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ABSTRACT
The combination of static balancing and tensegrity struc-

tures has resulted in a new class of mechanisms: Statically Bal-
anced Tensegrity Mechanisms. These are prestressed structures
that are in equilibrium in a wide range of positions, and thusex-
hibit mechanism-like properties. This paper describes thedesign
of a prototype model of a statically balanced tensegrity mecha-
nism based on a classic tensegrity structure.

INTRODUCTION
On the border between structures and mechanisms, we find

a new and special class of structures termedStatically Balanced
Tensegrity Mechanisms. These result from the combination of
the fields ofstatic balancingandtensegrity structures. Statically
balanced systems are in equilibrium in every configuration in
their workspace, and as they require little to no effort to operate,
they are used for energy-efficient design in for instance robotics
and medical settings (see Fig. 1) [1]. A common element in static
balancing is the use of zero-free-length springs, i.e. springs that
are pretensioned such that, in their working range, their tension
is proportional to their length. The utility of zero-free-length
springs was initially exploited in the design of the classic‘An-
glepoise’ lamp [2], but is more generally applied in the fieldof
static balancing, and its properties are a prerequisite forthe con-
struction of statically balanced tensegrity mechanisms.

∗Address all correspondence to this author.

(a) (b) (c)

Figure 1. Static balancing: the three structures shown are in equilibrium

for any position of the bar, as long as in (a) the masses (black circles)

are correctly chosen, and in (b) and (c) the springs are zero-free-length

springs with appropriately chosen stiffness.

Tensegrity structures, or tensegrities, are a special typeof
prestressed pin-jointed bar frameworks with unique properties:
the tension elements are usually replaced by cables, resulting in
aesthetic, light-weight structures that seem to defy gravity [3–6].
The structures are generally both statically and kinematically in-
determinate, meaning they are self-stressed and have internal
mechanisms – displacements that to first order do not change
member lengths. The structures derive their stiffness fromthe
state of self-stress, which may stabilize any internal mechanisms
present [7]. Conventionally, tensegrity structures are designed to
be as stiff as possible. Here we employ them as mechanisms by
replacing the tension members with appropriate zero-free-length
springs. As a result the tensegrity structures become statically
balanced, i.e. they are in equilibrium over a continuous range of
positions, they are neutrally stable, and have zero stiffness [8].
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The distinguishing feature of these mechanisms is that theyare
pretensioned, i.e. every member carries a non-zero axial load,
and although member lengths and orientations change duringdis-
placement, they remain in equilibrium and thus require no exter-
nal work to deform.

This paper will describe the design of such a statically bal-
anced tensegrity mechanism based on a classic tensegrity struc-
ture, and will discuss the required steps in the design process:
equilibrium conditions, zero stiffness analysis, and range of mo-
tion. A prototype mechanism was built, and particular focus
will be placed on the (novel) aspects associated with this type
of structure, which arose during design and construction.

MECHANISM SYNTHESIS AND ANALYSIS
The statically balanced tensegrity mechanisms described in

this paper are at once both prestressed structure and mechanism:
they continuously remain in equilibrium under the internalten-
sions, throughout a large range of motion. This is also what sets
their synthesis and analysis apart from conventional mechanisms.

The theory of statically balanced tensegrity mechanisms, or,
equivalently, zero stiffness tensegrity structures, was investigated
by [8] using the tools of structural engineering and mathematical
rigidity theory, e.g. [9]. It was described why and when struc-
tures have zero stiffness, if zero-free-length springs areintro-
duced. Additionally it was theoretically shown that the relevant
zero-stiffness modes are valid over finite displacements, i.e. are
indeed mechanisms. However, the tools of structural engineering
are ill-equipped to deal with mechanisms, as they only consider
infinitesimal deviations from an initial equilibrium configuration.
The structures described here do not have a preferred position,
and as the zero stiffness results in singular stiffness matrices, it-
erative approximative techniques have to be employed to calcu-
late displacements. Therefore, a different approach is desired to
analyse the mechanism properties. The method currently used is
to derive the analytical equilibrium equations, and use those to
describe the equilibrium path. This is only practically possible
for relatively simple structures, which can be described with few
(generalized) parameters. Even then, not the entire behaviour can
be described, as will be illustrated by the example structure.

