MATRICES IN THE TEACHING OF STATICALLY INDETERMINATE
STRUCTURES

S.D. Guest’ and C.R. Calladine’

An experienced structural engineer can usually calculate the
degree of statical indeterminacy of a structure using ad-hoc
methods, and can select suitable “cuts” to make the structure
statically determinate. Students, however, often find this an
altogether puzzling business. Here we describe a technique
that is taught in our Department for analysing statically
indeterminate structures by use of simple equilibrium
matrices; straightforward manipulation of these matrices
reveals the number of statical indeterminacies, and any states
of self-stress — or indeed mechanisms — that may exist in a
given structure.

INTRODUCTION

The theory of structures is an essential part of any university course in Civil or
Structural Engineering.

In most institutions the teaching of engineering subjects is done “from the
particular to the general”. By this we mean that teaching is done in such a way
that important ideas on any subject are introduced to the students in the first
instance through relatively simple examples. Then, once the key ideas have
been grasped, more detailed ramifications can be developed.

Thus, in teaching the theory of structures it is usual to begin with statically
determinate structures. For this type of structure, of course, the “internal
forces” can be related to the “external loads” by considerations of statical
equilibrium alone. The key idea in this connection is the “free-body diagram”,

" Lecturer, 'Professor, Department of Engineering, University of Cambridge



which enables internal forces to be accessed by consideration of the
equilibrium of a suitable piece of the structure that has been isolated by cuts
through members across which the internal forces act. The student is rapidly
brought face-to-face with the important idea that the engineer needs to know
what forces are being transmitted through the various members of the structure
when a given set of loads is applied to it. Later on, there can be discussion of
the elastic response of these members to the internal forces and stresses which
they carry; and then the geometrical business of determining the distortion of
the structure as a whole on account of the known deformations of the individual
members can be tackled. So the statically determinate structure — whether a
triangulated framework, a beam or a pressure vessel — provides a way of
showing the student various kinds of problem which structural engineers face,
and how they can be solved by invoking conditions of equilibrium, the
constitutive relations for the material, and the kinematics of distortion.

But most real structures are actually statically indeterminate; and so the
analysis of such structures cannot be postponed for long. Probably the simplest
example of a statically indeterminate structure for a student to grasp is the
“propped cantilever”. This provides an introduction to several important ideas.
Thus, the structure can sustain a state of self-stress, that is a state of stress
within the structure when there is zero external loading. Also, it is possible
through this example to introduce the important idea that the state of stress
within a structure under load cannot be fully determined without a knowledge
of the initial state of self-stress in the structure. In some textbooks this
particular point is not emphasised; and problems can, of course, be posed
which sidestep this issue by the use of words such as “determine the stresses in
the structure on account of the application such-and-such a load”.

The most straightforward way of introducing a systematic analysis of statically
indeterminate structures is in the context of triangulated frameworks, composed
of straight members connected to each other at their ends by frictionless “pin”
joints. Such structures will have been introduced, of course, in the context of
statically determinate structures; but they can be used to illustrate statically
indeterminate structures by having a few extra members inserted between the
existing joints.



It is at this point in many courses that an air of mystery is introduced into the
proceedings. Thus the student may be asked to consider a number of examples
of two-dimensional frameworks of this kind, and to state, by inspection of each
case, how many degrees of statical indeterminacy there are; or how many
“redundant” bars there are; or how many “releases” of bars or supports are
needed to render the structure statically determinate. Some students, who have
a good “structural imagination” may find this rather straightforward; but many
students tend to find it an altogether puzzling business.

In this paper we shall describe a scheme for teaching statically indeterminate
structures by means of matrices — a scheme which has been used successfully
in our Department for several years. Static and kinematic indeterminacy in
elastic frameworks is described completely by /inear algebra. But in order to
make progress in understanding, we must break away from the not uncommon
notion that the only useful matrices are square, and get to grips with situations
where the number of equations differs from the number of unknowns.

For the sake of brevity we shall here consider only a few simple two-
dimensional frameworks; but the same methods are of course more generally
applicable. First we shall describe the examples in physical terms, and then we
shall deploy the mathematics of linear algebra.

