class of struts. In principle,
we could enumerate all such triples of elements of G and do the calculations for each of them,
but that would involve several redundant cases, since several pairs of such tensegrities would
be essentially identical. With this in mind, for any finite group G we define the tensegrity
Cayley graph Γ = Γ(c1, . . . , s1, . . . ) corresponding to any finite number of elements c1, c2, . . .
and s1, . . . of G as follows. The vertices of Γ are the elements of G. For any pair of elements
g1, g2 of G, there is an unoriented edge between them, labeled as a cable, if there is a ci
such that g1ci = g2 or g2ci = g1. Similarly, for any pair of elements g1, g2 of G, there is
an unoriented edge between them, labeled as a strut, if there is a si such that g1si = g2 or
g2si = g1.

The standard definition of a Cayley graph does not usually make a distinction between
cables and struts, but this is natural for us. This can be regarded as a sort of coloring of the
edges of the standard Cayley graph.

An isomorphism α : G → G of G to itself is called an automophism. For example, for any
g0 in G the function g → g0gg

−1
0 , which is conjugation by g0, is automorphism of G called

an inner automorphism. If an automorphism of a group is not an inner automorphism, it is
called an outer automorphism.

The following are some easy consequences of our definitions.

i.) If any cable or strut is replaced by its inverse, the corresponding tensegrity Cayley
graph is the same.

ii.) If α : G → G is an automorphism of G, then the tensegrity Cayley graph Γ(c1, . . . , s1, . . . )
is the same as the tensegrity Cayley graph of Γ(α(c1), . . . , α(s1), . . . ).

iii.) The elements c1, c2, . . . generate G if and only if the cable subgraph of Γ is connected.

We can regard an automorphism of the group G as a way of relabling the vertices of the
associated Cayley graph Γ that is consistent with the group structure. The group G acts on
Γ as a group of symmetries in the sense that left multiplication by any element of G takes Γ
to itself.
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0 1

ω−1
 ω1= (1−ω2)

 ∆
4 = 0 R

(a) (b)

Figure 11.3: An A4 tensegrity with cables {(134), (234)} and strut{(14)(23)} — in
this case the force coefficient is unequal in the two classes of cables. (a) The physical
configuration. (b) The determinant plot, showing the choice of stresses by a cross, on
the boundary of the region R, which ensures that the stress matrix is positive semi-
definite. In this case, ρ4 is the winner, which is a faithful representation. As ρ4 is
3-dimensional representation, the stress matrix is rank-deficient by 4.

0 1

ω−1
 ω1= (1−ω2)

 ∆
4 = 0 R

(a) (b)

Figure 11.4: The same choice of group, cables and struts as in figure 11.3, but now with
the force coefficient in the cables equal, which creates an additional reflection symmetry.
This tensegrity is used as a baby toy called the ”Sqwish”.
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0 1

ω−1
 ω1= (1−ω2)

 ∆8 = 0 

 ∆ 5 
= 0 

 ∆
7 = 0 

R
 ∆4 = 0 

(a) (b)

Figure 11.5: AnA4×S2 tensegrity with cables {(124),−(13)(24)} and strut {−(12)(34)}
and its determinant plot. In this case, ρ8 is the winner, which is a faithful representation.
As ρ8 is 3-dimensional representation, the stress matrix is rank-deficient by 4.

0 1

ω−1
 ω1= (1−ω2)

 ∆4 = 0 

 ∆
5 = 0  ∆

3 = 0 

 ∆
2 = 0 

R

(a) (b)

Figure 11.6: An S4 tensegrity with cables {(1423), (13)} and strut{(12)} and its deter-
minant plot. In this case, ρ4 (faithful, 3-dimensional) is the winner.

251



0 1

ω−1
 ω1= (1−ω2)

 ∆8 = 0 R  ∆9 = 0 

 ∆4 = 0 
 ∆3 = 0 

 ∆ 5 
= 0

 

 ∆ 2 
= 0 

 ∆
7 

= 
0 

 ∆
10

 =
 0

 

(a) (b)

Figure 11.7: An S4 × S2 tensegrity with cables {−(14), (1234)} and strut {(34)} and
its determinant plot. In this case, ρ9 (faithful, 3-dimensional) is the winner. Note that
in this case, the force coefficient ω1 (in the blue cables) has to be sufficient to ensure
that the 3-dimensional ρ9 is the winner — ρ8 is 2-dimensional, and hence does not give
a 3-dimensional configuration.

