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Abstract18

We obtain symmetry-extended counting rules for the mobility of general

plate-bar frameworks in configurations with non-trivial point-group symme-

try. Necessary conditions for isostaticity of a symmetric rod-bar framework

in 3-space are derived. An example shows that establishing sufficient con-

ditions will require significant further development. A symmetry-extended

counting rule is established for rod-clamp frameworks: plate-bar frameworks

are clamped in such a way as to remove relative translations within clamped

pairs. Worked examples showing the utility of the symmetry approach in de-

tecting mechanisms and states of self-stress include an application to linear
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pentapods where a singular configuration is detected by symmetry.

Keywords: rigidity, plate-bar framework, rod-bar framework, rod-clamp19

framework, symmetry, linear pentapod20

1. Introduction21

The notion of a plate-bar framework (Kiraly and Tanigawa, 2019; Tay,22

1991; Tanigawa, 2012) provides a useful generalisation of a number of classical23

structural models and gives a context for discussion of questions of generic24

rigidity of different model types.1 For a given dimension d and integer k ≤ d,25

a k-plate is a k-dimensional rigid body in d-space. A d-dimensional plate-bar26

framework consists of a set of k-plates, where k can take values between 027

and d, and where these plates are connected together by rigid bars, each of28

which provides a length constraint between two joints that lie on different29

plates.30

Often the most interesting cases are the (d, k)-plate-bar frameworks, where31

all plates for the given framework embedded in d-dimensional space share a32

common value of k. We could consider this as the ‘regular limit’ of a gen-33

eral case where sets of plates of different dimensions are present together.34

Specific parameter values for this regular case correspond to well known sys-35

tems in d = 2 and 3 dimensions, such as the bar-joint frameworks (k = 0)36

and the body-bar frameworks (k = d). See Tay (1984); Whiteley (1996)37

for definitions and examples. If d = 3 and k = 1 we have the case of a38

rod-bar framework in 3-space (Tay, 1991; Tanigawa, 2012). Thus, body-bar,39

1Our interest in working with this generalisation was sparked by a talk on ‘Combi-
natorics of Body-Bar-Hinge Frameworks’ given by Shin-ichi Tanigawa at the meeting on
Bond-Node Structures at Lancaster University in 2018.
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panel-bar and rod-bar frameworks correspond to 3-plate-bar, 2-plate-bar and40

1-plate-bar systems, respectively.41

(a) (b) (c)

Figure 1: Frameworks in 3-space: (a) A body-bar framework, (b) a panel-bar framework,
and (c) a rod-bar framework. Dumbbell symbols indicate a bar and its two points of
attachment.

The focus of the present paper is on the use of a symmetry-based ap-42

proach to enrich and give insight into the various counting rules that govern43

the balance of mechanisms and states-of-self-stress in these plate-bar frame-44

works. Previous work in this area on other types of framework (e.g., bar-joint45

frameworks (Guest and Fowler, 2007; Connelly et al., 2009), body-bar frame-46

works (Guest et al., 2010) and body-hinge frameworks (Guest and Fowler,47

2010; Schulze et al., 2014; Chen et al., 2016, 2012) has shown how fruitful48

this approach can be in aiding detection and understanding of ‘hidden’ mech-49

anisms and their persistence or blocking as symmetry is lowered along some50

distortive pathway. In each case, the generic methodology is adapted to the51

particular symmetry characteristics of the types of freedom and constraint52

encountered in the class of systems under study. This procedure is followed53

here.54

The structure of the paper is as follows. We first review the Maxwell-55

type counting rules for the mobility of regular plate-bar frameworks in §2.56
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We then derive the corresponding symmetry-extended counting rules in §3.57

In §4, we apply these new rules to a number of examples. Necessary con-58

ditions for a symmetric rod-bar framework in 3-space to be isostatic (i.e.,59

minimally rigid or, equivalently, maximally self-stress-free) are established in60

§5, following the approach taken in Connelly et al. (2009) and Guest et al.61

(2010) for bar-joint and body-bar frameworks. In §6 and §7 we discuss exten-62

sions of the symmetry-extended counting rules to the special type of rod-bar63

frameworks called rod-clamp frameworks and to mixed body-panel-rod frame-64

works, respectively. If a pair of rods in 3-space is joined by three orthogonal65

bars so that the three bars are coincident on a common point of the two66

rods, then this removes the 3-dimensional space of relative translations of67

the rods, resulting in a clamp. A structure consisting of rods that are joined68

in pairs by clamps is called a rod-clamp framework (Tay, 1991). We note69

that a clamp in a rod-clamp framework can equally be considered as a ball70

joint connecting the two rods. Finally, we investigate in §8 whether, under71

suitable genericity assumptions, the necessary conditions derived in §5 for72

isostaticity of a symmetric rod-bar framework are also sufficient.73

2. Scalar counting for plate-bar frameworks74

Our interest here is in the mobility of plate-bar frameworks, and specifi-75

cally in how symmetry arguments can be used to sharpen rigidity conditions76

derived from scalar counting rules such as those of Maxwell and Kutzbach77

(Maxwell, 1864; Kutzbach, 1929). As in our previous implementations of78

this approach (Fowler and Guest, 2000; Guest and Fowler, 2005; Guest et al.,79

2010) we begin here by counting freedoms and constraints, then generalise80
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to include the effects of non-trivial point-group symmetry.81