The synthesis of the statically balanced tensegrity mecha-
nisms will not be discussed in this paper, but we will instead
focus on the analysis of a structure shown to be a statically
balanced tensegrity mechanism [8], using analytical equilibrium
conditions to analyse some aspects of the mechanism properties.

PROTOTYPE ANALYSIS
The structure chosen for the construction of the prototype

model, is a classic tensegrity structure, as shown in Fig. 2.It is a
spatial structure consisting of three bars and nine cables.When
constructed with conventional elements, the structure derives its
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Figure 2. Rotationally symmetric tensegrity structure. The structure has

a circumscribing radius r , height h and the two parallel equilateral trian-

gles (nodes 1–3 and nodes 4–6) are rotated π/6 with respect to each

other.

stiffness from the self-stress in the system, as there exists an in-
finitesimal internal mechanism. Consequently, it would feel a bit
‘soft’ in some directions.

When replacing all wires by appropriately chosen zero-free-
length springs, the structure will have zero stiffness, i.e. it will
be statically balanced. The presence of zero-stiffness modes in
tensegrity structures can be predicted using the theory described
in [8]: the structure at hand will have three zero-stiffnessmodes,
i.e. three independent statically balanced displacements.

This section will first describe the equilibrium conditions,
followed by the structural analysis, showing that the structure in-
deed has no stiffness in certain modes, and is thus a mechanism.

Equilibrium analysis
In tensegrity literature, finding an equilibrium position is re-

ferred to asform finding, and many techniques have been devel-
oped [10]. The structure used for the prototype is the simplest
member of a class of rotationally symmetric prismic tensegrities.
For this class, analytical solutions are available and generally two
approaches can be distinguished: working from nodal equilib-
rium at each of the nodes (static approach), or by making use
of the property of tensegrities that the cables reach a minimum
and the bars a maximum length in the equilibrium configuration
(kinematic approach). In Appendix A a full derivation is pro-
vided using the static approach.

The results yield several interesting properties: the twist an-
gle α between top and bottom polygons, is independent of their
circumscribing radiusr or the heighth of the structure, and is
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merely a function of the number of verticesn of the polygons:

α =
π
2
− π

n
(1)

In our case, with three bars, the triangles are thus twistedπ/6
with respect to each other. For a structure with equal top and
bottom radiusr, bar lengthb, and vertical cable lengthl , the
tensions are given by

[tv th] = − tb
b

[l r ] (2)

with tv, th and tb respectively the tension in the vertical ca-
bles, horizontal cables and bars. This becomes interestingwhen
rewritten in terms offorce densityor tension coefficient

t̂v = −t̂b (3)

t̂v = 2sin
(π

n

)

t̂h (4)

where the tension coefficientt̂ is defined as the tensiont in the
member divided by the lengthl , t̂ = t

l . Note that for zero-free-
length springs it is equal to the spring stiffness,Kz f l = t

l , and
thus when replacing the cables by the zero-free-length springs,
the vertical springs of the prototype should be 2sin

(π
3

)

=
√

3
times stiffer than the horizontal ones.

Now, if the structure is deformed symmetrically, while
maintaining the same ratio between bottom and top radius of the
structure, the tension coefficients remain constant. As thespring
stiffness of a zero-free-length spring is equal to its tension coef-
ficient, the prototype structure will then remain in equilibrium,
provided that the tension coefficient of the bar also remainscon-
stant. That is true if the bar length (and thus tension) is invariant.
This behaviour corresponds to the theory developed in [8], and
is a common property of statically balanced tensegrity mecha-
nisms: only the lengths of zero-free-length springs change.

Note that the equilibrium of the structure is modelled under
absence of external loads, and hence when constructed with the
zero-free-length springs would collapse under its own weight. In
the demonstration model this is countered by the friction forces
present.