0 1

ω−1
 ω1= (1−ω2)

 ∆2 = 0 R

 ∆
4 = 0 

 ∆3 = 0 
 ∆5 = 0 

(a) (b)

Figure 11.8: An A5 tensegrity with cables {(15243), (15)(34)} and strut {(13)(24)},
together with its determinant plot. The cable graph is that of the soccer ball, a trun-
cated icosahedron, although the hexagons are distorted. In this case, ρ2 (faithful,
3-dimensional) is the winner.
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0 1

ω−1
 ω1= (1−ω2)

 ∆ 9 = 0 

 ∆ 4 = 0 

 ∆
3 = 0  ∆5 = 0 

 ∆2 = 0 

 ∆ 7 
= 0

 

 ∆10 = 0 
 ∆8 = 0 R

(a) (b)

Figure 11.9: An A5 × S2 tensegrity with cables {−(15)(24), (14532)} and strut
{(13)(24)} and its determinant plot. In this case, ρ8 (faithful, 3-dimensional) is the
winner. In this case, as the force coefficient ω2 (in the red cables) is increased, the red
cables shorten and the configuration moves towards a regular icosahedron where sets
of 10 vertices converge.

253



For Cayley graphs, it is usual to assume that the elements that are used to define it
actually generate it, so the associated Cayley graph is connected. For us, it will be natural,
also, to assume that the subgraph of Γ, determined by the edges labled cables, be connected.

11.7.5 Automorphisms

In light of the discussion in the previous subsection, we will determine all the automorphisms
of the dihedral groups and the six groups that we have considered. One other definition is
useful. We say that a subgroup H of the group G is normal (or equivalently self-conjugate) if
for all g in G, gHg−1 = H, where gHg−1 = {ghg−1 | h in H}. For example, the group of even
permutations of n symbols An is a normal subgroup of Sn the group of all permutations of n
symbols, for n = 2, 3, . . . . It is a well-known fact, which can be read off from the character
table, that A5 has no no normal subgroups other than itself and the trivial group consisting
of just the identity element.

If a group H is a normal subgroup of a larger group G, then it is easy to see that
conjugation of H by any element of G, h → ghg−1 is an automorphism of H. So for the
groups that we considered, A4 and A5 are normal subgroups of S4 and S5, respectively, and
so conjugation by elements in the larger symmetric group provides outer automorphisms.

Conversly, suppose that we identify G as a subgroup of GL(n,R), the group of all n-
by-n non-singular matrices, for some n = 1, 2, . . . . We can regard the identity map as a
representative of one class of equivalent representations. Then any automorphism α of G is
also a representation of G of the same dimension. Of course, if α is obtained by conjugation
by an element of G (an inner automorphism) or even conjugation by an element of GL(n,R),
α will be equivalent as a representation to the identity representation. But if there is an
automorphism that does not arise from conjugation by an element of GL(n,R), then it will
determine an inequivalent representation and this can be determined in the character table
for G.

Since we are dealing largely with permutation groups, it is helpful to describe the operation
of conjugation by an element of Sn. We wish to describe α(g) = g0gg

−1
0 . First regard

each of these elements as functions, i.e. permutations, of the symbols {1, . . . , n}. Then
α(g)(g0(i)) = g0(g(i)), and so if we write g = (a, b, c, . . . ) in disjoint cycle notation, then
α(g) = (g0(a), g0(b), . . . ) in disjoint cycle notation. For example, if g0 = (12) and g = (12345)
in disjoint cycle notation, then α(g) = (21345) in disjoint cycle notation. This is useful to
simplify some of the calculations.

We now describe the automorphisms of the dihedral groups and our six other groups.

Dn, n odd, n ≥ 3.

We can describe any automorphism α of Dn by the value of α(r) and α(s). Since the order
of r is n, α(r) must also have order n. But the only possibilities are α(r) = rj, where j
relatively prime to n. Similarly, since the order of s is 2, α(s) = rks, for some k = 1, . . . n. It
is easy to check that rj and rks generate Dn, and that (rks)rj(rks) = (rj)−1. Thus such any
such α for j relatively prime to n determines an automorphism of Dn.
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Dn, n even n ≥ 4.