Figure 1(a) shows a framework of four bars (5 = 4) and two pin joints (j =2) —
not counting the foundation joints. We say that it is statically determinate if
the forces in all bars can be determined uniquely for any given loads (i.e.
forces, applied to the joints) by solving the equations of equilibrium. Here
there are two (component) equilibrium equations for each joint, so the number
of equilibrium equations is equal to the number of unknown bar forces; and
indeed the assembly is statically determinate. The condition

b =2, (D

here satisfied, is known as “Maxwell’s rule” for the assembly to be statically
determinate (Calladine, 1978). Actually, Maxwell was mainly concerned with
the conditions for the frame to be rigid; i.e. for the joints to be immovable if the
bars were of fixed length. That is a problem of kinematics. But the same rule
applies, since the two joints, if detached, would have together four degrees of
freedom, while the rigid bars provide four constraints.



Figure 1(b) shows the same structure, to which has now been added a second
diagonal bar. Now
b > 2j, 2)

and we say that the assembly is statically indeterminate: there are now more
force variables than the number of equilibrium equations, and so the forces
cannot be uniquely determined by equilibrium considerations alone. The extra
bar will only fit, of course, if it is of precisely the right length. Otherwise it
will have to be extended or compressed in order to fit; and that will set up a
state of self stress throughout the structure, i.e. a set of bar forces which is not
zero when the external load components are all zero.

Figure 1(c) shows the assembly of Fig. 1(a), but now with the diagonal
removed. Here,
b <2 (3)

and the assembly is a mechanism, with one degree of freedom: the square
linkage can now freely deform into a rhombus. We say that it is kinematically
indeterminate in the sense that the joints are not uniquely located by the
(inextensional) bars. The arrangement can sustain external loads, but only if
these do not “excite” the mechanism. For the present example, external loads
can be carried (in the “square” conformation) only if P, + P; = 0.

Figure 2(a) is an example which satisfies Maxwell’s rule (1), with 5 = 8 and
j=4; but it is clearly both statically indeterminate (since the lower part can
sustain a state of self-stress, as in Fig. 1(b)) and kinematically indeterminate
(since the upper part has a degree of kinematic indeterminacy, just as in

Fig. 1(c)).
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Figure 1. Three pin-jointed frameworks. P, ---P, are components of the loads
applied at the two non-foundation joints, and D, -:-D, are the corresponding
components of deflection. The bars are numbered by roman numerals.



Lastly, Fig. 2(b) is an example which also satisfies (1), with 5=28 and j = 4.
But is it consequently statically and kinematically determinate, as in the
assembly of Fig. 1(a)? The answer is no; the assembly can sustain a state of
self-stress and it is also a mechanism having a single degree of freedom (but
for small displacements/ rotations only).

It is thus clear from Figs 2(a) and (b) that the Maxwell rule (1) is not a
guarantee of static and kinematic determinacy. But while the example of
Fig. 2(a) seems readily comprehensible as a sort of self-compensating
combination of the examples of Figs 1(b) and (c), the example of Fig. 2(b) is
evidently more subtle: the assembly as a whole is in fact both statically and
kinematically indeterminate.

Examples such as Fig. 2(b) have puzzled engineers and others for a long time,
and numerous attempts have been made over the years to work out the
circumstances in which an assembly can violate Maxwell’s rule in this way.
The key to the situation, as we now know, is to apply the methods of linear
algebra to the equilibrium equations, and to let the structural characteristics of
particular assemblies emerge from the mathematical working.

CALCULATIONS

Example 1(a)

Our first task is to set up the equations of equilibrium for the assembly of
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Figure 2. Two pin-jointed frameworks that are simultaneously statically and
kinematically indeterminate



Fig. 1(a). The external load components P, to P, are applied to the two joints;
P, and P; to the first joint in the x- and y- directions, and likewise P3 and P, to
the second joint. The bars are numbered I to IV, in an arbitrary fashion, as
shown. Each bar i carries a force T, which is positive when tensile.