Structural analysis
The structure was analysed for its stiffness modes in an ar-

bitrary initial position, using the tangent stiffness matrix of the
structure. The tangent stiffness matrixK t is a common com-
ponent in structural analysis, and relates infinitesimal displace-
mentsd to force perturbationsf

K td = f (5)

As the tangent stiffness matrix is well-known in structuralanal-
ysis, many different formulations for it exist, e.g. [11, 12]. Dif-
ferent formulations with identical underlying assumptions will
produce identical numerical results, but may provide a different
understandingof the stiffness. The formulation used in this pa-
per is derived by [13], and incorporates large strains. It iswritten
as

K t = K̂ +S

= AĜAT +S (6)

whereS is thestressmatrix, K̂ is themodified material stiffness
matrix, A is theequilibrium matrixfor the structure and̂G is a
diagonal matrix whose entries consist of themodified axial stiff-
nessfor each of the members. The modified axial stiffness ˆg is
defined as

ĝ = g− t̂ (7)

whereg is the conventional axial stiffness andt̂ the tension coef-
ficient. For conventional members, ˆg will be little different from
g. It will certainly always be positive, and hence the matrixĜ
will always be positive definite. However, for a zero-free-length
spring, because the tensiont is proportional to the length,t = gl,
the tension coefficient is equal to the axial stiffness,t̂ = t/l = g,
and the modified axial stiffness ˆg = g− t̂ = 0. Thus structures
constructed with zero-free-length springs will have zerosalong
the diagonal ofĜ corresponding to these members, andĜ will
now only be positivesemi-definite. It is this consequence of the
use of zero-free-length springs, that causes the structures to ex-
hibit zero stiffness.

This derivation of the tangent stiffness matrix differs from
the commonly used formulations in that it does not explicitly dis-
tinguish between the material stiffness and geometric stiffness of
the structure. Instead it combines part of the geometric stiffness
matrix with the material stiffness, by introducing the modified
axial stiffness. This approach was crucial in introducing zero-
free-length springs to structural analysis. The resultingstress
matrix represents the state of self-stress (it only contains tension
coefficients) which may stabilize the internal mechanisms in the
structures.

Example analysis. The structure in Fig. 2 was analysed
with r = 1 andh = 2. All conventional elements have an ‘ax-
ial stiffness’ ofEA= 100N, the horizontal springs 1N/m and the
vertical springs

√
3N/m. The internal tension of the structure is

uniquely prescribed by these spring stiffnesses. The axialstiff-
ness was chosen this low to prevent numerical noise, and is pos-
sible because the actual stiffness is irrelevant as the bar lengths
remain constant in the zero-stiffness modes [8].
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Figure 3. Fully symmetric zero-stiffness mode, with (a) 3D view, (b) top

view and (c) side view. All displacement vectors are of equal magnitude,

and with equal z-component. In this mode the rotation angle between

bottom and top triangle remains constant throughout the displacement.

The tangent stiffness of the structure has been found using
the formulation of Eqn. 6 for two different cases. Firstly, with
the structure consisting of conventional elements, and secondly,
when made from conventional compressive bars, but using zero-
free-length springs as tension members. The level of self-stress –
and thus the stress matrix – is identical for both cases. The results
are presented as the stiffness of each of the eigenmodes (exclud-
ing rigid-body motions) in Tables 1(a) and 1(b).

Table 1. Stiffness of each of the eigenmodes, excluding rigid-body mo-

tions, for (a) the conventional structure and (b) the structure with zero-

free-length springs as tension members. The total stiffness K t is the sum

of the contributions of K̂ and S.

