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Abstract

Thin sheet materials of low bending stiffness but high membrane stiffness are
often corrugated in order to achieve improvements of several orders of magnitude in
bending stiffness with only minimal increases in weight and cost. If these corrugated
sheets are initially curved along the corrugations, much of this stiffness gain is
lost. In return, the sheets are then capable of significant elastic changes in shape
overall, including large changes in overall Gaussian curvature. These shape changes
are described here by non-linear and coupled kinematical relationships, which are
verified against experiment and finite-element simulations. It is found that gross
simplifications can be made about the large displacement behaviour of such shells
without a loss of accuracy.

1 Introduction

Corrugated sheets that are also curved along their corrugations can be transformed into a
remarkable variety of shapes simply by bending of the surface. Figure 1 shows an example,
made by vacuum-forming a sheet of 0.5 mm-thick High-Impact Polystyrene (HIPS). When
handled, the shell undergoes dramatic and specific changes in shape, deforming to a tube,
a bowl-shape or a saddle-shape in Figs 1b, 1c and 1d respectively.

There are several noteworthy aspects of this deformation. First, the shell accomplishes
these significant changes in shape without local stretching of the surface: such behaviour is
common for thin shell structures, where it is energetically favourable to deform by bending
rather than stretching. However, it is clear that an equivalent middle surface, or mid-
surface, of the corrugations experiences an overall extension, and that this extension also
couples to significant extra curving along the corrugations, as shown in Fig. 1b. Ordinary
shells do not behave in this manner, nor are they prone to the double bending indicated in
Figs 1c and 1d. Depending on the direction of bending across the corrugations, the shell
deforms either elliptically, so that the mid-surface acquires positive Gaussian curvature,
or hyperbolically into a saddle shape with negative Gaussian curvature. Although not
shown, it is difficult to bend the shell back on itself without damage, in the opposite sense
to the curved line of corrugations.

This simple structure may not prove attractive for use in traditional engineering struc-
tures, which are generally designed to be stiff. But they may usefully serve a new gen-
eration of so-called ‘morphing’ structures that offer both structural integrity and large
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(a) The initial shape, unidirectionally
curved along the corrugations.

(b) As the curvature increases, so the
material expands across the corruga-
tions.

(c) The shell can be inextensibly de-
formed to a positive Gaussian curvature,
(i.e. bowl-shaped) or

(d) to a negative Gaussian curvature, i.e.
saddle shaped.

Figure 1: Introducing the curved corrugated forms: these images are all of the same
shell, with no significant stretching of the plastic membrane between shapes.
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shape-change capabilities. In a previous study [1], we demonstrated that an uncurved
corrugated sheet can be made to morph: the corrugations are flattened transversely and
the sheet then deforms elastically to a tightly coiled cylinder. Here, the curved corru-
gated shell affords extra deformation modes, thereby increasing the novelty and range
of potential morphing behaviour, which this paper attempts to capture via a compact
geometrical model: the prediction of the required forces is the subject of work being
performed elsewhere.

The success of our simple model is underpinned by four key assumptions. First, the
material is isotropic and remains linear elastic due to the relative thinness of shell despite
the large displacements: none of the physical models was ever permanently deformed after
severe testing, thus indicating that induced strains were small. Second, the process of han-
dling the open shell without overly constraining the edges leads to natural inextensibility
under large displacements. This is not a controversial assumption if the shell is relatively
thin and the boundary conditions enable bending to dominate over most of the shell. In
practice, an extensible boundary layer must develop near the edge to define the boundary
conditions precisely, but the relative thinness of shell and its openness (unlike corrugated
fully-closed bellows or Chinese lanterns) ensures that this is a comparatively narrow layer,
which does little to affect the character of the bulk deformation addressed in this study.
The justification of this assumption can be traced to the outcome of a discussion between
the earliest pioneers of analytical shell theory: and the interested reader is referred to the
“Rayleigh-Love” controversy reported historically by Calladine [2]. Third, local buckling
of the shell is neglected on the grounds that we can deform the shell without precipitating
local buckling, for example, when bending across the corrugations, the shell can also be
stretched in the same direction to eliminate large compressive stresses on the underside.
Finally, the overall deformation is described in terms of the performance of the equivalent
middle surface. This necessitates a careful consideration of how the inextensible bending
of the local shell influences the global deformation mode. Thus, there is a hierarchy of
deformation, whose analytical relationships are informed by the simplest interpretation
of practical behaviour but without being inaccurate, as our theoretical predictions will
show.