Again we can describe any automorphism α of Dn by the value of α(r) and α(s). Since r has
order n, α(r) must also have order n, which implies α(r) = rj, where j is relatively prime to
n as before. But now there are more elements that have order 2 that could be images of s.
The element rn/2 cannot be the image of s, since rj and rn/2 do not generate all of Dn. On
the other hand α(s) = rks for any k = 1, . . . , and α(r) = rj, j relatively prime to n does
define an automorphism of Dn as before.

A4.

Recall that the irreducible 3-dimensional representation of A4 assigns the linear extension of
the corresponding permutation of the vertices of a regular tetrahedron centered at the origin.
Any automorphism of the image of this representation in GL(3,R) arising from the conjuga-
tion by an element of GL(3,R), that is a matrix with positive determinant, will be an inner
automorphism. If the matrix has a negative determinant, it will correspond to conjugation
by an element in S4, since the elements of S4 correspond to arbitrary permutations of the
vertices of the regular tetrahedron. Thus conjugation A4 by elements in the larger group S4
describe all the automorphisms of A4.

S4.

There are two distinct 3-dimensional irreducible representations of S4, but their images in
Gl(3,R) are distinct. One image contains some matrices with negative determinant, and the
other only those with positive determinant. So there are only inner automorphisms of S4.

A5.

This is similar to A4 in that the only automorphisms are those coming from conjugation by el-
ements in the larger group S5. This can be seen by considering the irreducible 4-dimensional
representation, or if one looks at the two irreducible 3-dimensional representations, their
images can be taken to be the rotations of the regular dodecahedron (or equivalently the
icosahedron). In addition to the inner automorphisms of A5, conjugation by an odd permu-
tation of S5 (as described above), takes an element of order 5 in one conjugacy class to the
other conjugacy class, and this permutes the two irreducible 3-dimensional representations.

A4 × S2.

The group of symmetries of a cube that induce an even permutation on the long diagonals
of the cube is the image of the only 3-dimensional irreducible representation of A4 × S2. So
the only automorphisms of A4 × S2 are restrictions of symmetries of cube. These are then
the automorphisms of the group A4 (conjugation by an element of S4 not changing the sign
of S2. In other words α(g, z) = (g0gg

−1
0 , z), where g is in A4, g0 is in S4, and z is in S2.

Note that here and later we regard the group S2 = {1,−1} where 1 is the identity element,
and −1 is the other element.
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S4 × S2.

This group is isomorphic to the full group of symmetries of the cube. There are two inequiv-
alent irreducible one-to-one 3-dimensional representations of this group as can be seen from
the character table. The automorphism that takes one representation to the other is given
by α(g, z) = (g0gg

−1
0 , θ(g)z), where g is in S4, g0 is in S4, z is in S2 and θ : S4 → S2 is the

group homomorphism that assigns +1 to an even permutation and −1 to an odd permuta-
tion. So all automorphisms of S4 × S2 are described as inner automorphisms or one of the
automorphisms above. For example, the pair of elements −(123), (1234) are taken to the
corresponding pair −(213),−(2134) by an automorphism of the first type.

A5 × S2.

This group is isomorphic to the full group of symmetries of the regular dodecahedron (or
icosahedron). But again this group is the image of two distinct irreducible one-to-one 3-
dimensional representations. But then it is easy to see that the only automorphisms are
given as the product of conjugation on the A5 factor by an element of S5 and the identity on
the S2 factor.

11.7.6 Enumeration of tensegrity Cayley graphs.

From the discusion in Section 11.7.4 we see what the conditions are for the group elements
c1, c2, s1 to define the same tensegrity Cayley graph Γ(c1, c2, s1). With this in mind we define
the following set, which we call the defining set .

D = D(c1, c2, s1) = ({{c1, c−11 }, {c2, c−12 }}, {s1, s−11 }).

Here we are using set notation, where {x, y} = {y, x}, but (x, y) 6= (y, x), unless x = y.
We only create a defining set D when all three of the sets {c1, c−11 }, {c2, c−12 }, {s1, s−11 } are
distinct. With this notation, we see that D remains the same if any of the elements are
replaced by their inverse, or the roles of c1 and c2 are reversed. Note, also, that if an element
is replaced by its inverse, the set it defines collapses to a singleton. From the discussion to
this point we have the following.

Proposition 11.7.1. Cayley defining sets. For a group G, two tensegrity Cayley graphs
Γ(c1, c2, s1) and Γ(c′1, c

′
2, s
′
1) are the same if and only if there is an automorphism α of G such

that D(α(c1), α(c2), α(s1)) = D(c′1, c
′
2, s
′
1).