(a)

K t K̂ S

5.630 0.017 5.613

27.838 26.196 1.642

27.838 26.196 1.642

83.219 79.195 4.023

83.219 79.195 4.023

107.376 103.074 4.301

107.376 103.074 4.301

113.852 113.535 0.317

132.506 130.474 2.032

132.506 130.474 2.032

176.205 170.205 6.000

225.457 225.388 0.069

(b)

K t K̂ S

0.000 0.000 0.000

0.000 0.000 0.000

0.000 0.000 0.000

5.670 0.026 5.643

5.670 0.026 5.643

5.789 0.017 5.772

6.000 0.000 6.000

6.000 0.000 6.000

6.000 0.000 6.000

75.599 75.372 0.227

75.719 75.362 0.356

75.719 75.362 0.356

For the conventional structure all eigenvalues of the tangent
stiffness matrix are positive, and the stress matrix is of maximal
rank. The system has an internal mechanism, which is stabi-
lized by the state of self-stress. This can be seen in the firstline
of Tab. 1(a), where thêK component is almost zero (it is not
precisely zero because the eigenvectors ofK̂ andK t are not pre-
cisely aligned).

When zero-free-length springs are placed in the structure,
three new zero-stiffness modes appear inK t – the first three rows
of Tab. 1(b). These modes can be considered in a symmetry-
adapted form [14] as a totally symmetric mode, and a pair of
modes that are symmetric and antisymmetric with respect to a
dihedral rotation. The fully symmetric mode is shown in Fig.3.
It corresponds to a mode where the structure is compressed inthe
x-y plane and expands in the z-direction (or vice versa).

Mechanism analysis
The next step is to translate the results from the struc-

tural analysis, which are infinitesimal displacements, into actual
mechanism information. In [8] it was argued theoretically that
the type of zero-stiffness modes found in the numerical analy-
sis are indeed finite, but the question stands how they are best
interpreted over a large range of motion. For the example struc-
ture, the analytical equilibrium solutions were used to analyse
the fully symmetric deformation shown in Fig. 3. The two other
zero-stiffness modes, however, cannot be analysed with thesame
approach, and therefore the more general problem remains: the
current design approach allows the synthesis of tensegritystruc-
tures, and allows to predict and numerically confirm the number
of zero-stiffness modes, but understanding the precise properties
of the mechanism is currently limited to analytical solutions.

The analysis of the prototype structure is done by increasing
the height of the structure stepwise, and by rewriting Eqn. A.2,
under the assumption of a constant bar length and identical ra-
dius for top and bottom polygon, the corresponding radius can
be found:

r =

√

b2−h2

2−2cos(2π/n+α)
(8)

This analysis is possible, because the bar lengths remain con-
stant throughout the displacement. Note that the twist angle α
of the structure also remains constant throughout this deforma-
tion mode. The range of motion is then expressed in terms of the
normalized parameterh/r, which is the ratio of the height over
the radius. Translating theh/r ratio into actual values of height
and radius, is done by means of Fig. 4. Along the vertical axes
usually other normalized parameters are plotted, and in general
the values need to be multiplied with the bar length to obtainthe
actual values for a given structure.
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Figure 4. Height and radius of the structure, for a given h/r ratio. To

obtain actual values, multiply by the bar length of the structure.

PROTOTYPE DESIGN
A (qualitative) design description is first given, before the

dimensions and the range of motion of the structure are deter-
mined. The choice of bar length and dimensions of the other
components proved to be very much intertwined with the possi-
ble range of motion.

Design description
For the static balancing of the tensegrity structure, the use of

springs with a zero rest length is a conditionsine qua non. How-
ever, the prototype does not actually feature pretensionedzero-
free-length springs, and their properties are emulated by means
of regular non-pretensioned springs. This choice is motivated
by the manufacturing difficulties of zero-free-length springs, and
the physical rest length of the springs which would unnecessar-
ily limit the range of motion of the structure. The properties of
the zero-free-length spring are emulated by running the wire over
the endpoint of the bar, to a conventional spring [1]. By correctly
choosing the total wire length, the spring will be at its restlength
when the endpoint of the wire coincides with the endpoint of the
bar, and thus the tension will be proportional to the ‘length’ of
the wire between the two bars it connects.