1.1 Outline of this paper

Section 2 defines our initial system, describing the corrugations and the coordinate systems
used to describe them. Section 3 explains how a curved corrugated shell can exhibit shape
changes not possible from a ‘conventional’ uncurved corrugated sheet, and relates their
stretching across the corrugations to their curvature. Section 4 tests this coupling relation
against measurements of a vacuum-formed plastic shell, and also against a finite-element
analysis. This exercise shows an excellent agreement. It validates the assumptions made
about the geometric behaviour and paves the way for a full set of compatibility relations
in Section 5, which is then compared to a more general behaviour of prototypes in Section
6. Finally, conclusions are drawn in Section 7.

2 Definition of coordinate systems

Figure 2 shows a three-dimensional view of a corrugated shell and a cross-section through
a typical corrugation. It has a local right-handed coordinate system with axes x, y and z.
Also shown is the equivalent mid-surface, or average surface, of the corrugations, which
is defined by the coordinate system of X, Y and Z: note that x and X are both aligned

3



(a) A typical corrugated shell. Looking at a specific strip
along the corrugation, shaded black, the strip has some cur-
vature of radius 1/κXX . This curvature can be split into a
component of curvature in the plane of the strip, of radius
1/κg, and an out-of-plane component, 1/κxx.

Y

Z
yz

κxx

κXX κg

θ

(b) A section through the corrugations, showing the coordinate system used by this
paper. (x,y,z) is a local right-handed coordinate system in the shell: (X,Y ,Z) is
a coordinate system in the equivalent mid-surface, or average surface, of the sheet,
shown as a dashed grey line. Both x and X are aligned along the corrugations. The
curvatures shown in Fig. 2a are represented by the vectors κXX , κxx and κg. Each
length is the magnitude of the curvature (i.e. the inverse of the radius of curvature),
and the curvature direction is normal to the tangent of the line and lies in the plane of
the curvature.

Figure 2: A typical corrugation, showing the coordinate systems and curvature defini-
tions of this paper. In the X direction, the sheet has an upwards curvature, κXX . A
strip at angle θ to the vertical is shaded black, small in the y direction but running the
full length of the sheet in the x direction. κxx is the out-of-plane curvature of the strip,
i.e. its shell curvature, while κg denotes the geodesic curvature of the strip: this is the
curvature that the strip’s centreline would follow if it were laid on a flat surface. These
two curvatures are mutually perpendicular, and are the components of the vector, κXX .

4



along the corrugations. The mid-surface has some curvature in the X direction, κXX ,
again defined in Fig. 2. The corresponding radius of curvature, 1/κXX , lies in a vertical
plane, and two additional planes are also shown, which contain further radii pertinent
to the curving properties of a thin strip running along the shell in the x direction, now
described.

The strip is taken to be thin in the y-direction and is inclined to the vertical at an
angle θ. The centreline of this strip must, like the mid-surface, have curvature κXX . The
strip’s own out-of plane curvature is, however, in another direction, marked by κxx. The
difference between these two is the geodesic curvature of the strip, denoted by κg: or, if
κXX is shown as a vector, it has orthogonal components of κg and κxx. Note that κg is
the curvature that the strip centreline would have were the strip removed from the rest of
the shell and laid on a flat surface; and this curvature lies in the x− y plane of the shell.

In this paper, it is assumed throughout that the radius of curvature of the shell, 1/κXX ,
is much greater than the amplitude of corrugations. Therefore, as the corrugations are
considered as a large number of thin strips, all of these strips can be assumed to have
exactly the same global curvature κXX , even though they do not all lie exactly on the
mid-surface of the shell.

In addition to the conventional understanding of strain as change in length with regard
to the initial length, we consider a property related to strain, but independent of whatever
the initial shape of the shell was: referred to as ξY Y , this property is the strain relative
to the Y -direction length of the shell when the corrugations are completely flattened out,
irrespective of their initial cross-sectional profile. In the terms of Fig. 2, it can be defined
as the average value

ξY Y =

(
dY

dy

)
− 1 (1)

where the overbar () denotes average. Note that throughout, we assume that all defor-
mations are uniform, that is, independent of location on the shell, which is later shown
to be reasonable when compared to observed behaviour.

3 Unidirectional bending behaviour

One purpose of corrugating sheets is to increase their bending stiffness along the corruga-
tions, since such bending must then involve either large stretching and compressive strains
in the top and bottom surfaces or total buckling of the corrugations if the cross-sectional
shape cannot distort. This section shows that, when the shell edges move freely, the
cross-section can undergo transverse bending, which couples to a change in the local and,
hence, global curvature along the corrugations. Physically, the local Gaussian curvature
must be conserved under the local inextensibility assumption and, thus, a flattening of
the cross-section is accompanied by the mid-surface of shell progressively tightening as
long as it is initially curved.