We also insist that c1 and c2 generate G in order that the cable graph be connected, which
in turn is needed if there is any chance for the tensegrity to be super-stable.

Our catalogue is then organized so that for each group G there is one entry for each
equivalence class of triples of elements in G, where two triples are equivalent if they define
the same defining set. Furthermore it is natural to collect those triples together that define
the same cable graph. For each pair of elements c1 and c2 in G, define the cable defining set
as

C = C(c1, c2) = {{c1, c−11 }, {c2, c−12 }}.

Then we first consider the C-equivalence classes, where (c1, c2) is C-equivalent to (c′1, c
′
2) if

there is an automorphism α of G such that C(α(c1), α(c2)) = C(c′1, c
′
2). Then for each of
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these C-equivalence classes, there will be several equivalence classes of triples, each defining
a distinct tensegrity Cayley graph. Keep in mind, though, that c1 and c2 must generate G.

For example, for the group A4 there are only two C-equivalence classes, which are repre-
sented by {(134), (243)} and {(124), (14)(23)}. This amounts to saying that any two gener-
ators of A4 that are of order 3 are C-equivalent, and any two generators, one of order 3, the
other of order 2, are C-equivalent. Furthermore, these are the only pairs of generators of A4.
Each of these C-equivalence classes has 3 tensegrity Cayley graphs, making 6 in all.

For the dihedral groups, and from the discussion in Section 11.7.5, we see that the only
C-equivalence class for Dn, n = 3, 4, . . . is represented by {r, s}, since any two elements that
generate Dn are an automorphic image of r and s.

Table 11.1 gives the C-equivalence classes for the six non-dihedral groups we have con-
sidered.

11.7.7 Algorithm.

We have all the tools to describe the process that goes into creating the catalogue of symmetric
tensegrities. The goal and restrictions are as follows.

i.) The tensegrity has a symmetry group G isomorphic to one of Dn, n = 3, 4, . . . , A4, S4,
A5, A4 × S2, S4 × S2, or A5 × S2.

ii.) The group G acts transitively on the vertices of the tensegrity.

iii.) The group G acts freely on the vertices of the tensegrity. That is the only group element
that fixes any vertex is the identity.

iv.) The tensegrity has only two transitivity classes of cables, and one transitivity class of
strut.

With the above in mind, our goal is to display all those tensegrities that satisfy the conditions
above that have a positive semi-definite stress matrix with a 4-dimensional kernel. There is
choice of the ratio of the lengths of cables from the two transitivity classes, for example.
For many of our pictures, we have arbitrarily decided to make the two cable force coefficient
equal to each other.

Our method in creating the catalogue of pictures of the final tensegrities is as follows.

i.) List all the equivalence classes of tensegrity Cayley graphs as described in Section
11.7.6.

ii.) For each class, calculate the determinant polynomials for each of the irreducible repre-
sentations of G.

iii.) Calculate the winning representation, say j as described in Section 11.7.3.

iv.) If the winning representation is 3-dimensional, and the stresses that correspond to the
representation are ω1, ω2, ω−1, compute the 3-by-3 matrix Ωj = Ωj(ω1, ω2, ω−1).
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Group A4 S4 A5

C- {(134), (243)}∗ {(1423), (234)}∗ {(134), (23)(45)}∗
equivalence {(124), (14)(23)}∗ {(12), (143)}∗ {(15)(24), (14532)}
classes {(1423), (13)}∗ {(12354), (143)}∗

{(1423), (1324)} {(12354), (145)}
{(12354), (14235)}
{(15243), (15)(34)}∗
{(142), (354)}
{(14325), (14253)}

Group A4 × S2 S4 × S2 A5 × S2

C- {(124),−(13)(24)}∗ {−(1342), (34)} {−(13425), (23)(45)}
equivalence {(142),−(134)} {−(132),−(14)} {(23)(45),−(152)}
classes {−(243), (12)(34)} {−(1423), (1234)} {−(13425),−(23)(45)}

{−(234),−(12)(34)} {−(1423),−(142)} {(124),−(23)(45)}
{−(234),−(134)} {−(23)(45), (15342)}