This translates into a design (schematically shown in Fig. 5)
where wires run over a yarn guide on the endpoint of the bar,
wrap around a pulley attached to the spring, and are fixed at a
flange. This pulley construction halves the necessary elongation
of the spring. The other end of the wire is attached to a pin inside
the other bar. As the total structure consists of three bars and nine
springs (three vertical and six horizontal), each bar therefore has
three springs attached: a ‘horizontal’ and ‘vertical’ spring on one

Figure 5. Conceptual design of the bars of the tensegrity mechanism, in

cross-section view. Only one spring is shown, but two more are attached

in a similar manner, along the circumference of the flanges. Note that this

image is not to scale.

Figure 6. The three springs corresponding to each bar: two springs (ver-

tical and horizontal) are attached on one end, and one (horizontal) on the

other.

end, and a ‘horizontal’ on the other (see Fig. 6).
An important part of the design is the correct choice of the

springs. Unlike in many spring applications, the precise spring
stiffness is not relevant in statically balanced tensegrity mech-
anisms, as the springs balance each other out. A crucial prop-
erty of the springs, however, is the required spring stiffness ratio
between the horizontal and vertical springs as calculated in Ap-
pendix A: the vertical spring must be

√
3 times stiffer than the

horizontal spring. From a practical perspective there are more
requirements to the springs. First of all, the springs need to be
able to reach a high level of elongation to achieve a maximal
working range. Also, most off-the-shelf springs are pretensioned
to some degree. Not only does this complicate assembly as it
has to be taken into account for the wire lengths, but the preten-
sion would also limit the working range of the mechanism as the
force/displacement relationship is cut off sharply when the spring
reaches its rest length. For these reasons custom-made springs
without pretension were used. To compensate for manufacturing
imperfections, and to allow individual tuning of the springs to
obtain the properties of a zero-free-length spring, adjustment of
the spring position and wire length was possible.

If perfectly constructed (i.e. friction free, and true zero-
free-length springs) the structure would collapse under its own
weight, and the aim therefore was to minimize the weight, and
thus size, of the structure. In the following section a minimum
bar length is determined which, given the constraints imposed by
the components, provides a certain desired working range.
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Figure 7. Elongation of springs as ratio of bar length. As a result of the

use of the pulleys, it is half of the length of the corresponding wire.

Range of motion
Theoretically the structure can deform from a planar config-

uration withh = 0, to almosth = b. In reality, the components
impose constraints on the practically possible range of motion.
First, some assumptions need to be made about the components,
before the analysis can be done. In our case the assumed value
for the outer diameter of the bar with the springs, as well as the
diameter of the flange, was set at 30mm.

spring elongation Due to the use of the pulley, for an unten-
sioned spring, the elongation equals half of the length of
the corresponding wire. These values are plotted as a ra-
tio of the bar length in Fig. 7. As can be seen, the maxi-
mum practical elongation would be roughly 47% of the bar
length. Assuming that the maximum elongation corresponds
to 150% of rest length (which, as a rule of thumb, is the max-
imum allowed elongation), then for an untensioned spring
with touching coils the rest length would be 31%, and the
required distance between the flanges on the bar would thus
have to be 78% of the bar length. Additionally some room is
needed for attachment of spring, pulley and wires, estimated
at 10mm at either end. These values determine a lower
bound for the distance between the flanges, to achieve the
maximal working range. If a non-maximal working range
is sufficient, the distance can be adjusted accordingly, and
reduced even further by using pretensioned springs.

contact between barsWhen the springs are attached along-
side the bar, the effective outer diameter increases, and the
springs of different bars might contact each other during dis-
placement. The minimal distance between the centre lines of
the bars is plotted as a function ofh/r in Fig. 8. The hor-
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Figure 8. Clearance between bars. The horizontal lines indicate how the

estimated required 30mm translates into normalized clearance for a given

bar length.

izontal lines in that figure indicate when the springs would
collide for a given bar length, and thus show the restriction
on the working range.

contact between wires and flangeA more limiting factor is
when the wires come in contact with the flanges; for a low
h/r with the horizontal wires, and for a highh/r with the
vertical wires. The flanges cannot be moved away from the
endpoint indefinitely, as that would conflict with the required
distance between the flanges to allow for the spring elonga-
tion. The angles between wires and bar can be calculated
as a function ofh/r, but more interesting is to show how
far the flanges should be removed from the endpoint to just
avoid contact. By then plotting the available distance from
the endpoint of the bar for a given bar length, the available
range of motion is found. See Fig. 9.