Following the definitions in Section 2, we consider a thin x-wise strip of material, at an
angle θ to the vertical, with shell curvature, κxx, and geodesic curvature κg. Importantly,
κxx and θ vary as the shell is deformed but κg is fixed by the construction and local
inextensibility of the shell. The initial shape is shown in perspective view in Fig. 3a. The
corrugations are then given a tighter curvature along their corrugations, Fig. 3b, and the
overall curvature of the strip, κXX , has increased. Since κg is fixed, so θ increases, i.e.
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Figure 4: Simplified to the most basic corrugation shape, a triangular wave.

the strip of material rotates so that κxx increases, maintaining the direction of κXX . In
other words, when the overall curvature of the corrugated sheet, κXX , is varied, θ and
κxx also vary at a given point of geodesic curvature κg according to

κg = κXX cos θ κxx = κXX sin θ (2)

As these x-wise strips become very narrow in the limit, the shell can be considered as
being continuously curved in both the x and y directions, so that the y− y curvature can
be defined as

κyy =
∂θ

∂y
(3)

For a smooth shell, θ and κXX are initially continuous across the corrugations, and there-
fore, so is κg. If κXX remains continuous throughout deformation, θ must also remain
continuous, and the curvature κyy always has a finite value. Thus, changes in κXX are
achieved without stretching, but by changes in corrugation curvature, κyy.

3.1 Unidirectional bending in triangle-wave corrugations

Figure 4 applies the above relations to the simplest corrugation; a sawtooth, or triangle,
wave. A single corrugation is created by hinging together at their edges two, initially
curved, membrane strips. As before, two additional coordinates, X and Y , lie in the
equivalent mid-surface of the corrugated sheet. The stretching and bending of the entire
sheet are then easily calculated from:

ξY Y = sin θ − 1 (4)

κXX = κg sec θ (5)

where ξY Y refers to the strain relative to the length of the mid-surface when the corruga-
tions are completely flattened out in the Y direction, defined by Eqn 1, and not to strain
relative to some arbitrary initial shape, as noted before. We define the initial shape to
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Cross-corrugation strain ξY Y
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Figure 5: Strain–dimensionless curvature plots for various initially semi-elliptical corru-
gations (calculated numerically, with each corrugation split into 50 segments) and for a
triangular-wave corrugation (calculated analytically). h/w is the ratio of height to width
for a quarter corrugation in the locked state: all except the triangular wave are shown in
this locked state.

have initial curvature, κXX0 , and initial strain, ξY Y0 . The relationship between ξY Y and
the conventional engineering strain relative to the initial shape is thus:

engineering Y − Y strain =
ξY Y − ξY Y0

1 + ξY Y0

(6)

It is useful to rearrange Eqns 4 and 5 to eliminate θ, and to give a coupled relationship
between the global strain, ξY Y , and curvature, κXX in terms of the fixed property, κg:

ξY Y =

√
1−

(
κg
κXX

)2

− 1 or κXX =
κg√

1− (1 + ξY Y )2
(7)

The limits of behaviour become evident from these equations: ξY Y cannot be less than
−1, the point at which the corrugations are completely folded up and κXX reaches its
minimum value of κXX = κg; however, ξY Y must always be negative, lies in the range
from -1 to zero and κXX goes to infinity as ξY Y tends towards zero.

3.2 Unidirectional bending in smooth corrugations

The coupled relationships between ξY Y and κXX in Eqn 7 are straightforward for the
given simple sawtooth corrugation: this section compares their performance to the be-
haviour of those obtained for a more general, smoothly corrugated profile. An equivalent
set of closed-form expressions is not possible for a general corrugated profile. Instead, the
cross-section must be reduced to a discrete number of curved strips, in order to approx-
imate by numerical solution the resulting change in shape. In the process, the scale of
discretisation required for sufficient accuracy presents itself naturally during solution, as
will be described.

For any generic corrugation profile, as κXX is reduced, a length-wise strip of corruga-
tion may rotate sufficiently so that θ = 0. Although over the rest of the corrugation, θ
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still has some non-zero value, there can be no further increase in κXX for a fixed κg over
the strip where θ = 0. Such behaviour defines a lower limit for κXX without the strain
reaching ξ = −1: when one part of the corrugation has become completely ‘vertical’,
θ = 0, the shell has ‘locked’, it cannot flatten any more in the X −X direction, and κXX
has reached a minimum. However, there is no upper limit to κXX : as the corrugations
are completely flattened out, such that θ tends to π/2, κXX tends to infinity.