We consider the contact graph of the framework, C, where each vertex82

in the set V (C) corresponds to a plate, and each edge in the set E(C) cor-83

responds to a bar. Note that C is a multigraph that may contain parallel84

edges, but no self-loops. We work in d dimensions, and k takes values 0 to d.85

The rigid-body motions for Euclidean space of dimension d are of dimen-86

sion
(
d+1
2

)
(see, for example, Asimow and Roth (1979); Whiteley (1996)):87

they are spanned by a set of d translations and a set of
(
d
2

)
rotations.88

The freedoms of a set of disconnected k-plates in d dimensions arise from89

the translations and rotations in d dimensions of each plate, reduced by any90

‘ineffective’ rotations that are indistinguishable from the identity operation91

for plates of dimension k. Note that a rotation is ineffective for a given92

k-plate if and only if the rotational axis contains the plate. Therefore, a93 (
d−k
2

)
-dimensional subspace of the

(
d
2

)
-dimensional space of rotations in d-94

space has no effect on any given k-plate. The justification for this statement95

is that a rotation in d-space has a (d − 2)-dimensional axis, and hence the96

rotation has an effect only on the remaining 2-dimensional space. Therefore,97

a k-plate in d-space has a total number of degrees of freedom equal to98

(
d+ 1

2

)
−
(
d− k

2

)
.

Notice that in the standard convention for binomial coefficients, the symbol99 (
i
j

)
with i < j evaluates to 0. This needs to be borne in mind for symbols100

such as
(
d−k
2

)
. The constraints on the framework are those imposed by the101

set of |E| bars.102
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The internal freedoms of the assembled framework follow by subtraction103

of constraints and trivial rigid-body motions from the freedoms of the set104

of disconnected plates. The mobility (the Maxwell count, calculated in the105

spirit of Calladine (Calladine, 1978) as the balance of mechanisms and states106

of self stress), for a (d, k)-plate-bar framework is therefore:107

m− s =
[(d+ 1

2

)
−

(
d− k

2

)]
|V | −

(
d+ 1

2

)
− |E|. (2.1)

Note that (2.1) takes identical values for the cases k = d− 1 and k = d with108

given d, as
(
0
2

)
=

(
1
2

)
= 0.109

In non-regular cases, there may be different numbers |Vk| for each k al-110

lowed by the dimensionality d. Each edge still contributes a single constraint111

that is symmetric under all those operations that leave this edge in place,112

and hence the mobility equation (2.1) generalises to (2.2)113

m− s =
{ d∑

k=0

[(d+ 1

2

)
−
(
d− k

2

)]
|Vk| −

(
d+ 1

2

)}
− |E|. (2.2)

The cases of physical interest are for dimensions d = 2 and d = 3. In 2D114

there are three regular cases, with k = 0, 1, 2, corresponding respectively to115

bar-joint, rod-bar and body-bar frameworks. The degrees of freedom in the116

Maxwell counts are 2v−3 (k = 0) and 3v−3 (k = 1, 2), where v = |V | is the117

number of vertices of the contact graph. Bar-joint and body-bar frameworks118

are well studied; in the combination of bars with line segments, the line119

segments retain three degrees of freedom (two translations and one rotation),120

and the whole is effectively equivalent to a body-bar framework in which121
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all bars attached to a body have collinear end points. Symmetry-extended122

counting rules for these structures were established in previous work (Fowler123

and Guest, 2000; Guest and Fowler, 2005).124

In 3D, the cases range from k = 0 to k = 3. These correspond to bar-joint,125

rod-bar, panel-bar and body-bar frameworks (See Figure 1). The respective126

degrees of freedom in the Maxwell counts are 3v− 6 (k = 0), 5v− 6 (k = 1),127

and 6v − 6 (k = 2, 3). Mixed systems are possible, and follow combined128

counting rules as in Eq. (2.2).129

Remark 2.1. In this paper, we consider generalisations of body-bar frame-130

works characterised by allowing bodies of lower dimension than the ambient131

dimension of the structure. A similar direction has been studied intensively132

for the class of body-hinge frameworks. A body-hinge framework is a special133

type of body-bar framework, in which each pair of bodies is either uncon-134

nected, or is connected by five bars meeting a hinge line so that only a single135

rotational degree of freedom (about the hinge line) between the two bodies re-136

mains (Whiteley, 1996). An important class of body-hinge frameworks is that137

of panel-hinge frameworks, where all hinge lines of a given body are coplanar138

(i.e., the bodies can be thought of as 2-dimensional panels). These structures139

(and their dual structures, molecular frameworks) have a wide range of appli-140

cations in engineering and biophysics (Katoh and Tanigawa, 2011; Tay and141

Whiteley, 1984; Whiteley, 1996, 2005). Symmetry-extended counting rules142

for mobility of body-hinge structures can be found in Schulze et al. (2014).143
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3. Mobility counting with symmetry144

We now consider symmetric plate-bar structures in 3D, and derive symmetry-145

extended counting rules that generalise the scalar counting rules. In the146

standard Schoenflies notation (see Altmann and Herzig (1994); Atkins et al.147

(1970), for example) the families of 3D point groups are: the trivial group C1,148

the reflection symmetry group Cs, the inversion symmetry group Ci; the axial149

groups Cn, Cnh, Cnv; the dihedral groups Dn, Dnh, Dnd; the cyclic groups S2n;150

the icosahedral groups I, Ih; the cubic groups T, Th, Td, O, Oh. The symme-151

try operations are: proper rotation by 2π/n about an axis, Cn, and improper152

rotation, Sn (Cn followed by reflection in a plane perpendicular to the axis).153

