Current Perspectives and New Directions in Mechanics,
Modelling and Design of Structural Systems — Zingoni (ed.)
© 2022 Copyright the Author(s), ISBN 978-1-003-34844-3

Understanding tensegrity with an energy function
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ABSTRACT: The use of a simple quadratic ‘energy function’ is explored to show how it can be useful in
understanding the behaviour of structures that are stressed. The energy function is quadratic in the coordinates
of the structure, and is able to correctly capture the stiffness of inextensional modes of deformation that are
found in, for instance, tensegrity structures. The paper shows how the quadratic energy function can be used
to derive a ‘stress matrix’ that is useful both for form-finding, and for checking stability.

1 INTRODUCTION

In this paper, we explore how a simple ‘energy func-
tion’ that is a quadratic in nodal coordinates can be
useful in understanding the behaviour of structures
that are stressed. In particular, this simple energy
function Q can capture the additional stiffness that
a pin-jointed truss structure has due to its prestress.
In most circumstances, this additional stiffness is of
negligible order compared with the stiffness associ-
ated with the stretching of members, which is the
stiffness that is captured by the traditional assump-
tions of structural mechanics. However, some struc-
tures have modes of deformation where, to a first-
order approximation, there is no extension of any
member — infinitesimal mechanisms. Traditional
structural mechanics analysis assigns such modes
a zero stiffness: for these modes, it is essential to
understand if the stiffness of the mode is positive, so
that the mode is stable, or the stiffness is negative,
and the mode is unstable. The quadratic energy func-
tion allows us to develop simple methods to do this.

The quadratic energy function is particularly useful
in understanding and designing tensegrity structures.
There is some debate on exactly what constitutes
a ‘tensegrity’ structure, but commonly a tensegrity will
be a pin-jointed truss structure that can be self-
stressed, so that each member is either a ‘cable’ that
carries tension, or a ‘strut’ that carries compression
(Connelly & Guest 2022). Many tensegrities have
struts that are isolated from one another in a net of
cables. These are usually the most visually striking
examples of these structures: many were built by the
sculptor Kenneth Snelson (Heartney 2009), who is
widely considered to be the inventor of tensegrity
(Snelson 1996).

Tensegrities are commonly underbraced structures
(Calladine 1978), and hence it is essential to have
methods for form-finding and analysis that correctly
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calculate the stiffness of the inextensional modes of
deformation that are present in these structures.

Two examples of tensegrity structures are shown
in Figure 1.

2 ENERGY FUNCTIONS FOR A SINGLE
TENSION MEMBER

We begin by considering the very simple two-
dimensional system shown in Figure 2. We make two
assumptions about the behaviour of the bar that should
seem entirely reasonable, at least for small deform-
ations. Firstly, we assume that the bar is elastic, so
that after any amount of deformation, it will revert to
a rest-length (of /y) after the loading is removed. Sec-
ondly, we assume that the bar has a constant stiffness
g, so that if the bar has a current length of /, it carries
an tension ¢ = g(I — Ily) (of course, this internal force
could also have a negative value, when the bar is com-
pressed). For an actual bar with cross-sectional area A4,
made of a material with Young’s Modulus E, this stiff-
ness for small deformations would be g = AE/Iy.

2.1 An ‘exact’ energy function

The exact energy function £ for the energy stored in
the bar is given by

=gl 1), (n

where 1
1= (x* 47

)

We note the straightforward calculation that the
force carried is given by
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Figure 1. Two examples of a tensegrity structure. In each case, the ‘struts’ that carry compression are shown by copper-
coloured member, while the ‘cables’ that carry tension are shown by thinner members. The structural connections at nodes
can transmit no moment (‘pin’-jointed, or perhaps better, ‘spherically’-jointed), and are shown as spheres at the ends of mem-
bers. In both cases, none of the struts touch one another. (a) A ‘T4’ tensegrity (Pizzigoni et al. 2019), consisting of 8 nodes
and 16 members: it has three infinitesimal mechanisms and one state of self-stress. (b) An ‘icosahedral’ tensegrity (Guest
2011), consisting of 12 nodes and 30 members: it has a single infinitesimal mechanisms and a single state of self-stress.
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Figure 2. A single bar in two dimensions. One end is con-
strained at location (0,0), while the other is at point (x,y).
(a) The initial unstressed configuration is assumed to lie
along the x-axis, so that (x,y) = (/,0). (b) We also con-
sider initially stressed configurations lying along the x-axis.
Here, the bar is extended by mly, which requires a tension
t = gmly.
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The energy function £ is, of course, circularly sym-
metic about the origin. The function is plotted as
a surface in Figure 3(a).

2.2 The ‘linearized geometry’ energy function

The usual approach to analyzing truss structures
linearizes the expression for the extension of the
bar, / — [y, around the original configuration. For
our single bar, with an initial configuration
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(x,») = (lo,0), the variation of length with y,
dl/dy = 0, and so the y-coordinate is ignored. This
means that the energy function L that is assumed is
given by

1

L=2glr—x). )

The components of the force applied at the free node
given by

OF
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The energy function L is plotted as a surface in

Figure 3(b).