{−(23)(45),−(13245)}
{(23)(45),−(14523)}
{(15243),−(142)}
{−(14)(25), (13524)}
{−(132),−(154)}
{−(132), (12354)}
{−(25)(34),−(123)}
{(354),−(123)}
{−(12543),−(123)}
{−(15342), (153)}
{−(13524),−(15342)}
{−(125),−(13524)}
{−(14253), (13254)}
{−(15243),−(14253)}
{(12435),−(13524)}
{−(12435), (253)}

Table 11.1: C-equivalence classes for the six non-dihedral groups we have considered.
Bear in mind that for each choice of cable graph, there are several choices of struts that
give distinct tensegrity Cayley graphs. The symbol {}∗ indicates that the cable Cayley
graph is planar. It turns out that this implies that the representation is almost always
determined by the cable graph only.
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v.) By construction Ωj is singular, and so has a non-zero (column) vector p1 such that
Ωjp1 = 0. Then the configuration for the desired tensegrity is given by

(ρj(g1)p1, ρj(g2)p1, . . . , ρj(gn)p1)

for all the elements g1, . . . , gn of G. The rule for determining which pairs of elements
determine cables or struts is given by the rule in Section 11.7.4.

11.7.8 Results for the dihedral groups.

We can give a complete description of the tensegrities for the conditions in Subsection 11.7.7.
We know from Subsection 11.7.5 and Subsection 11.7.6 that the only C-equivalence class

for Dn, n ≥ 3, is {r, s}. However, we must make a choice of a group element s1 corresponding
to a strut. It turns out that if s1 = rj for some j, then the resulting critical configuration will
be either 2-dimensional or it will be 4-dimensional. So we will concentrate on the case when
s1 = rjs, for j = 2, . . . , n− 1. We calculate local stress matrices for each representation, ψj,
for j = 1, . . . .

Ωj = ω1(ρj(1− rk) + ρj(1− rk)) + ω2ρj(1− s) + ω−1(1− rks)

= ω1

[
2(1− cos(2πj

n
)) 0

0 2(1− cos(2πj
n

))

]
+ ω2

[
0 0
0 2

]
ω−1

[
1− cos(2πjk

n
) − sin(2πjk

n
)

− sin(2πjk
n

) 1 + cos(2πjk
n

)

]
=

[
2(1− cos(2πj

n
))ω1 + (1− cos(2πjk

n
))ω−1 − sin(2πjk

n
)ω−1

− sin(2πjk
n

)ω−1 2(1− cos(2πj
n

))ω1 + 2ω2 + (1 + cos(2πjk
n

))ω−1

]
The local stress matrix for the representation ρ2 is [ω2 +ω−1], and so its determinant polyno-
mial is ω2 + ω−1. This one-dimensional representation must contribute to the kernel of Ω, if
we want to have a three-dimensional super stable tensegrity. So we assume that ω2 +ω−1 = 0
and thus ω2 = −ω−1. Then

Ωj =

[
2(1− cos(2πj

n
))ω1 + (1− cos(2πjk

n
))ω−1 − sin(2πjk

n
)ω−1

− sin(2πjk
n

)ω−1 2(1− cos(2πj
n

))ω1 − (1− cos(2πjk
n

))ω−1

]
.

So the corresponding determinant polynomial for the representation ψj is

∆j = 4(1− cos(
2πj

n
))2ω2

1 − (1− cos(
2πjk

n
))2ω2

−1 − sin(
2πjk

n
)2ω2
−1

= 4(1− cos(
2πj

n
))2ω2

1 − 2(1− cos(
2πjk

n
))ω2
−1.

The critical ratio of force coefficients that will imply that ∆j = 0 is when

(
ω1

ω−1
)2 = 2

(1− cos(2πj
n

))2

(1− cos(2πjk
n

))
= 4

sin(πj
n

)4

sin(πjk
n

)2
.

Equivalently, ∣∣∣∣ ω1

ω−1

∣∣∣∣ = 2
sin(πj

n
)2

| sin(πjk
n

)|
. (11.7.1)

The following Lemma from Connelly and Terrell (1995) finishes this classification for dihedral
groups.
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Lemma 11.7.2. For fixed n and k = 1 . . . n − 1, the minimum value of
sin(πj

n
)2

| sin(πjk
n

)|
for j =

1 . . . n− 1 occurs only when j = 1 or j = n− 1.