By convention, the identity E ≡ C1, inversion i ≡ S2, and reflections σ ≡ S1154

are treated separately in character tables, each having their own column.155

The scalar counting equations have straightforward extensions for systems156

with non-trivial point-group symmetry, constructed by replacing each scalar157

count with an appropriate reducible representation. Sets of structural com-158

ponents, internal coordinates, local translations and rotations, mechanisms159

and states of self stress have characters χ(S) under the various symmetry160

operations S of the point group G, which define their representations Γ.161

In the equations that follow below, Γ(m) and Γ(s) are representations of162

mechanisms and states of self-stress of a framework, respectively. The per-163

mutation representation of a given set of points {p} is Γ(p), which has entry164

χ(S) equal to the number of points in the set that remain unshifted when165

the symmetry operation S is applied to the framework. Standard named166

representations include: ΓT and ΓR for the sets of translations and rotations167
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in the d-dimensional space; Γ0, the totally symmetric representation, which168

has χ(S) = 1 for all S. (See standard texts and sets of character tables,169

e.g., Bishop (1973); Atkins et al. (1970); Altmann and Herzig (1994).) Var-170

ious derived representations can be defined for vectors or other decorations171

attached to components of the structure.172

In these terms, a framework has a mobility representation, Γ(m) − Γ(s),173

which is governed by reducible representations based on the vertices and174

edges of the geometrically realised contact graph. For the regular cases (d, k)175

we obtain three similar equations.176

For d = 3 and k = 3 or 2 (Guest et al., 2010)177

Γ(m)− Γ(s) = (ΓT + ΓR)× (Γ(v)− Γ0)− Γ(e); (3.1)

for d = 3, k = 1178

Γ(m)− Γ(s) = (ΓT + ΓR)× (Γ(v)− Γ0)− Γ⊙(v)− Γ(e); (3.2)

for d = 3, k = 0 (Fowler and Guest, 2000)179

Γ(m)− Γ(s) = (ΓT + ΓR)× (Γ(v)− Γ0)− Γ(v)× ΓR − Γ(e). (3.3)

In these equations, (3.2) and (3.3) are modifications of (3.1) in which further180

restrictions described by functions of the vertex representation are subtracted181

from the representation of the freedoms. In general, the count m − s is re-182

placed by the representation of freedoms of the generalised bodies, minus that183
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σ

σ⊥

C∞

C'2

D∞h E 2C∞(ϕ) C2 ∞σ∥ σ⊥ 2S∞(ϕ) i ∞C ′
2

Γ⊙ +1 +1 +1 −1 +1 +1 +1 −1

Figure 2: Local rotational freedom of a rod about its main axis, modelled by a circular
arrow. The character for the representation Γ⊙(v) in the maximum site symmetry, D∞h,
is given in the table beside the figure. In practice, the site group is typically much smaller.

of the constraints imposed by the bars and that of the rigid-body motions.184

Equations (3.1) and (3.3) have become standard (see Guest et al. (2010) and185

Fowler and Guest (2000)), though (3.3) has been rewritten here to emphasise186

the commonality of the three equations. The equation (3.2) for symmetric187

rod-bar frameworks has not been presented before.188

The representation Γ⊙(v) in Eq. (3.2) is the reducible representation of189

a set of circular arrows, one for each rod, about the respective rod axis, to190

stand for a local rotation of the rod about that axis. If Γ(v) has χ(S) = 0,191

then χ⊙(S) = 0; if χ(S) ̸= 0, then χ⊙(S) is the sum over all unshifted rods192

of the entries for S in the table in Figure 2.193

4. Examples of rod-bar frameworks194

As examples of the formalism, we analyse some basic cases of rod-bar195

frameworks using our symmetry-extended counting rules.196

4.1. A simple case197

The first example is the rod-bar framework with C2 point-group symmetry198

that is shown in Figure 3. It has four rods, two of which are unshifted by199

the half-turn (one lies along the rotation axis and the other is perpendicular200
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to, and centred on, the axis). Moreover, it has 14 bars, none of which is201

unshifted by the half-turn. Hence, the structure has an isostatic scalar count202

of e = 5v − 6 = 14 and a symmetry-extended count of203

Γ(m)− Γ(s) = (6,−2)× (3, 1)− (4, 0)− (14, 0) = (0,−2). (4.1)

In this equation we use the pair notation (i, j) as a shorthand to indicate the204

character of the appropriate reducible representation under the operations in205

the two classes of the point group, in this case the single-element classes E206

and C2 of the point group C2. The detailed tabular calculation for (4.1) is207

given below.208

C2

Figure 3: A rod-bar framework with an isostatic scalar count that has an infinitesimal
motion and a state of self-stress, both detected by calculations of the symmetry-extended
mobility count. In this and subsequent figures, rods are schematically depicted as ‘wooden’,
and bars as ‘metallic’.
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C2 E C2