Using Fig. 9 the estimated working range for the final struc-
ture, with a bar length of 450mm, was found to beh/r =
[0.5. . .4.5]. Using Fig. 4 this corresponds to a height range of
[113. . .415]mm, and radius range of[92. . .225]mm. This was
deemed more than sufficient to demonstrate the properties ofthis
type of structure. A remark is in order about the accuracy of the
estimated working range. The calculations done on the working
range assume the structure to be purely pin-jointed with zero-
width bars and wires. In practice the wires do not exit the barat
the centre line, but at the bar radius. This reduces the accuracy of
especially Fig. 9. Nevertheless, the above calculations provide a
good indication.
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As shown above, the main limitation on the working range is
posed by the contact between flange and wires. This can be im-
proved by moving the flanges away from the endpoint by choos-
ing springs that can reach higher levels of elongation, and by re-
ducing the diameter of the flanges by choosing smaller springs.
This illustrates there is some leeway for optimization in future
designs.

Miscellaneous
As mentioned earlier, theoretically the tension coefficient,

and thus length, of the bar remains constant throughout displace-
ment. This is true if zero-free-length springs are used which are
attached from endpoint to endpoint of the bars. In the current
setup, however, all springs exert axial forces on the bar, and the
axial force is not constant throughout displacement. The max-
imum axial force exerted by the combined elongations of the
springs can be calculated (see Fig. 10) and was checked with
the buckling load of the bar.

Throughout the displacement, the angles the wires make
with respect to each other change. As a result, the ideal attach-
ment position of the springs along the circumference of the bar
changes (see Fig. 11). The angles between the various wires are
plotted in Fig. 12. A reference position was chosen which more
or less gave an average angle between the extremes of the work-
ing range. Note that the changing angles mean that the bars rotate
slightly around their axis during displacement.
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Figure 10. Normalized axial force, due to the elongation of the springs.

When multiplied with the bar length and the horizontal spring stiffness, the

total axial force is found.
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As the structure is only in equilibrium when all springs are
attached in the correct manner, the bars need to be firmly fixed
during assembly. An important part of assembly is also to make
sure that each spring is properly configured to emulate a zero-
free-length spring. The assembly process will become more trou-
blesome when the structures become more complex.

FINAL STRUCTURE
The final structure, shown in Fig. 13, can be deformed into a

continuous range of positions whilst remaining in equilibrium.
This includes non-symmetric configurations, due to the addi-
tional two zero-stiffness modes. The structure was not taken to
the extremes of its working range, as for large extensions ofthe
springs the wires would often slip out of the pulleys; this can be
avoided by a more robust pulley design.

There is a substantial amount of friction in the system. The
upside of the friction is that the structure does not collapse under
its own weight, and that substantially less fine tuning was needed
to assemble the structure. The downside is that the frictionneeds
to be overcome when deforming, so although the structure has
zero stiffness, itdoesrequire external work to deform. Another
consequence of the friction is that the structure can be deformed
into positions which should otherwise provide some stiffness. In
that respect it does not faithfully demonstrate the properties of
this type of mechanism.

CONCLUSIONS
We have designed and constructed a statically balanced

tensegrity mechanism based on a classic tensegrity structure. It

can be deformed into a wide range of positions, while remaining
in equilibrium.