Proof. The statement of the Lemma is equivalent to the following inequality for j = 2, . . . , n−
2. ∣∣∣∣∣sin(πjk

n
)

sin(πk
n

)

∣∣∣∣∣ < sin(πj
n

)2

sin(π
n
)2
, (11.7.2)

and since
sin(πjk

n
)

sin(πk
n
)
> 1, the inequality (11.7.2) follows from the inequality∣∣∣∣∣sin(πjk

n
)

sin(πk
n

)

∣∣∣∣∣ ≤
∣∣∣∣∣sin(πj

n
)

sin(π
n
)

∣∣∣∣∣ , (11.7.3)

for j = 2, . . . , n− 2. By replacing j by n− j and k by n− k when necessary, it is enough to
show Equation (11.7.3) when 2 ≤ j ≤ n/2, and 1 ≤ k ≤ n/2. Using the fact that 0 ≤ t ≤ π/2
implies that 2t/π ≤ sin t ≤ t, we see that∣∣∣∣sin jk πnsin k π

n

∣∣∣∣ ≤ 1
2k
πn
π

=
n

2k
and

2j

π
=

2
π
j π
n

π
n

≤
sin j π

n

sin π
n

.

Thus Equation (11.7.3) holds when n/2k ≤ 2j/π, in other words when πn/4 ≤ jk.
For the remaining cases jk < πn/4 < n, write sin t = t Π∞m=1(1− t2

m2π2 ), which converges
absolutely for all real t. Thus

sin j π
n

sin π
n

=
j
n
π
∏∞

m=1(1−
j2

n2m2 )
1
n
π
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m=1(1−
1

n2m2 )
= j
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m=1,j-m

(
1− j2

n2m2

)
and

sin jk π
n

sin kπ
n

=
jk
n
π
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m=1(1−
j2k2

n2m2 )
k
n
πΠ∞m=1(1− k2

n2m2 )
= j

∞∏
m=1,j-m

(
1− k2j2

n2m2

)
.

The quotients are indexed over the positive integers m which are not divisible by j, i.e. j - m.
When jk < n, it follows that for each m,

0 <

(
1− k2j2

n2m2

)
<

(
1− k2

n2m2

)
.

This implies Equation (11.7.3).

This representation corresponds to the tensegrity where the c1 cables form the edges of
two convex polygons in parallel planes. An example is shown in Figure 1.2. The parameter
k refers to the number of steps between the end of the lateral cable and strut that are
adjacent to the same vertex. This analysis shows that for all values of k = 1, . . . , n − 1,
the corresponding stress matrix Ω has 4 zero eigenvalues, with all the rest positive. It is
easy to show that there are no affine motions preserving all the stressed directions. So these
tensegrity structures are prestress stable, and super stable.
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Figure 11.10: A tensegrity with Z4 symmetry (S4 in Schoenflies notation) in R3. The
nodes lie in two planes parallel with the paper, with the shaded nodes below. Nodes
1, 2, 3, 4 form one transitivity class of nodes; nodes 5, 6, 7, 8 form the other.

11.8 Non-transitive examples.

The essential observation in the calculations in this chapter is that the stress matrix is a
linear combination of permutation matrices on the nodes of the tensegrity. This is still true
for non-transitive and non-free case. We do one example of that sort in this section. Here
we use an example due to Grünbaum and Shephard (1975). This tensegrity has symmetry
group, in Schoenflies notation, S4, which is isomorphic to C4, the cyclic group of order 4, but
is generated by an improper rotation S4 in R3 - however, to avoid the confusion with the
permutation group, we will refer to the group as Z4. The action of Z4 is not transitive on the
nodes. There are two transitivity classes. Figure 11.10 shows the tensegrity in a top view.
Until you have a model in your hand, it is hard to believe that the crossings are as indicated.
Note that all the struts are disjoint.

The permutation of the vertices in this representaton is such that the generator g cor-
responds to the permutation g → (1234)(5678) in disjoint cycle notation. This is given by
the improper rotation by 90◦ on the vertices with those labels. More generally, consider the
two-by-two matrix

Ω(g) =

[
ω1 + ω2 + ω4 + ω3 − g2ω3 −g−1ω1 − ω2 − gω4

−gω1 − ω2 − g−1ω4 ω1 + ω2 + ω4

]
, (11.8.1)

where

ω1 = ω17 = ω28 = ω35 = ω48

ω2 = ω18 = ω25 = ω36 = ω47

ω3 = ω13 = ω24

ω4 = ω15 = ω26 = ω37 = ω48,

we consider each entry of Ω(g) to be in a G-algebra, and it is understood that an entry
without a G coefficient implicitly is multiplied by the identity group operation.