Γ(v) 4 2

−Γ0 −1 −1

Γ(v)− Γ0 3 1

×(ΓT + ΓR) 6 −2

(Γ(v)− Γ0)× (ΓT + ΓR) 18 −2

−Γ⊙(v) −4 0

−Γ(e) −14 0

Γ(m)− Γ(s) 0 −2

209

As Γ(m) − Γ(s) = (0,−2) = A2 − A1, we can conclude that the structure210

has a fully-symmetric self-stress and an anti-symmetric mechanism, neither211

evident from counting alone.212

4.2. High-symmetry cases213

The examples in this section are versions of the well known ‘icosahedral214

tensegrity’ framework, treated here as rod-bar systems. The original, anal-215

ysed in Calladine (1978) and discussed in Figure 11.3 of Connelly and Guest216

(2022), and two variants are illustrated in Figure 4(a)–(c).217

The framework in Figure 4(a) has scalar countm−s = 5v−6−e = 0, as it218

has v = 6 rods (vertices in the contact graph), and e = 24 bars/cables (edges219

of the contact graph). The framework in Figure 4(b) is a variant of (a) in220

which two bars/cables meet at the centre of each rod, and the framework in221

Figure 4(c) is a second variant in which the points of contact of bars/cables222

with the rods are offset in a symmetrical manner that nevertheless destroys223

the mirror symmetries, hence leading to a chiral configuration overall.224
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(a) (b) (c)

Figure 4: Some highly symmetrical frameworks: (a) the icosahedral tensegrity, which
consists of members carrying compression and bars carrying tension, and has maximum
Th symmetry; (b) a variant of (a) in which compression members have been replaced by
rods, and the bars now link the ends of rods to the centres of others; (c) a variant of
(b) obtained by offsetting the points of attachment from rod centres, thus destroying all
improper elements of symmetry and reducing the point group of the configuration from
centrosymmetric Th to T. In fact, the bars in all three examples could be stressed to carry
only tension and hence could be replaced by cables in all cases.

For (a) and (b), the overall point group is Th. For (c), the overall point225

group is T. Structures (b) and (c) share the scalar count m−s = 5v−6−e =226

12, as both have v = 6 and e = 12.227

The arrangements of rods with respect to symmetry elements in the Th-228

symmetric (a) and (b) are identical, and so the calculation of the freedom229

term, i.e. (ΓT + ΓR) × (Γ(v) − Γ0) − Γ⊙(v), is the same for both systems.230

As the first part of the table for (b) (below) shows, the result is the regular231

representation Γreg(Th), which has character |Th| = 24 under the identity but232

character zero elsewhere, reducing to Ag +Eg + 3Tg +Au +Eu + 3Tu in this233

separably degenerate point group.234

The difference between the two Th systems lies in the constraint term.235

Framework (a) has 24 edges of the contact graph, none of which lies on an236

element of symmetry, and Γ(e) is therefore equal to Γreg(Th). Hence, for237

framework (a), the mobility representation is null, implying that in the Th238
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configuration the system has equal numbers of mechanisms and states of self239

stress and that the two sets are equisymmetric. In fact, the framework (a)240

has Γ(m) = Γ(s) = Ag (Guest, 2011).241

Framework (b) is more interesting as a 12−dimensional constraint rep-242

resentation clearly cannot cancel the 24−dimensional representation of the243

freedoms. As the full calculation for (b) shows, the mobility representation244

Γ(m)−Γ(s) is 2Tg+Au+Eu+Tu, accounting for the excess of 12 independent245

infinitesimal motions predicted from the scalar count:246

Th E 4C3 4C2
3 3C2 i 4S6 4S2

6 3σd

Γ(v) 6 0 0 2 0 0 0 4

−Γ0 −1 −1 −1 −1 −1 −1 −1 −1

Γ(v)− Γ0 5 −1 −1 1 −1 −1 −1 3

×(ΓT + ΓR) 6 0 0 −2 0 0 0 0

(Γ(v)− Γ0)× (ΓT + ΓR) 30 0 0 −2 0 0 0 0

−Γ⊙(v) −6 0 0 2 0 0 0 0

−Γ(e) −12 0 0 0 0 0 0 −4

Γ(m)− Γ(s) 12 0 0 0 0 0 0 −4

247

Framework (c) has only T symmetry, and the tabular character calcula-248

tion is simply halved, as Th reduces to T on deletion of improper symmetry249

operations. As the centres of the rods are in the same positions as in (a) and250

(b) (the vertices of an inscribed octahedron), the freedoms span two copies251

of the regular representation in the smaller point group, but now the 12 con-252

straints span Γreg(T), and the mobility representation for framework (c) is253

A+E +3T , as would be obtained by a descent-in-symmetry argument from254
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the result for (b).255

Again, we do not detect any additional infinitesimal motions with the256

symmetry-extended counting rule, but do obtain useful information about257

the nature of the 12 independent motions predicted by the scalar count. In no258

case (a) to (c) does the symmetry analysis detect states of self stress, although259

it is evident that these exist, from both physical models and equilibrium260

calculations.261

5. When is a symmetric rod-bar framework isostatic?262

Isostatic structures play important roles in engineering since they are able263

to react to changes in shape of their structural components by deforming264

without building up states of self-stress. In an isostatic framework, there265

are neither mechanisms nor states of self-stress, and so m − s = 0; in the266

symmetry approach, this implies the character equality Γ(m) − Γ(s) = 0.267

Using an established approach (Connelly et al., 2009; Guest et al., 2010),268

we derive necessary conditions for a symmetric rod-bar framework to be269

isostatic. These isostaticity conditions are given in the form of simply stated270

restrictions on the numbers of those structural components that are unshifted271

by the symmetry operations of the framework.272

Calculation of characters for the 3D symmetry-extended ‘rod-bar’ equa-273

tion (recall Eq. (3.2)) is shown in Table 1. Characters are calculated for six274