2.3 The ‘quadratic’ energy function

Consider an energy function

(7)

This function has been chosen so that both the energy,
and the rate of change of energy with length (and
hence the tension), is the same for Q,, and the exact
function E, at the configuration where / = (1 4 m)lj.



(@)

(b)

Figure 3. Energy functions for a single bar, non-dimensionalized by a standard energy value % g2, plotted varying with two
non-dimensional coordinates x/ly and y/ly. Values of energy greater that 0.25 x % gl have been removed for clarity. Three
energy functions are shown: (a) the ‘exact’ energy function E; (b) the ‘linearized geometry’ energy function L; (c) the
‘quadratic’ energy function Q,, for m = 0.25. All three functions have the same value and the same slope at the point
A marked, which is where the bar has the configuration shown in Figure 2b with m = 0.25. Point B is marked for the first
two plots, where m = —0.25.
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The energy function Q,,, with m = 0.25, is plotted as
a surface in Figure 3(c). This energy plot might at
first sight appear to be rather unphysical, correspond-
ing as it does to a bar with an initial rest-length of
zero. However, in fact such zero-length springs are
an important component of “zero-stiffness” struc-
tures, and “statically-balanced” mechanisms (Schenk
et al. 2007, Schenk and Guest 2014). By contrast,
the energy function Q,, with m negative is, by itself,
completely unphysical, as it corresponds to an
unstable system with an infinite rest length. Nonethe-
less, as we shall see, it is useful because it captures
the instability of a compressed bar to lateral move-
ment of a node.

2.4 Comparison of energy functions

Here we explore the three energy functions around
the initial configuration of the bar. In Figure 4 we
show cross-sections through the function for an ini-
tial configuration A, where the bar is extended with
m = 0.25, and in Figure 5 around a configuration B,
where the bar is compressed, with m = —0.25. In
each case, the value and the slope of the energy
functions match. But what is of interest here is to
examine the stiffness of the system, i.e., the curva-
ture of the functions.

For displacements of the bar in the axial direction,
the standard methods of structural analysis inherent
in L correctly gives the stiffness — indeed, the func-
tion is an exact match to the ‘exact’ stress function
E. And for a configuration where m = 0, i.e., the bar
is unstressed, the stiffness in the lateral direction
would also match, and be equal to zero (this case is
not plotted). But when the bars are stressed in ten-
sion or compression, the lateral stiffness changes,
and this is not captured by L, which continues to pre-
dict a zero stiffness.

In fact, for lateral movement, it is the quadratic
stress function Q that matches the curvature, and
hence correctly predicts the stiffness of the stressed
bars. Here it shows that the configuration A is stable,
whereas the configuration B is unstable. Thus, for
considering the stability of tensegrity structures,
when we have to rely on stiffness that does not come
from the axial extension of bars, the ‘quadratic’
stress function can be very useful.

It is a reasonable criticism of the quadratic stress
function that it gets the axial stiffness wrong, and
indeed for compressive system is physically unreal-
istic. But in fact it is straightforward to add this
stiffness back through a conventional linearized
geometry stress function centred on the current con-
figuration (Guest 2006).
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3 DERIVATION OF THE STRESS MATRIX

Until now, we have been considering a single bar in
isolation. But for a structure with a number of bars
that are connected, such as the braced square shown
in Figure 6, we need to consider the summation of
the stress functions in each bar of the bars. We now
also consider the straightforward extension of the
earlier material to three dimensions.

3.1 Single bar

Consider the single bar {1,2} shown in Figure 7.
The bar has length /= (1+m)l, and carries
a tension ¢ = gmly. The quadratic stress function for
this bar we write as Oy 5, where

1 m 5
Qua) :Eg(H——m)l '

Compared with the earlier formulation in (7), we
have removed the constant term, as the choice of
datum is arbitrary for energy, because we are only
interested in derivatives of Oy ), and because this
helps simplify our presentation.

Introducing ¢ = ¢/l as the force density for the
bar, and substituting ¢ = ¢/l =gm/(1 +m), and

(10)

P = (x *XZ)Z + (1 *yz)z + (= 722)2 into (10)
allows Oy 2, to be written as
1 7 77 [x]
=—[x x +
Ona 2[ 1 x) N
1 [ ¢ —/7[z1]
5 11
Pite yz]_,,/ i (11)
1[ ]' ¢ =777z
2 yiro»2 ]

We label the matrix in (11) as the stress matrix
Si1,2}, using the notation common in the mathemat-
ical rigidity theory literature (Connelly and Guest
2022) (but noting that this is identical to the force
density matrix introduced for form-finding by Schek
(1974)).