The equations of statical equilibrium can now be written down. Resolving
forces horizontally and vertically at the joints in turn, and putting the equations
into matrix form, we find (4a); here, 0.7 stands for 1/ V2.
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We are interested in the solution(s) of these equations. Following
Strang (1988), we eschew the use of computer software at this stage, and make
a direct Gauss-Jordan elimination. The first stage of this process is to perform
row manipulations (equivalent to making linear combinations of the original
equations) in order to re-arrange the matrix in echelon form, i.e. a matrix with 1
as each element of the leading diagonal and zeros in all lower elements. In the
present case we can achieve most of this objective by putting the first equation
last and moving each of the others up one row. The fourth equation is found by
adding the first and third equations of (4a) and then multiplying by V2. A
steadily-descending “staircase” has been put in below each of the “pivots”.
The equations are sufficiently simple in this case to be handled with the
external forces expressed symbolically.
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Inspection of (4b) reveals that we can proceed to obtain a unique value for each
of Tj to Ty for given P, to P, by starting with the lowest equation and working
our way upwards. The echelon form guarantees that there is no ambiguity in
the outcome at any stage of the process. The final result is shown in (4c),
which may readily be checked by the reader. The matrix has been



diagonalised: we now have a set of four equations which give, one by one, the
forces in the four bars in terms of the given external loads. The solution of the
equations is unique. In particular, if the external loads are all zero, so also are
the bar forces, and hence a state of prestress cannot exist.
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Example 1(b)

Turning to the assembly of Fig. 1(b), we have set up the corresponding
equilibrium matrix in (5a). Here there are five unknown bar forces, and so the
matrix now has five columns; but there are still only four equations of
equilibrium, and hence four rows. Note that the first four columns are
unchanged from (4a).
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We now proceed as before to put the matrix into echelon form; and the
outcome is shown in (5b). On this occasion it is the last column that lacks a
pivot, which corresponds to bar 5 being the “redundant” member — the method
automatically designates redundant bars. We next make linear combinations of
rows in order to diagonalise the matrix; but although we can do this for the first
four columns (the results being exactly the same as before, of course), we end
up with various entries in the last column, as s_hown in (5¢).
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Inspection shows that the values of T to Ty cannot be determined uniquely in
terms of P, to P,: we need also to know the value of Ty. Bar 5 is “redundant”,
of course. Now if we set Ty =0, temporarily, we can express the solution

vector [TI ---TV]Tas the first term on the RHS of (5d). And then if we set

P,---P, =0 (i.e. the external loads all to zero) and put Ty =—1 we obtain the
second term on the RHS. The multiplier o has been inserted here because the
values of 7| to Ty in this case are all proportional to Ty. For this last step we
could, of course, have chosen Ty=1 ; but by putting Iy =—1 we can
conveniently transfer the first four elements of this column from the fifth
column of the matrix of (5c); and Ty provides the missing entry.
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Equation (5d) represents formally the complete solution of equations (5a). The
first column on the RHS represents an equilibrium solution, when 7y =0
(“when we have cut the redundant bar”); while the second column represents
the state of self-stress (when there is zero external load) which the structure can
sustain (“when a turnbuckle in member V is tightened”). The situation is
closely analogous to the Particular Integral and Complementary Function in the
solution of ordinary differential equations: the PI is the solution when the
RHS = 0.

In order to determine the value of Ty (or, equivalently, o) in a given case we
need also to bring into consideration both the equations of geometrical



compatibility of the assembly, and also the constitutive relations for the bars,
involving elastic modulus, coefficient of expansion, and manufacturing error.
That is beyond the scope of the present paper; but it is an entirely
straightforward matter provided we adhere to systematic procedures.

Although experienced engineers might regard (5d) as a statement of the
obvious, which could have been written down after much more “informal”
physical computations “on the back of an envelope”, the benefits of using
linear algebra can only accrue if the proper formalities are adhered to. This
point will be particularly well illustrated by Example 2(b).

Example 1(c)

Consider now the assembly shown in Fig. 1(c). Here there are no diagonals,
and the equilibrium matrix (6a) consists of only the first three columns of (4a)
or (5a):
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Proceeding as before we obtain the echelon form (6b). The fourth row of this
matrix consists entirely of zeros: it corresponds to the addition of the first and
third equations in (6a), and it has (P, + P4} on the RHS. The first three
equations of (6b) tell us that Tj, Ty and Ty, are equal respectively to P, P; and
P,;. However, we must also satisfy the fourth equation; and this requires

Py+Py=0 (7

since the LHS is always zero.



The physical meaning of this result is that the assembly cannot be in
equilibrium unless the total horizontal load is zero. Physically, of course, the
assembly is a mechanism with one degree of freedom.