types of operation: for proper rotations, we distinguish E and C2 from the275

Cn operations with n > 2; for improper rotations, we distinguish σ and i276

from the Sn operations with n > 2. The notation used describes the local277

symmetries of the vertices and edges of the contact graph as follows:278
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v is the total number of rods;279

vn is the number of rods that are unshifted by a given n-fold rotational280

symmetry operation Cn≥2. For n = 2, each such rod either lies along281

the C2 axis or perpendicular to, and centred on, the C2 axis. For n > 2,282

each such rod lies along the Cn axis;283

v2∥ is the number of rods that lie along the C2 axis;.284

v2⊥ is the number of rods that lie perpendicular to, and centred on, the axis;285

vc is the number of rods unshifted by the inversion i; each such rod is centred286

on the unique central point, but no particular orientation is implied;287

vnc is the number of rods unshifted by the improper rotation Sn>2; each such288

rod must lie along the axis of the rotation, and be centred in the central289

point of the group;290

vσ is the number of rods unshifted by a given reflection σ. Each such rod291

either lies within the σ plane or perpendicular to, and centred in, the292

σ plane;293

vσ∥ is the number of rods that lie within the σ plane;294

vσ⊥ is the number of rods that lie perpendicular to, and centred in, the σ295

plane;296

e is the total number of bars;297

en is the number of bars unshifted by a Cn≥2 rotation. For n = 2, each such298

bar must lie either along, or perpendicular to and centred on the axis.299
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For n > 2, each such bar must lie along the Cn-axis;300

ec is the number of bars unshifted by the inversion i; the centre of the bar301

must lie at the central point of the group, but no particular orientation302

is implied;303

enc is the number of bars unshifted by the improper rotation Sn>2; such bars304

must lie along the axis of the rotation, and be centred on the central305

point of the group;306

eσ is the number of bars unshifted by a given reflection σ; an unshifted bar307

may lie within the mirror or perpendicular to and centred on the mirror.308

Each count refers to a particular symmetry element, and so, for instance a309

rod counted in vc also contributes to v, and may contribute to vn and vσ if310

these symmetries are present.311

From Table 1, the symmetry treatment of the 3D rod-bar equation reduces312

to six scalar equations. If Γ(m)− Γ(s) = 0, then313

E: 5v − 6 = e (5.1)314

σ: vσ∥ − vσ⊥ = eσ (5.2)315

i: −vc = ec (5.3)316

Sn>2: −vnc = enc (5.4)317

C2: 2− 2v2 − v2∥ + v2⊥ = e2 (5.5)318

Cn>2: (vn − 1)(4 cosϕ+ 2)− vn = en (5.6)319

where a given equation applies when the corresponding symmetry operation320

is present in G.321
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σ C2 C2

(a) (b) (c)

C2

C3

(d) (e)

Figure 5: Isostatic symmetric rod-bar frameworks, with their point-group symmetries ((a)
Cs; (b),(c),(d) C2; (e) C3), exemplifying the various structural counting rules derived in
the text.

Some observations on 3D isostatic rod-bar frameworks, arising from the322

above, are as follows:323

(i) From (5.1), the rod-bar framework must satisfy the scalar rule with324

m− s = 0: 5v − 6 = e (recall §2);325

(ii) From (5.2), for each mirror σ that is present we must have vσ∥ ≥ vσ⊥; In326

particular, if vσ∥ = 0 then we also have vσ⊥ = 0 and eσ = 0. Moreover,327

if vσ⊥ = 0, then vσ∥ = eσ;328
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(iii) From (5.3), a centrosymmetric rod-bar framework has no bar centred329

at the inversion centre, and there is also no centrally symmetric rod;330

(iv) From (5.4), the presence of an improper rotation Sn>2 implies that331

there is no bar and no rod that is unshifted by Sn>2;332

(v) For a C2 axis, (5.5) may be written as333

2− 2(v2∥ + v2⊥)− v2∥ + v2⊥ = e2

since v2 = v2∥ + v2⊥. We may simplify this to334

2− 3v2∥ − v2⊥ = e2

which implies that v2∥ = 0, as e2 must be a non-negative integer. There-335

fore, 2− v2⊥ = e2. Thus, the possible solutions are336

(e2, v2⊥, v2∥) = (0, 2, 0), (1, 1, 0), or (2, 0, 0).

(vi) Equation (5.6) can be written, with ϕ = 2π/n, as337

(vn − 1)

(
4 cos

(
2π

n

)
+ 2

)
− vn = en

with n > 2. It follows immediately that vn must be distinct from 1.338

Note that the factor (4 cos(2π/n) + 2) is rational only for n = 3, 4, 6.339

We consider each case in turn:340

n = 3

−v3 = e3
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and so here v3 = e3 = 0. A C3 axis may be present, but if so, no341

vertices or edges of C lie on it.342

n = 4

v4 − 2 = e4

It follows that v4 ≥ 2. However, this is impossible since v4 ≥ 2343

implies that v2∥ ≥ 2. Thus, a 4-fold rotation C4 is not present.344

n = 6

3v6 − 4 = e6

It follows that v6 ≥ 1. However, this is impossible since v6 ≥ 1345

implies that v2∥ ≥ 1. Thus, a 6-fold rotation C6 is not present.346

In summary of this case, we can see that only a C3 rotational axis is347

compatible with isostaticity, albeit with further restrictions.348

Examples of symmetric rod-bar frameworks with isostatic scalar counts349

are shown in Figure 5.350

6. Symmetry-extended mobility count for rod-clamp frameworks351

A natural specialisation of rod-bar frameworks is their restriction to rod-352

clamp frameworks. This is similar in spirit to what is typically done in going353