Let ρR to be the regular representation of the cyclic group of 4 elements Z4 as a set of
4-by-4 permutation matrices. Then the crucial observation is that Ω(ρR(g)) can be identified
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as the standard stress matrix for the tensegrity graph of Figure 11.10, and that Ω(ρj(g)) are
its components, where ρj, for j = 1, . . . , 4, are the irreducible representations of ρR. Since Z4

is an abelian group, all its representations are linear, but into the field of complex numbers.
The description of Ω(g) is obtained by choosing a particular representative node for each
transitivity class, in this case node 1 and node 8. Each force coefficient ωj contributes a
term of the form ωj(1 − gk) to Ω(g), where the identity term and the g term appear in the
appropriate column and row of Ω(g) depending on which pair of transitivity classes are being
connected and which element gk is needed to connect them using nodes 1 and 8 as base nodes.

The irreducible representations ρj of Z4 are such that g → 1, i,−1,−i, for j = 1, 2, 3, 4,
respectively. This gives the following by substituting into (11.8.1):

Ω(ρ1) =

[
ω1 + ω2 + ω4 −ω1 − ω2 − ω4

−ω1 − ω2 − ω4 ω1 + ω2 + ω4

]
,

which has rank 1 and is positive semi-definite as long as ω1 + ω2 + ω4 > 0. For ρ2 we get:

Ω(ρ2) =

[
ω1 + ω2 + 2ω3 + ω4 iω1 − ω2 − iω4

−iω1 − ω2 + iω4 ω1 + ω2 + ω4

]
,

which has determinant (ω1 +ω2 +ω4)
2 +2(ω1 +ω2 +ω4)ω3− (ω1−ω4)

2−ω2
2. Note that Ω(ρ4)

will have the same determinant, since it is the conjugate transpose of Ω(ρ2). For ρ3 we get:

Ω(ρ3) =

[
ω1 + ω2 + ω4 ω1 − ω2 + ω4

ω1 − ω2 + ω4 ω1 + ω2 + ω4

]
,

which has determinant (ω1 +ω2 +ω4)
2− (ω1−ω2 +ω4)

2, which is 0 only when ω1 +ω2 +ω4 =
±(ω1 − ω2 + ω4). So assuming, in addition, that ω2 6= 0, then ω4 + ω1 = 0.

We are looking for a tensegrity that is three-dimensional and has a positive semi-definite
stress matrix, which means that it must have at least four zero eigenvalues. It always happens
that Ω(ρ1) has at least one zero eigenvalue. If it has another, then ω1 + ω2 + ω4 = 0. If that
happens then Ω(ρ2) will have a negative value or have ω2 = 0, neither of which is possible.
So ω1 + ω2 + ω4 > 0. Thus there must be at least one other zero eigenvalue from Ω(ρ3)
which implies that ω4 + ω1 = 0. Finally, to pick up two more zero eigenvalues, we must
have ω2

2 + 2ω2ω3 = (2ω1)
2 + ω2

2. In other words, ω3 = 2ω2
1/ω2. So ω1 and ω2 can be chosen

arbitrarily as positive numbers, while ω4 = −ω2, and ω3 = 2ω2
1/ω2 determine the tensegrity.

In other words, there is a one-parameter family of three-dimensional super stable tensegrities.
It is also interesting to determine the configuration that corresponds to these tensegrities.

Nodes 1, 2, 3, 4 form a square when projected into the xy plane, say. This is the action of
the ρ2 and ρ4 representations. The ρ1 representation reflects the nodes about the xy plane.
Since ω4 = −ω1, the four nodes with the same colour are in the same plane parallel to the xy
plane. For all choices of the parameters, the {1, 8} cable remains perpendicular to the {1, 3}
cable, while the {1, 8} cable extends while fixing the 1, 2, 3, 4 nodes.

11.9 Comments.

There are several interesting things to observe from the pictures in the catalogue. When the
cable graph is planar, that is it has a topological embedding in the plane (or equivalently
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in the 2-dimensional surface of a sphere), then it appears that the cables in most of the
winning representations are edges of the convex polytope determined by its vertices. For
many of these examples that the winning representation is determined by the choice of the
cable generators.