We must now choose some initial corrugation profile to study. Two mathematically
expedient forms are a sinusoid and a semi-elliptical profile made of alternating half-ellipses.
Because a semi-elliptical profile already has vertical parts, it is therefore locked from
the outset whereas a sinusoid is not, and the latter commends itself as a natural initial
shape. But a convenient result presents itself, as proven in Appendix A: the locked
shape of an initially sinusoidal corrugation is exactly a semi-elliptical corrugation: as a
corollary, the same profile initially must, upon reverse deformation where the cross-section
is flattened, occupy an exactly sinusoidal profile at some stage later in the deformation.
In the process, it is found that the relationship between an initial profile and its locked
shape is independent of the initial value of κXX .

The particular variation of ξY Y with κXX is found by considering a quarter wave-
length of corrugation sub-divided into large number of strips. Each strip has the same
κXX , assuming, as stated in Section 2, that the radius of curvature, 1/κXX , is much
greater than the amplitude of the corrugations. A quarter circle is first divided into
discrete segments of equal arc-lengths: these are then shortened in the y direction to form
an elliptical profile of the desired aspect ratio, before the actual arc-length, δs, and initial
angle, θ0, of each segment is calculated. From Eqns 2, the final angle θ of each segment
is related to the initial curvature, κXX0 , and final curvature, κXX , by

cos θ =
κg
κXX

=
κXX0 cos θ0

κXX
(8)

As the angle, θ, of each segment is known, the strain at a given κXX can be obtained by
summing the contribution from strips of width δs:

ξY Y =

∑
sin θδs∑
δs

− 1 (9)

The above can be re-cast as a continuous integral as follows, performed between limits
from s = 0 to s = λ, where λ is the material wavelength of each corrugation, i.e. the
width of each corrugation when flattened out so that ξY Y = 0. The geodesic curvature,
κg, varies in a known manner across the corrugations such that κg = κg(s), and

ξY Y =
1

λ

∫ λ

0

sin θds− 1 =
1

λ

∫ λ

0

√
1−

(
κg(s)

κXX

)2

ds− 1 (10)

While the variation with κXX of ξY Y becomes known, the performance between differ-
ent initial shapes must be compared in a meaningful way. A convenient point is at small
ξY Y , where the results for all shapes are scaled to match the triangular-wave corrugation,
and the corresponding results for curvature are then made dimensionless with respect
to the ‘locked’ curvature of the triangular-wave corrugation. This ‘locked’ curvature is
exactly the geodesic curvature for the triangular-wave corrugation, which we refer to as
κgTri

, so that the dimensionless curvature κ̂XX is given by
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Figure 6: Log-log strain-curvature plots for various corrugations, as in Fig. 5. All terms
are as in Fig. 5, but a dashed line has been added representing the equation 2ξY Y κ̂2

XX =
−1, to which all lines tend at large κ̂XX , which is to say small negative ξY Y .

κ̂XX =
κXX
κgTri

(11)

The dimensionless solutions for a range of semi-elliptical corrugations are shown in Fig. 5.
Figure 5 appears to show a very close correlation between the various shapes, clearly

implying that the simple, fully analytical triangular-wave solution remains usefully valid
for shapes that are quite different from being a triangular-wave. This is particularly true
at high κ̂XX and small ξY Y . At larger, more negative ξY Y , the shape curves also appear
to be close, but their shallow gradients are deceptive in that, for a given value of κ̂XX ,
the variation in ξY Y between curves is of the order of 20 %.

A logarithmic version of this plot is furnished in Fig. 6, and demonstrates that at
small strains, the relationship tends to

2ξY Y κ̂
2
XX = −1 (12)

This equation can also be derived from Eqns 4 and 5 by approximating ξY Y to be relatively
small.

4 Validation of unidirectional bending models

Equation 10 gives a relationship between strain and curvature that depends upon the
fixed shape property of the formed shell κg(s), which is compared in this section against
measurements of a physical prototype and a finite-element analysis.

4.1 Plastic prototype

A prototype shell in plastic was constructed by vacuum forming: Fig. 7 shows the
computer-machined mould. The plastic material is High-Impact Polystyrene (‘HIPS’),
gloss-coated on one side and with an initial nominal thickness of 0.5 mm.
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Figure 7: The mould used for vacuum-forming the plastic shell. This was produced on
a computer-controlled milling machine.