from body-bar to body-hinge frameworks. To model a clamp we consider a354

pair of rods that are connected by three orthogonal bars that all meet in355

a common point and have zero length in the limiting case when the rods356

touch. Rod-clamp structures were studied as mathematical objects by Tay357

(Tay, 1991, 1989) and they give a natural formalisation of the physical struc-358
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tures made in scouting, woodcraft and nautical contexts by lashing rods to-359

gether to make tripods, towers and other improvised structures. Rod-clamp360

structures have recently also been used in the rigidity analysis of compos-361

ite materials and fiber networks (Heroy et al., 2022). ‘Popsicle bombs’ give362

another motivation for the study of rod-clamp frameworks; the underlying363

grillage in this popular impromptu toy is the polar of a tensegrity (Whiteley,364

1989; Schulze and Whiteley, 2023) in which a state of self-stress blocks the365

eponymous disruptive mechanism (Tarnai, 1989).366

The essential feature of a clamp is that rods in their disconnected state367

have five degrees of freedom each, and each incidence of two rods connected368

via a clamp removes three degrees of freedom for the pair (relative transla-369

tions of the two rods). The Maxwell count of a 3D rod-clamp framework is370

therefore371

m− s = 5v − 6− 3c (6.1)

where c is the number of clamps and v, m, s are the respective numbers of372

rods, mechanisms and states of self-stress, as before.373

As usual, this scalar relation has a symmetry-extended counterpart that374

follows from the construction of the general rod-bar equation (3.2) for regular375

frameworks as376

Γ(m)− Γ(s) = (ΓT + ΓR)× (Γ(v)− Γ0)− Γ⊙(v)− Γ(c), (6.2)

where Γ(c) stands for the (reducible) representation of the freedoms removed377

by the set of clamps.378

Calculation of Γ(c) for a set of clamps distributed in space takes a well379
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trodden path. The representation spanned by the relative translations of a380

pair of rods is calculated for configurations of high symmetry, interpreted381

in terms of decorations of clamp positions with a set of local motifs, and382

then used to calculate the contribution to Γ(c) of each clamp unshifted by383

a given symmetry operation. For clamps that are shifted out of position by384

the operation, the contribution is zero.385

A pair of rods, in the idealisation of zero thickness, has maximum D4h386

site symmetry for intersection at 90◦, and D2h symmetry for non-orthogonal387

intersection, dropping to C2v and Cs when one or more rods are not centred388

on the clamp. Figure 6 gives a pictorial description of the local symmetries389

of the three excluded relative translations, and Table 2 shows their represen-390

tations in the respective maximal groups. The arguments used to derive the391

entries in these mini character tables follow closely those used for symmetry392

descriptions of CAD constraints in point-line systems, as described in Fowler393

et al. (2021).394

As examples of the approach, we consider first the 3D frameworks illus-395

trated schematically and shown as physical models in Figure 7. Rows (a) and396

(b) in Figure 7 show two rod-clamp frameworks that have the isostatic count397

m− s = 0, as they both have v = 6 rods and c = 8 clamps. The structure in398

(a) has reflection symmetry and the symmetry-adapted count (6.2) detects a399

fully-symmetric infinitesimal motion, which is in fact finite, as illustrated by400

the different configurations of the model shown in (c) and (d). The structure401

in (b) has half-turn symmetry and the symmetry-adapted count is isostatic;402

the physical model is rigid.403
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(a) (b)

Figure 6: The three degrees of freedom (relative translations) that are removed by a clamp
connecting two rods r1 and r2: (a) the out-of-plane (⊥) translation that separates the two
rods; (b) a pair of in-plane (∥) translations corresponding to slides of one rod against the
other. Decorations of the clamp with sets of four arrows show the local symmetry of the
freedom. We consider the two bars to be coincident at the clamping point, and ignore the
question of which rod is above, and which below in a given physical realization.

For the structure in (a) with Cs symmetry we obtain the count404

Γ(m)− Γ(s) = (6, 0)× [(6, 0)− (1, 1)]− (6, 0)− (24,−2) = (0, 2) :

Cs E σ

Γ(v) 6 0

−Γ0 −1 −1

Γ(v)− Γ0 5 −1

×(ΓT + ΓR) 6 0

(Γ(v)− Γ0)× (ΓT + ΓR) 30 0

−Γ⊙(v) −6 0

−Γ(c) −24 2

Γ(m)− Γ(s) 0 2

405

As Γ(m) − Γ(s) = (0, 2) = A′ − A′′, we can conclude that the structure406
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(i)
D4h E 2C4 C2 2C ′

2 2C ′′
2 i 2S4 σh 2σv 2σd

Γ(c⊥) +1 −1 +1 +1 −1 −1 +1 −1 −1 +1
Γ(c∥) +2 0 −2 0 0 −2 0 +2 0 0

(ii)
D2h E C2z C2x C2y i σz σx σy

Γ(c⊥) +1 +1 +1 +1 −1 −1 −1 −1
Γ(c∥) +2 −2 0 0 −2 +2 0 0

Table 2: Calculation of representation Γ(c) as a constraint that removes all local relative
translations of two clamped rods. The characters are calculated in the highest possible
symmetry group: (i) D4h for centred mutually perpendicular rods, and (ii) D2h for centred
rods meeting at an arbitrary angle. Following the illustration in Fig. 6, Γ(c) decomposes
into a constraint that fixes the separation at zero, with representation Γ(c⊥), and a re-
ducible representation Γ(c∥) that describes the pair of constraints on relative translations
in the orthogonal plane. The calculation for the subgroups C2v and Cs is carried out using
the same tables, but with columns restricted to the symmetry elements present in the
subgroup.