This example provides the cue for investigating the kinematic equations of the
problem. We define four components of joint displacement, as shown in
Fig. 1(c): they are the work conjugates of the load components. We also define
the elongations E;, Ey, Ejy of the bars, being the work conjugates of the
corresponding bar forces. Then, provided the displacements of the joints and
the rotations of the bars are sufficiently small, we can write the kinematic
relations for the assembly as follows, by inspection:

0 1 0 0 g' E,
-1 010 D2 =| E; (8a)
0 0 0 1|2 |Ey
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This 3 X 4 compatibility matrix is, in fact, simply the transpose of the
equilibrium matrix of (6a); and this can easily be shown to always be the case,
by reason of the of the theorem of Virtual Work.

Suppose we have been given the bar elongations. Solving the matrix equations
using the same techniques as previously (but omitting the intermediate steps)
we obtain a general solution for the displacements:

Da|_t B[4 © (8b)
D, 0 -1
D4 _EIII_ 0

Inspection of Fig. 1(c) reveals that the seco-nd-term on the RHS of (8b)
describes precisely the degree of freedom of the assembly as a small-
displacement mechanism.

The examples of Figs 1(b) and (c) thus reveal a close formal connection
between the statics of Fig. 1(b) and the kinematics of Fig. 1(c). In each case
there are more unknowns than equations; and in each case the Gauss-Jordan
elimination provides automatically the details of the static/kinematic
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indeterminacy. The counterpart of the static constraint (7) on the loads acting
on the assembly of Fig. 1(c) is a kinematic constraint on the bar elongations in
the structure of Fig. 1(b) if all the bars are to remain connected. This is left as
an exercise for the reader.

Example 2(b)

Let us now go directly to the assembly of Fig. 2(b). First we write the joint-
equilibrium equations. When we get to the end of the echelon-form
computation, we find that there is no pivot in the eighth column. Neglecting
this column, and back-substituting from the bottom up, we obtain (9)

1 1[5 148 +0.7(P, + P, + Py + Fy)
1 L 0.7(B + P, + P + F)
1 1.4 | Tip P+ Fy
1 o 1.4P,
1 1 | v | | 14A+R+R+P+P+R)
! -1 | Ty 0.7(-A + P, - P~ F)
I -14] Tvn ~-R-B-PB-P-h
0 00 0000 O |Tyy] |[R+R+P+P+P-F+P—-F]
(9)

For equilibrium to be possible, the external loads must also satisfy the last
equation; and by analogy with (7) and Fig. 1(c), it seems clear that this is the
condition for a mechanism not to be excited. And also, since column 8§
contains no pivot, it is clear that the assembly can sustain a state of self-stress,
which is given by the final column of the matrix in (9), with Tvi; = -1, just as
in equations 5(c) and (d). And a kinematic analysis, as in example 1(c), reveals
this assembly’s degree of kinematic freedom: again this is left as an exercise
for the reader.

DISCUSSION

The example of Fig. 2(b) takes us further than our third-year undergraduate
course. That course has a lot of examples, and includes a general method for
solving problems where there are multiple redundancies/states of self-stress.
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The cases presented here have been chosen mainly to illustrate the proposition
that the physical character of a given assembly can be assessed most
satisfactorily by means of a Gauss-Jordan eliminations of the equilibrium and
compatibility equations, rather than by assembling a stiffness or flexibility
matrix in the first instance.

Some texts give the impression that the best way of dealing with the
rectangular matrices which frequently represent the equilibrium and
compatibility relations is to combine them into a square stiffness matrix.
Indeed, stiffness matrices will generally be used by any computer structural-
analysis packages that a student may use. However, there is a grave danger
here that the student will believe that the elastic solution produced is the correct
engineering solution to a problem, and will lose sight of the assumptions that
were made in order to provide this “unique” solution. The use of the
equilibrium approach allows students to break out of this “Navier’s
Straightjacket” (Heyman, 1998) and to understand the different ways that a
structure can support a load. Another drawback of a stiffness approach is that it
gives little clue of how to deal with kinematically indeterminate structures such
as cable-nets and the like. Tomorrow’s structural engineers need to be able to
work with such structures; and we believe that the inclusion of material of the
kind that we have presented here provides a good foundation for further study.

An understanding of equilibrium and compatibility relationships maps directly
onto the well-known mathematical area of linear algebra. In this paper we have
deliberately avoided giving formal names to concepts such as rank, vector
space, null space, etc. which our various examples illustrate well. For further
study we recommend Strang (1988).
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