In order to compare its stretching across corrugations, ξY Y , with along-corrugation
curvature, κXX , the shell must be held such that a force in the Y direction is applied
without any significant load in the X or Z directions, despite the large deflections which
accumulate in both those directions as κXX changes. To enable this, the shell was mounted
in an Instron displacement-controlled load testing rig by long wires. When in tension,
these wires only transmit force along their own axis. They are fashioned to be as long as
the rig allows, so that as the shell coils up, the wire rotates imperceptibly, and the axial
force is maintained in the Y direction. Fig. 8 demonstrates that this holds for most of
the deformation, being less valid as the corrugations become almost flat where ξY Y → 0
and κXX becomes large.

The strain, ξY Y , was calculated by measuring the length of the mid-surface over six
corrugations and dividing this by the material length, the latter being found by measuring
the width of a flattened thin strip cut from the shell after testing. The curvature, κXX ,
was calculated from the chord subtended by the shell in the X direction and its arc length
in the same direction, assuming a cylindrical profile. Three separate tests were performed
on three separate shells, with the following variations in measurement method:

(i) The Instron’s displacement value gave the extension of the shell in the Y direction:
a ruler was used to manually measure the chord of the shell in the X direction.

(ii) A digital camera was directed squarely at the shell and photos taken at 2 mm
intervals of extension. By manually picking out the coordinates on the image of
various points on the corrugations, the changes in lengths could be calculated as
ratios of the original lengths, which had been measured by ruler.

(iii) As (i), but a ruler was used to measure the length of the shell in the Y direction,
so that there could be no error from the settling of the cables.

Results and discussion are given in Section 4.3.

4.2 Finite element simulation

The analysis was developed to mirror the plastic prototype in terms of its material prop-
erties and initial geometry, and was performed using the commercially available software
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Figure 8: These images show the shell under deformation, at ξY Y values of (left-to-right)
−0.25, −0.12 and −0.005. The shell is mounted vertically in a displacement-controlled
load-measuring rig, to which it is attached by the wires visible as bright lines on the
photographs. These wires are long enough that rotation of the wires remains minimal as
the shell deforms, so the forces are approximately purely vertical. In the highly deformed
state (right), the wires are no longer transmitting the force perfectly vertically, and κXX
is no longer uniform in the Y -direction of the shell.

package, ABAQUS [3]. A Young’s Modulus for the material of 1.47 GPa is given from tests
conducted on samples of the material that had been through the vacuum-forming process:
these will be significant when constitutive relations for the shell are being produced, but
do not matter here. The thickness of the finite element model is taken to be 0.3 mm,
while that of the prototype varied from 0.2 mm to 0.4 mm due to the manufacturing
process. Again, this variation in thickness affects stiffness relations but not the geometric
properties considered here, as long as the assumption that the shell is thin remains valid.
A less robust assumption is that of a linearly elastic behaviour. In practice, the elastic
modulus softens at high deformations as the HIPS begins to undergo plastic deformation,
crazing, and creep, none of which are included in the finite element simulation.

The shell is rendered as a quarter model using four-noded S4F5 shell elements, which
interpolate independently the positions of the corner nodes and the normal vector to the
shell. A large-displacement, geometrically non-linear static analysis is then performed
according to the following boundary conditions. The bottom edge is constrained to move
in its own plane, which is a stationary plane: the top surface is likewise constrained in
plane, but that plane is then displaced upwards. The right-hand edge is free, as in the
experiment, but the left edge is subjected to a symmetric boundary condition, since the
shell in the finite-element simulation is one quarter of the experimental shell. There is no
need to apply symmetry conditions to the top or bottom edges: they are each constrained
to move in their own plane, and the upper plane is then displaced upwards to stretch the
shell.

Figure 9 shows the initial and deformed shapes where the global strain and curvature
of the middle surface are calculated from a cylinder that is fitted to the computational
results, in a similar manner to the physical tests described in the previous section: the
vertical displacement of the top edge yields ξY Y and the absolute position of the right-hand
edge gives the chord length in order to calculate κXX .
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Figure 9: Finite element analysis of the shell. On the left is the initial, unstressed
form: on the right, the stressed form. The lower edge was constrained not to move out of
its plane, but movement within its plane was free. The left-hand edge had a symmetry
constraint. The upper edge had an upwards displacement rate applied to it, but was
unconstrained in other directions.