The distinguishing feature of this class of mechanisms is
that, as a tensegrity, every member is stressed, and it is also
the main source of difficulty when designing and constructing
these systems. Tensegrity literature provides a lot of techniques
for finding an initial equilibrium configuration (i.e. form finding)
and the tools of structural engineering can be used to show if
a tensegrity structure constructed with zero-free-lengthsprings
will indeed have zero stiffness, and is thus a mechanism. The
next step in the process is to analyse the mechanism properties
of the structure such as the range of motion. For this, the cur-
rently used method is to derive the analytical equilibrium equa-
tions, and investigate the structure by that means. This approach
is somewhat limited as it only allows the analysis of fairly simple
structures, and only part of the total behaviour: e.g. for the mech-
anism described in this paper only the symmetric deformation
was analysed. The internal forces also require attention during
assembly of the mechanism, as it will only be balanced when all
springs are tensioned and until then it needs to be firmly fixed.

The design of the springs is key in these mechanisms. If the
springs can achieve larger elongations, the working range can
be increased. Appropriate (and accurately manufactured) spring
stiffness ratios are also needed, and these are not always avail-
able in standard spring catalogues. When the friction is suffi-
ciently reduced, the accuracy of the zero rest length of the springs
becomes increasingly important and would require a lot of fine
tuning. It is currently unclear how it would best be done, to de-
termine which springs to adjust, and by how much.

Interesting unanswered (theoretical) questions, includethat
of the number of DOF of statically balanced tensegrity mecha-
nisms. As the structures would be structurally stiff when con-
structed with conventional elements, any degrees of freedom are
introduced by the zero-free-length springs (or equivalents), and
are not covered by any definition of DOF known to the authors.
Actuation of these mechanisms has also not been considered
yet. To excite the entire system, multiple actuators are proba-
bly needed. It is also difficult to determine which of the zero-
stiffness modes is actuated. Therefore it would be interesting to
construct a rotationally symmetric model with 5 (or more) bars,
as by [8] that would have only one zero-stiffness mode, and could
possibly be actuated with only one actuator.

A lot of work is left to be done in this field, but the design
of the prototype has already revealed interesting aspects of stati-
cally balanced tensegrity mechanisms.
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Appendix A: Analytical Equilibrium Conditions
Finding the initial equilibrium configurations for tensegrity

structures, is referred to as form finding [10]. Rotationally sym-
metric, or prismic, tensegrities have been the object of study in
the past and analytical equilibrium solutions exist [9, 11]. There
are two general approaches to deriving the equilibrium condi-
tions: statically and kinematically. The former works fromnodal
equilibria, the latter from the premise that in tensegrity structures
the bar lengths reach a maximum and cable lengths a minimum.
Here the static method is used.

Equilibrium configuration
The generic rotationally symmetric structure under consid-

eration is depicted in Fig. 14. It consists ofn bars, connecting
the vertices of two regularn-polygons on two parallel planes,
twisted over an angleα with respect to each other. The struc-
ture has heighth, top radiusrh and bottom radiusr0. With these
values all aspects of the structure can be calculated.

Figure 14. Rotationally symmetric tensegrity structure with n bars,

height h, radii r0 and rh, and twist angle α. Figure copied from [11].

Element lengths. For the calculation of the element
lengths, the cosine rule was used extensively:

c2 = d2 +e2−2decos(γ). (A.1)

With Eqn. A.1 the bar lengthb is then written as

b2 = h2 + r2
0 + r2

h−2r0rhcos(
2π
n

+α), (A.2)

the vertical cable lengthl as

l2 = h2 + r2
0 + r2

h−2r0rhcos(α), (A.3)

but the horizontal cable lengthsl0 and lh are easier written as
(with eitherr0 or rh):

l0 = 2r0sin(
π
n
). (A.4)

Twist angle. In order to find the twist angle, we consider
the nodal equilibrium at noden+1 in Fig. 14, with tensiontb in
the bar, tensiontv in the vertical cable andt0, th the tension in the
bottom and top horizontal cables respectively.