has a fully-symmetric infinitesimal motion and an anti-symmetric self-stress.407

For the structure (b), which has C2 symmetry, we obtain the count408

Γ(m)− Γ(s) = (6,−2)× [(6, 2)− (1, 1)]− (6,−2)− (24, 0) = (0, 0)
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(a) (b)

(c) (d) (e)

Figure 7: (a),(b) Top-down view of 3D rod-clamp frameworks of Cs and C2 symmetry with
m − s = 0. Sets of vertices under the appropriate two-fold symmetry each have a fixed
but arbitrary height in the missing third dimension. Clamps are indicated by the symbol

. (c),(d) Different configurations of a physical model of the structure shown in (a). (e)
Physical model of the structure shown in (b). There is no clamp at the central crossing,
where the bars are separated in the out-of-page dimension.

C2 E C2

Γ(v) 6 2

−Γ0 −1 −1

Γ(v)− Γ0 5 1

×(ΓT + ΓR) 6 −2

(Γ(v)− Γ0)× (ΓT + ΓR) 30 −2

−Γ⊙(v) −6 2

−Γ(c) −24 0

Γ(m)− Γ(s) 0 0

409

From both scalar and symmetry-extended counts, this structure appears410
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rigid. In the flattened structure, which would have C2h symmetry, the mo-411

bility representation Γ(m) − Γ(s) would be (0, 0,−2,−2), indicating an in-412

finitesimal out-of-plane mechanism of Au symmetry that would be blocked413

in non-planar configurations by the totally symmetric Ag state of self-stress.414

We note that the structure in Figure 7(a) will remain flexible even if415

it is perturbed so that the reflection symmetry is broken, because the line416

through the top and bottom clamp acts as a hinge line. This is analogous417

to the well known surprising motion of the “double-banana” framework, for418

which a symmetry treatment is given in Fowler and Guest (2002).419

7. Mixed body-panel-rod frameworks420

Non-regular plate-bar frameworks in 3-space that contain a mix of rods

and 2- or 3-dimensional bodies are common in engineering. For these mixed

‘body-panel-rod’ frameworks, the Maxwell count in Equation (2.2) from Sec-

tion 2 simplifies to

m− s = 6v − vrod − 6− e,

where v and e are the numbers of vertices and edges of the contact graph and421

vrod is the number of vertices in the contact graph corresponding to rods. A422

symmetry-adapted mobility count for these structures is easily obtained by423

modifying Equation (3.2) from Section 3 as follows:424

Γ(m)− Γ(s) = (ΓT + ΓR)× (Γ(v)− Γ0)− Γ⊙(vrod)− Γ(e). (7.1)

To illustrate this counting rule, we apply it to two symmetric config-425

urations of the linear pentapod, which is a structure consisting of a rod (a426
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linear-motion platform) that is connected to a base by 5 bars (see e.g. Borràs427

et al. (2011); Rasoulzadeh and Nawratil (2019)). Figure 8 shows two symmet-428

ric configurations of this structure. Linear pentapods have a wide range of429

industrial applications (Borràs and Thomas, 2010; Weck and Staimer, 2002)430

and can be thought of as modified Stewart-Gough platforms, where the plat-431

form has been replaced by a rod and one of the six connecting bars has been432

removed to maintain an isostatic Maxwell count.433

C2 σ

(a) (b)

Figure 8: Two symmetric configurations of the linear pentapod, one with half-turn sym-
metry (a) and one with reflection symmetry (b).

For the structure in Figure 8(a) with half-turn symmetry we obtain the434

count435

Γ(m)− Γ(s) = (6,−2)× [(2, 2)− (1, 1)]− (1,−1)− (5, 1) = (0,−2)

as detailed in the tabular calculation below.436
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C2 E C2

Γ(v) 2 2

−Γ0 −1 −1

Γ(v)− Γ0 1 1

×(ΓT + ΓR) 6 −2

(Γ(v)− Γ0)× (ΓT + ΓR) 6 −2

−Γ⊙(vrod) −1 1

−Γ(e) −5 −1

Γ(m)− Γ(s) 0 −2

437

Since Γ(m)−Γ(s) = (0,−2) = −A1+A2, we can conclude that the structure438

has a fully-symmetric self-stress and an anti-symmetric infinitesimal motion439

in which the centre of the rod moves in a direction perpendicular to the440

central bar,441

For the structure in Figure 8(b) with reflection symmetry, we have442

Γ(m)− Γ(s) = (6, 0)× [(2, 2)− (1, 1)]− (1,−1)− (5, 1) = (0, 0)

as detailed in the tabular calculation below.443
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Cs E σ