4.3 Results and discussion

Figure 10 presents the analytical results following the numerical integration method de-
scribed in Section 3.2, the finite element analysis output and the measurements from the
physical experiment. In addition, it presents the result for a triangular-wave corrugation,
which has the very simple closed-form expression given in Equation 7. This requires the
selection of a suitable value of κg for the triangular-wave corrugation: the value was cho-
sen so that the curve met the experimental and FE results at the initial state, i.e. the
lowest ξY Y . Owing to this matching of the initial conditions, it was more sensible to plot
the conventional engineering strain of the shell relative to its initial state, rather than the
strain, ξY Y , of mid-surface length to the material length in the corrugations: recall that
the relation between ξY Y and the engineering strain is given in Eqn 6.

The correlation between these results is very good, such that it is hard to distinguish
the results, even for the triangular-wave model. At larger deformations, the plastic shells
deform a little more than expected due to the stretching and possible creeping of the
plastic shell. It can be concluded therefore that the assumptions hold well, namely, that:

(i) the local shell deforms purely in bending: stretching in the material is not significant,
as demonstrated by the correlation between the geometric analytical model and the
finite element simulation;

(ii) nonlinearities in the material are not significant, as shown by the correlation between
the finite element simulation and experiment;

(iii) the radius of curvature 1/κXX is sufficiently much greater than the amplitude of
corrugations; and

(iv) the relationship between cross-corrugation strain and along-corrugation curvature
of an initially triangular-wave corrugation is only negligibly different from that of a
sinusoidal corrugation.

13



Mid-surface strain εY Y
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Figure 10: Plot of mid-surface curvature κXX in m−1 against mid-surface engineering
strain, Eqn 6. The experiment began at the initial strain and curvature shown at the
leftmost edge of the curves, in which state the shell was unstressed. The finite-element
simulation and both analytical models took this as their initial point. The FE analysis
and the ‘exact’ analytical expressions began from a sinusoidal shape at this point, which
matched the plastic shell tested: the simplified model assumed a triangular-wave corru-
gation. The tailing-off of the experiment at high κXX corresponds to stretching of the
plastic shell.

In addition, the results validate the methodological assumption in Section 4.1 that the
long wires do not rotate sufficiently to change the direction of axial force in the wires
acting on the sheet, except at very high values of κXX .

5 Bidirectional bending

The uni-directional bending in the previous section enabled validation of the coupling
relationship between κXX and ξY Y , originally proposed in Section 3. As noted in Section 1,
the shell can be deformed so that the mid-surface of the corrugated shell becomes doubly
curved. In this section, we aim to qualify this behaviour by introducing κY Y , the cross-
wise curvature of the same mid-surface alongside κXX so that changes in its Gaussian
curvature, K, can be quantified using a well-known compatibility statement; moreover,
we formally calculate κY Y assuming that K is prescribed in advance, to confirm results
using physical models. Since this section is concerned with physically compatible shape-
change rather than with stiffness, certain stretching/bending strains can be defined to be
free with effectively zero stiffness and others to be fixed with infinite stiffness; and, for
the initial discussion, we need to refer to conventional engineering strain, denoted by ε.

Since stretching in the X direction or X-Y shear must involve stretching of the mem-
brane, εXX = εXY = 0. In the Y direction, the corrugations can flatten out and cause
the homogenised mid-surface to stretch, so εY Y is free. The curvatures, κY Y and κXY ,
are also free; κXX is free but, as noted above in Section 3, it is coupled to the transverse
strain, where both are generally a function of θ and κg, as in Eqn 10. However, nothing
has been said about their relationship to the cross-wise curvature, κY Y , and it is necessary
to introduce one simplifying assumption, namely: the relation between ξY Y and κXX is
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independent of the variation of κY Y . This is valid if κY Y has a negligible effect on the
corrugation profile, i.e. if the radius of curvature 1/κY Y is significantly greater than the
amplitude of the corrugations, as per κXX .

The Gaussian curvature, K, of a shell is the product of the two principal curvatures
κ1 and κ2, and is equal to the solid angle subtended per unit area of the shell. It can also
be defined from the local membrane strains and their spatial rates of change. Calladine
([4] pp.154) derives this relationship for small strains; large strains affect the area over
which solid angle is measured, and his equation, when appropriately modified for large
strains (e.g. see pp.178), becomes

K =

[
2
∂2εXY
∂X∂Y

− ∂2εXX
∂Y 2

− ∂2εY Y
∂X2

]
(1 + εXX)−1 (1 + εY Y )−1 (13)

Several of these terms have already been defined to be zero, and replacing εY Y with ξY Y
via Eqn 6, then

K = −∂
2ξY Y
∂X2

(1 + ξY Y )−1 (14)