On the other hand, for the fifth cable class for the group A5, both of the two irreducible
3-dimensional representations appear, seemingly at random. But for that cable class the
two generators are of order 5 and are in distinct conjugacy classes. Indeed, there is an
automorphism of A5 that interchanges the two degree 5 generators. So which representation
is the winner depends on the choice of the strut group element s1. One can see that the order
5 elements are in distinct conjugacy classes because the corresponding cables form a convex
pentagon in one case, and a self-intersecting pentagram in the other case.

The action of the automorphisms on the group A5 is important. When both of the
generators for A5 are of the same order, which turns out to be both of order 3 or both of
order 5, then there is an automorphism that interchanges the two generators. There are
two pairs of non-C-equivalent generators of order 5 and one pair of order 3. So when we
look for representatives for each of the C-equivalence classes of pairs of generators for the
group A5 × S2, there are three possibilities for each of the 8 C-equivalence classes of pairs
of generators for A5, plus or minus each generator, where at least one generator for A5 × S2
has a minus. But for the three cases of pairs of generators of order 3 and 5 for A5, when one
generator receives a minus, it is C-equivalent to the case when the other generator receives
a minus. This accounts for three cases that are C-equivalent. So there are 3 · 8 − 3 = 21
C-equivalence classes in all for A5 × S2.

When the cables form a pentagram, which is necessarily self-intersecting, it is possible
to create other tensegrities that are also stable with a positive semi-definite, maximal rank
stress matrix. The idea is to replace the pentagram with a pentagon, which will evidently
show up in the other C-equivalence class, or replace the pentagram with a star figure as
indicated below. One is simply adding positive semi-definite quadratic forms together to get
other positive semi-definite quadratic forms. See Figure 5.7. We apply that idea in Figure
11.11 and Figure 11.12. Note that it is not always possible to take a cable polygon and
replace it with a star figure as in the case of a dihedral tensegrity in Zhang et al. (2010).

Figure 11.11 shows an example of a super stable highly symmetric tensegrity, where one
of the cable orbits, in red, is a pentagram instead of a pentagon, as verified by a computer.
Figure 11.12 shows how to add the stresses of previously known super stable tensegrities. If
the stresses are scaled appropriately when cables and struts overlap, those stresses will cancel
in the sum. The end result is that the red cables are replaced by star figures.

Another situation is the superstability for star figures replacing at some of the convex
polygons for tensegrities with dihedral symmetry as in Connelly and Terrell (1995). In
that case, for example, when the pentagonal polygon is replaced by the self-intersecting
pentagram, the resulting tensegrity is definitely not superstable. So the argument above
will not work to imply that, when the star replaces the pentagon, the resulting tensegrity
is superstable. Nevertheless, in Zhang et al. (2010); Zhang and Ohsaki (2007, 2012), that
kind of star replacement and many others are shown, and their superstability and prestress
stability is determined.

For example for the tensegrity with 6-fold rotational symmetry in Figure 11.13, the top
is a star and bottom is a regular hexagon, and it is superstable. If the top is replaced by
a regular hexagon, it is also superstable as in Connelly and Terrell (1995). If the bottom is
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Figure 11.11: A super stable highly symmetric tensegrity in 3-space. The red and blue
members are cables, and the yellow members are struts.

replaced by a star to get two stars, the resulting tensegrity is not even rigid, since the whole
tensegrity breaks up into two pieces that rotate relative to each other about the line through
the two star vertices. This tensegrity is what is called divisible by Zhang and Ohsaki.
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Figure 11.12: If a super stable tensegrity incorporates a pentagram of cables (such as the
red cables of the tensegrity in Figure 11.11), then this figure shows that the pentagram
can be replaced with a star of five cables connected to a central node without affecting
the super stability. In (a), the pentagram of cables is shown as ¬, and the forces that
the rest of the tensegrity used to apply are shown as arrows. The tensegrity ® is super
stable. It is chosen with a symmetric stress, and then added this to ¬ cancelling the
overlapping cables. The tensegrity  is the result, where the five cables are connected
to a central node, carrying the same forces. In (c), tensegrity ° is shown to be super
stable as it can be formed by the superposition of five super stable (0,2)-tensegrities
(see Figure 5.8). In (b), tensegrity ® is shown to be the sum of the super stable
symmetrized Cauchy polygon ¯ as in subsection 5.14.2, and the tensegrity °, thus
showing that tensegrity ® is super stable.
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Figure 11.13: A super stable rotationally symmetric tensegrity with a star on the top
and a regular hexagon on the bototm.
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