First we consider equilibrium in thez-direction, which
merely involves the vertical cable and bar:

tb
b

h+
tv
l

h = 0 (A.5)

which yields that

tv = − tb
b

l . (A.6)

Next the equilibrium in they-direction is derived. Due to
symmetry considerations on the horizontal cables, the contribu-
tions of the bar and vertical cable should cancel each other out.
This analysis yields:

sin(α)rh
tv
l

+sin(
2π
n

+α)rh
tb
b

= 0 (A.7)

which with Eqn. A.6 becomes

rh
tb
b

(sin(
2π
n

+α)−sinα) = 0. (A.8)

For this to hold for anyα we obtain

sin(
2π
n

+α) = sinα = sin(π−α) (A.9)

and find that

2π
n

+α = π−α

2α = π− 2π
n

α =
π
2
− π

n
. (A.10)
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Note that the twist angleα only depends onn and is indepen-
dent of the radius and height, and holds as long the structureis
rotationally symmetric with two paralleln-polygons.

Equilibrium tensions
With the equilibrium twist angle now known, we wish to

find the corresponding internal tensions. It was already shown in
Eqn. A.6 that

tv = − tb
b

l .

To calculate the tensions in the horizontal cables, the force equi-
librium in x-direction at noden+1 is considered. The contribu-
tions of the vertical cable and bar to that equilibrium,fx,vert, can
be written as:

(r0−cosαrh)
tv
l

+

(

r0−cos(
2π
n

+α)rh

)

tb
b

= fx,vert (A.11)

which, when using Eqn. A.6 becomes:

(

cosα−cos(
2π
n

+α)

)

rh
tb
b

= fx,vert. (A.12)

With α = π
2 −

π
n we can write

(

cos(
π
2
− π

n
)−cos(

π
n

+
π
2
)
)

rh
tb
b

= fx,vert (A.13)

and using the following goniometric relationships (with arbitrary
β andγ)

cos(γ+β) = cosγcosβ−sinγsinβ
cos(γ−β) = cosγcosβ+sinγsinβ

we find

(

sin(
π
n
)+sin(

π
n
)
)

rh
tb
b

= fx,vert

fx,vert = 2sin(
π
n
)rh

tb
b

. (A.14)

Next, the effect of the tensions in the horizontal cables in the
x-direction can be written as:

2

(

r0−cos(
2π
n

)r0

)

t0
l0

= fx,horz

fx,horz = 2

(

1−cos(
2π
n

)

)

r0t0
l0

. (A.15)

Now the two contributions are summed, and the solution to
fx,vert + fx,horz = 0 yields:

2

(

1−cos(
2π
n

)

)

r0t0
l0

= −2sin(
π
n
)rh

tb
b

(

1−cos(
2π
n

)

)

r0t0
2r0sin(π

n)
= −sin(

π
n
)rh

tb
b

(

1−cos(
2π
n

)

)

t0 = −2sin2 (
π
n
)rh

tb
b

(

1−1+2sin2 (
π
n
)
)

t0 = −2sin2 (
π
n
)rh

tb
b

t0 = −rh
tb
b

(A.16)

where use is made of

cos(2γ) = 1−2sin2 (γ). (A.17)

Reasoning that in Eqn. A.16 therh has to be replaced byr0 to
obtain the tensionth, all the tensions in the system can be written
as follows:

[tv th t0] = − tb
b

[l r0 rh] (A.18)

which corresponds to the results found by [11]. With some
rewriting, the equilibrium equations can be written in terms of
the tension coefficients:

t̂v = −t̂b (A.19)

t̂b = −2
rh

r0
sin

(π
n

)

t̂h (A.20)

t̂h
t̂0

=

(

r0

rh

)2

(A.21)

Spring stiffness ratio
In the analysis of statically balanced tensegrity mechanisms,

the cables are replaced by zero-free-length springs. This leads to
the question what the stiffness (ratios) of those springs must be
in order to preserve equilibrium. With the spring stiffnessof a
zero-free-length spring equal to its tension coefficient, and with
r0 = rh = r andt̂0 = t̂h = t̂hor we find that

Kver

Khor
=

t̂ver

t̂hor
=

2sin
(π

n

)

t̂hor

t̂hor
= 2sin

(π
n

)

(A.22)

and for our tensegrity prism withn = 3 we obtain:

Kver

Khor
= 2sin

(π
3

)

=
√

3. (A.23)
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