From Eqn 4, ξY Y and its derivatives are

ξY Y = sin θ − 1
∂ξY Y
∂X

=
∂θ

∂X
cos θ

∂2ξY Y
dX2

=
∂2θ

∂X2
cos θ −

(
∂θ

∂X

)2

sin θ (15)

and substituting these into Eqn 14,

K =

(
∂θ

∂X

)2

− ∂2θ

∂X2
cot θ (16)

Here, for simplicity, shells with no twist are considered, so that κXY = 0; the principal
curvatures are κXX and κY Y , such that

K = κXXκY Y (17)

∴ κY Y = κ−1
g cot θ

[(
∂θ

∂X

)2

− ∂2θ

∂X2
cot θ

]
(18)

All other bending and stretching strains are zero. Thus, the shape of mid-surface is
defined, beginning with κg(X,Y) and θ(X,Y). Note that κg is a physical property of the
model, so that shape change comes through manipulation of θ.

6 Validation of models of bidirectional bending

This section uses the model of the equivalent mid-surface and compares its results, in a
crude fashion, to paper models. These paper models use triangular corrugations for they
are simple to make and their average geodesic curvature is constant over the whole shell,
equal to 3.5 m−1 and equivalent to a radius of 28 cm. These paper shells have a square
planform of 0.3 m by 0.3 m.
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(e) Negative K: a0 = 0.2, a1 = 0, a2 = 1.5

Figure 11: Comparison of the physical model (left) to the analytical model (right) with
quadratic variation of θ with X, with coefficients an as described by Eqn 19. These
coefficients were chosen by trial and error to match the observed behaviour. They have
been made dimensionless with respect to the length of the shell. On the computer plots,
colour denotes the angle θ in radians, as per the colourbars on the right.
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The simplest variation in θ to produce interesting results is a polynomial of order n
in the X direction; by not varying in the Y direction, the triangular corrugations are
uniformly compressed, or expanded, along a given transverse line during deformation:

θ =
m∑
n=0

anX
n = amX

m + am−1X
m−1 + . . .+ a2X

2 + a1X + a0 (19)

Figure 11 compares the physical models and this mathematical model, using a poly-
nomial for θ of order 2 or less, i.e. an = 0 for n > 2. In other words, this shell has the
shape properties

θ = a2X
2 + a1X + a0 (20)

K = (2a2X + a1)2 − 2a2 cot θ (21)

θ must lie in the range 0 ≤ θ ≤ π/2, so cot θ is always positive. So, if θ varies linearly
(a2 = 0, Fig. 11c), its Gaussian curvature, K, must be positive, but a positive a2 can give
negative K.

In Fig. 11, these equations are used to describe the shape change of a simulated mid-
surface, which is compared to the paper shell. Values of an have been chosen by trial
and error such that the surfaces from the simulation match as closely as possible the
mid-surfaces of the shell when photographed in various configurations. Nonetheless, the
agreement is very good despite the limited specification of θ, and the essential behaviour
is captured.

7 Conclusions

It is generally known that a shell structure cannot undergo a change in Gaussian curvature
without significant stretching. In this study, it has been shown that a corrugated shell
with some initial curvature across the corrugations can experience very large changes
in the Gaussian curvature and shape of its mid-surface without local stretching. Such
behaviour may prove useful in the design of novel morphing surfaces, for it extends the
range of kinematical performance to that not obtained with conventional shells. The
shape change of shells of any complexity can be described using the compact analytical
model presented in Section 5, which assumes that the relation between ξY Y and κXX is
independent of the variation of κY Y . It has also been shown that a simpler triangular
wave corrugation can provide a reasonably accurate description of the geometric behaviour
of shells of a continuous corrugation wave. The next step in this work is a study of the
structural mechanics of these shells, and this is the subject of ongoing work by the authors.
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A Locking of sinusoidal corrugations

This section demonstrates that, when a sinusoidally-corrugated sheet curved along its
corrugations ‘locks’ in the fashion shown in Section 3, the corrugations adopt an exactly
semi-elliptic shape. In other words, a sinusoidally-corrugated shell and a shell with semi-
elliptic corrugations are the same shell, in a different state of inextensional deformation.

Consider a generic sinusoidal corrugation of trough-to-peak amplitude, A, and wave-
length, Λ, as shown in Fig. 12a. A particular element of material is located at a distance,
s, along the material path of the corrugation from the origin, at coordinates (Y ,Z), and
making an angle Ψ to the Y -axis. It then deforms to the locked situation in Fig. 12b.
The same element is now at position (y,z), making an angle ψ to the y-axis. Since the
material is assumed not to stretch, s remains unchanged. This section will assume that
the locked shape is elliptical, and then prove this to be so.