(12)

3.2 Entire structure

We now consider a structure made up of a number of
nodes, such as the braced squares shown in Figure 6. If
we have a number of bars in a set B, then we can write
the quadratic stress function for the entire bar as the
summation of stress functions for each of the bars in B
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Figure 4. Cross-sections through the energy function, on the left for the plane y = 0, and on the right for the plane
x = 1.25/y. The energy functions E, L and Q,, for m = 0.25 are plotted. The values of the functions, and the slopes, match
at the point A, which corresponds to a bar with m = 0.25, corresponding to an extension / — /o = 0.25/. For displacement
of the end node in the x-direction, the curvatures of the functions E and L (the stiffness) match at A, while for displacement
of the end node in the y-direction, it is the curvatures of the functions £ and Q,, that match at A.
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Figure 5. Cross-sections through the energy function, on the left for the plane y = 0, and on the right for the plane
x = 0.75ly. The energy functions E, L and Q,, for m = —0.25 are plotted. The values of the functions, and the slopes,
match at the point B, which corresponds to a bar with m = —0.25, corresponding to a compression /) — / = 0.25/y. For
displacement of the end node in the x-direction, the curvatures of the functions £ and L (the stiffness) match at B, while for
displacement of the end node in the y-direction, it is the curvatures of the functions £ and Q,, that match at B.
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Figure 6. A planar tensegrity structure, a braced square. Two variants are shown. The first (a) has internal struts carrying
compression, the second (b) has internal cables carrying tension. The two crossing members are not joined, and are assumed
not to interact. When stressed, (a) forms a stable two-dimensional structure, while (b) is unstable against deformations out
of the plane.
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with we can write in terms of the coordinates of the
n nodes written as vectors

X1 N 2]
x=|i|iy=|:|;2=]": (14)
Xn Yn Zn
to give
1 r It 1 r
Q:zx Sx—l—Ey Sy+§z Sz (15)

where S is the stress matrix S for the entire structure.

The stress matrix in (15) can be assembled from
the submatrices for each bar such as Sy 5, given in
(12). Alternatively and equivalently, S can be assem-
bled directly using the following rules.

(%, 25 23) >
t=gml,
t = gml,

4 (1,15 27)

Figure 7. A single bar joining node 1 and node 2, with
a length / = (1 + m)ly, carrying a tension ¢ = gmly. The
force density ¢ = t/1 = gm/(1 + m).

* For an off-diagonal term (i,;), the entry is the
negative of the force density in the rod connecting
i and j if a member exists, or zero otherwise, i.e.,
S{,J} : —ZJ{I/} if {l,]} S B, or S{,/} =0
otherwise.

« For a diagonal term (i, i), the entry is the sum of
the force density in each rod connected to node

i, i.e., S{[,[} = Z{[;/}EB IJ{I,]}

A couple of consequences of the construction are
that S is a symmetric matrix, and that the entries in
each column, or each row, sum to zero — guarantee-
ing that the all-ones vector lies in the nullspace of S.

4 USE OF THE STRESS MATRIX

The stress matrix derived from the quadratic stress
function can do double duty, both for equilibrium as
a form-finding tool, and to understand the stiffness
of a stressed structure.

For equilibrium, consider writing the forces at
each node in the x-direction as f,. For a self-stressed
structure, f, = 0, and so we can write
_90
T ox

f, =Sx =10 (16)
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with similar equations in the y and z directions. The
solutions to these equations must be orthogonal to
the all-ones solution that we know lies in the null-
space of S from its construction. Thus, if we want to
have a d-dimensional structure, S must have a nullity
of d + 1 to allow d + 1 independent solutions to the
equation Sx = 0.

For stability, consider that the energy Q should
not decrease for any possible displacement of the
nodes. Thus S must be positive semi-definite. The
way in which S contributes to the overall stiffness of
a prestressed structure is explored more fully in
Guest (2006).

If the stress matrix has nullity d + 1 and is positive
semi-definite, it can be termed super stable, and it is
super stable structures that are the key to finding
robust tensegrities of the type shown in Figure 1. More
details can be found in Connelly and Guest (2022).

4.1 Example: A braced square

For the braced square shown in Figure 6, the connect-
ivity of the structure defines the stress matrix S to be,

T+ + 00
112 2y
03
)

g
/
*f/u 4}
ey
Chay+lpa +1pg

~fna 3

+13) + 10
3 13
4

123}
+’/(/:3) +7 34y
“l34y

To give a two-dimensional structure, S must have
a nullity of 3, and hence a rank of 1, i.e., each row
must be the same apart from a scaling. Also, each
row must be orthogonal to the all ones vector. Thus
we get a unique solution (up to relabelling of coord-
inates) where the magnitude of the force density is
equal to # in every bar, but has opposite sign in the
diagonals compared to the other bars.

F1o—1 41 -1
[ S S T R
S=141 -1 11 1! (17)
1 41 -1 +1

For the case where 7 is positive, cables form the outer
members of the square, S is positive semi-definite and
the structure is stable (Figure 6(a)). For the case
where ¢ is negative and cables form the diagonal
members S is negative semi-definite and the structure
is unstable (Figure 6(b)) — this stressed structure is
stable in the plane, because the conventional structural
action adds stiffness in the plane, but the structure is
unstable, and will collapse, out of the plane.

5 CONCLUSION

A simple quadratic stress function has been shown to
be useful to understand the behaviour of underbraced



structures, and in particular whether they are stable in
an unbraced mode.
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