Γ(v) 2 2

−Γ0 −1 −1

Γ(v)− Γ0 1 1

×(ΓT + ΓR) 6 0

(Γ(v)− Γ0)× (ΓT + ΓR) 6 0

−Γ⊙(vrod) −1 1

−Γ(e) −5 −1

Γ(m)− Γ(s) 0 0

444

Thus, the symmetry-adapted count does not detect self-stresses or motions,445

and the structure is in fact isostatic whenever it is placed generically with446

respect to the constraints given by the reflection symmetry. The difference447

in mobility count for the two cases derives entirely from the different be-448

haviour of the representation of the rigid-body motions ΓT +ΓR: the trace of449

this reducible representation can be non-vanishing under a proper symmetry450

operation, but is necessarily zero under an improper symmetry operation.451

8. Sufficient conditions for symmetry-generic isostaticity452

The Maxwell count |E| = [
(
d+1
2

)
−1]|V |−

(
d+1
2

)
is clearly necessary for the453

(d, d− 2)-plate-bar framework with contact graph C = (V,E) to be isostatic.454

(Recall (2.2) and the discussion in Section 2; here we are using V , E as455

shorthand for V (C) and E(C) from that discussion.) It was shown by Tay456

that this count, together with the corresponding sparsity counts for all non-457

trivial subgraphs of C, is also sufficient for generic realisations of C as a458
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(d, d− 2)-plate-bar framework to be isostatic (Tay, 1989, 1991).459

Theorem 8.1 (Tay, 1989). Let d ≥ 2. Then a generic (d, d − 2)-plate-

bar framework is isostatic if and only if the contact graph C = (V,E) is((
d+1
2

)
− 1,

(
d+1
2

))
-tight, i.e.

|E| =
[(d+ 1

2

)
− 1

]
|V | −

(
d+ 1

2

)

and

|E ′| ≤
[(d+ 1

2

)
− 1

]
|V ′| −

(
d+ 1

2

)
for all non-trivial subgraphs (V ′, E ′) of C.460

In particular, it follows from Tay’s result that a generic rod-bar framework461

in 3-space is isostatic if and only if the contact graph is (5, 6)-tight. An462

extended theorem for mixed plate-bar frameworks with both bodies and rods463

in 3-space was established by Tanigawa in Tanigawa (2012). A corresponding464

result for generic (d, d− 3)-plate-bar frameworks for d ≥ 3 has not yet been465

established.466

Given a rod-bar framework with a non-trivial point group symmetry, it is467

clear that (5, 6)-tightness of the contact graph is still a necessary condition468

for the framework to be isostatic. We have seen in Section 5 that there469

are additional necessary conditions which are given in terms of the number470

of structural components that are unshifted by the symmetry operations of471

the structure. It is natural to ask whether for a point group S all of these472

conditions combined, together with the corresponding symmetry conditions473

for all subgraphs of the contact graph with symmetry S′ ⊆ S, are sufficient474
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for a realisation of the contact graph as a rod-bar framework to be isostatic475

as long as it is as generic as possible with the given symmetry constraints.476

It turns out that in general this is not the case.477

C2

σ

σ'

Figure 9: A rod-bar framework with C2v symmetry. As it lies within the mirror plane
corresponding to σ′, it is not isostatic.

Consider, for example, a reflection-symmetric rod-bar framework con-478

sisting of a pair of rods that are images of each other under a reflection σ479

and four bars between them none of which are unshifted by σ (see Figure 9).480

This structure satisfies all the necessary conditions for isostaticity mentioned481

above. However, the reflection σ forces the structure to lie within a plane in482

3-space and therefore to also have the reflection σ′ and the half-turn rota-483

tion symmetry C2, and hence to have the larger point-group symmetry C2v.484

The structure does not satisfy the isostaticity conditions for σ′ and hence485

has a non-trivial self-stress (and also an infinitesimal motion) which are not486

detectable with the symmetry counts for σ alone.487

Finally, we note that while necessary counts for isostaticity of rod-clamp488

frameworks have been obtained, a full combinatorial theory (even without489

symmetry) has not yet been developed for these structures. See (Nixon et al.,490
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2021, Section 9.6), for example, for a discussion.491

9. Conclusions492

The work described here is part of a research programme based on the493

realisation that consideration of non-trivial symmetries of a framework can494

give useful information about the balance of freedoms and constraints, and495

qualitative ‘selection rules’ for mechanisms and states of self-stress. Classical496

counting rules state necessary conditions for rigidity, and in favourable cases,497

non-trivial point-group symmetry implies further counting rules, each related498

to a class of symmetry elements.499

In particular, the current paper has generalised the symmetry treatment500

for the wide class of systems that is covered by the umbrella term of plate-bar501

frameworks, which are of interest in applications from tensegrities to robotics.502

The symmetry-extended Maxwell equation for the plate-bar framework has503

been derived, together with an easily applied template for determination of504

representations of constraints in plate-bar systems, and codification of the505

class-by-class counting rules. This allowed a full classification of the impli-506

cation of different symmetry elements (mirrors, half-turns and higher rota-507

tions) for isostatic behaviour in 3D rod-bar systems. Even for the low point508

groups typical of robotic platforms, it was shown that symmetry consdera-509

tions can often detect mechanisms. A full specification of sufficient conditions510

for symmetry-generic isostaticity of plate-bar systems is, however, still to be511

achieved.512

Use of a symmetry-adapted method pre-supposes detection of point-group513

symmetry in a presented structure. This is often straightforward. Recogni-514
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tion of symmetries of structures is a useful skill acquired by students in disci-515

plines such as chemistry, physics and materials science. Automated detection516

of symmetry is implemented in most large software packages for electronic517

structure and crystallographic analysis, for example, and has been proposed518

for engineering-type structures (Zingoni, 2012). All the examples quoted519

in the present paper were simple enough for the symmetry analysis to be520

performed and implemented by hand.521
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