The initial, sinusoidal, corrugation is described in Y -Z space as

Z =
1

2
A

(
1− cos

2πY

Λ

)
(22)

where Ψ is given by

tan Ψ =
dZ

dY
=
Aπ

Λ
sin

2πY

Λ
(23)

The path length, s, along the corrugations from the origin to this point (Y ,Z) is the
integral

s =

∫ Y

0

√
1 +

(
dZ

dY

)2

dY (24)

=

∫ Y

0

√
1 +

(
Aπ

Λ
sin

2πY

Λ

)2

dY (25)

=
Λ

2π
E

(
2πY

Λ
−
[
πA

Λ

]2
)

(26)

where E(φ|m) is an incomplete elliptic integral of the second kind [5].
The next step is to find the ‘locked’ shape: the final angle, ψ, can be determined from

the initial position (Y ,Z). Recall from Section 3 that for any specific material point,
κ sinψ is constant, see Eqn 2). The curvature along the corrugations is uniform over the
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(a) The corrugations in their initial sinusoidal
configuration, with amplitude A and wave-
length Λ.

O

ψ

y

z s
ry

rz

(b) The same corrugations, to the same scale,
when deformed to their ‘locked’ configuration.

Figure 12: An initially sinusoidal corrugation (12a) and its ‘locked’ shape (12b). This
appendix proves that the latter shape is composed of half-ellipses, of radii ry and rz.

shell at any specific point in time. Therefore, the ratio at any specific material point
between the initial curvature and final curvature is uniform over the whole shell, and so
the ratio between sin Ψ and sinψ is, likewise, uniform over the whole shell. The curvature
change at ‘lock’ is controlled by the curvature change at the steepest point, where ψ goes
to 90 ◦ and sinψ goes to 1. The ratio at any point between sinψ and sin Ψ is simply the
maximum value of sin Ψ, which occurs at 2πY/Λ = π/2, so that

sinψ =
sin Ψ

max(sin Ψ)
(27)

Using the general identities that

sin θ ≡ tan θ√
1 + tan2 θ

tan θ ≡ sin θ√
1− sin2 θ

(28)

it is found that

sinψ =

Aπ
Λ

sin 2πY
Λ√

1+(AπΛ sin 2πY
Λ )

2

Aπ
Λ√

1+(AπΛ )
2

=

√
1 +

(
Aπ
Λ

)2
sin 2πY

Λ√
1 +

(
Aπ
Λ

sin 2πY
Λ

)2
(29)

leading to an expression for the locked angle ψ,

tanψ =

√
1 +

(
Aπ
Λ

)2
sin 2πY

Λ√
1 + sin2 2πY

Λ

(30)
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An interesting result is that the locked shape is a function of the initial shape only, and
is independent of the initial X-X curvatures, κxx and κg.

To verify that this coincides with an elliptical corrugation, it is necessary to find ψ
in terms of the material’s final position (y,z). The first quarter-corrugation of a generic
corrugation is defined by the equation below, in terms of y and z and with the material
having rotated to angles ψ:

(
1− z

rz

)2

+

(
y

ry

)2

= 1 (31)

tanψ =
dz

dy
=

rz
ry
· y
ry√

1−
(
y
ry

)2
(32)

where ry and rz are the horizontal and vertical radii of the ellipse, as shown in Fig. 12b.
The arc length s is, again, the integral over

s =

∫ y

0

√
1 +

(
dz

dy

)2

dy (33)

=

∫ y

0

√√√√√√1 +

(
rz
ry
· y
ry

)2

1−
(
y
ry

)2 dy (34)

= ryE

(
arcsin

y

ry
1−

[
rz
ry

]2
)

(35)

In order to demonstrate that this is the locked shape of the sinusoidal corrugations,
values of ry and rz are found such that Eqns 30 and 26 are equivalent to Eqns 32 and 35
respectively. This occurs when

ry =
Λ

2π

(
A

2

)2

rz =
A

2

√
1 +

(
Λ

Aπ

)2

(36)

with a relationship between the initial and final positions

y =
Λ

2π
sin

2πY

Λ
z = Z

√
1 +

(
Λ

Aπ

)2

(37)

Thus, a sinusoidal corrugation has been shown to lock to an elliptical corrugation. Like-
wise, starting with an elliptically corrugated sheet that is curved in the X direction, which
is then coiled up in the X direction, the corrugation profile will deform, and will, at one
unique instant, take an exactly sinusoidal profile.
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