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ABSTRACT

The combination of static balancing and tensegrity struc-
tures has resulted in a new class of mechanisms: Statically B
anced Tensegrity Mechanisms. These are prestressedwsasict
that are in equilibrium in a wide range of positions, and thaxs
hibit mechanism-like properties. This paper describeglsgn
of a prototype model of a statically balanced tensegrity maec
nism based on a classic tensegrity structure.

INTRODUCTION

On the border between structures and mechanisms, we find

a new and special class of structures terr8eatically Balanced
Tensegrity MechanismsThese result from the combination of
the fields ofstatic balancingandtensegrity structuresStatically
balanced systems are in equilibrium in every configuration i
their workspace, and as they require little to no effort terage,
they are used for energy-efficient design in for instancetiob
and medical settings (see Fig. 1) [1]. Acommon element iicsta
balancing is the use of zero-free-length springs, i.enggrthat
are pretensioned such that, in their working range, thesita

is proportional to their length. The utility of zero-freeAgth
springs was initially exploited in the design of the classic-
glepoise’ lamp [2], but is more generally applied in the fiefd
static balancing, and its properties are a prerequisitéhiocon-
struction of statically balanced tensegrity mechanisms.
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Figure 1. Static balancing: the three structures shown are in equilibrium
for any position of the bar, as long as in (a) the masses (black circles)
are correctly chosen, and in (b) and (c) the springs are zero-free-length
springs with appropriately chosen stiffness.

Tensegrity structures, or tensegrities, are a special ofpe
prestressed pin-jointed bar frameworks with unique priogeer
the tension elements are usually replaced by cables, irepuit
aesthetic, light-weight structures that seem to defy tyd8i-6].
The structures are generally both statically and kinerabyiin-
determinate, meaning they are self-stressed and havenahter
mechanisms — displacements that to first order do not chang
member lengths. The structures derive their stiffness fiioen
state of self-stress, which may stabilize any internal raaigms
present [7]. Conventionally, tensegrity structures asggieed to
be as stiff as possible. Here we employ them as mechanisms |
replacing the tension members with appropriate zeroi&agth
springs. As a result the tensegrity structures becomecaligti
balanced, i.e. they are in equilibrium over a continuougesof
positions, they are neutrally stable, and have zero stiffrj8].
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The distinguishing feature of these mechanisms is that diney
pretensioned, i.e. every member carries a non-zero axaal, o
and although member lengths and orientations change diigng
placement, they remain in equilibrium and thus require rierex
nal work to deform.

This paper will describe the design of such a statically bal-
anced tensegrity mechanism based on a classic tenseguity st
ture, and will discuss the required steps in the design proce
equilibrium conditions, zero stiffness analysis, and mafjmo-
tion. A prototype mechanism was built, and particular focus
will be placed on the (novel) aspects associated with tipe ty
of structure, which arose during design and construction.

MECHANISM SYNTHESIS AND ANALYSIS

The statically balanced tensegrity mechanisms described i
this paper are at once both prestressed structure and nigchan
they continuously remain in equilibrium under the interteai-
sions, throughout a large range of motion. This is also wétst s
their synthesis and analysis apart from conventional ntashes.

The theory of statically balanced tensegrity mechanisms, o
equivalently, zero stiffness tensegrity structures, \wasstigated
by [8] using the tools of structural engineering and mathéah
rigidity theory, e.g. [9]. It was described why and when &tru
tures have zero stiffness, if zero-free-length springsiire-
duced. Additionally it was theoretically shown that theekeint
zero-stiffness modes are valid over finite displacemerds are
indeed mechanisms. However, the tools of structural eeging
are ill-equipped to deal with mechanisms, as they only dmisi
infinitesimal deviations from an initial equilibrium configation.
The structures described here do not have a preferred grositi
and as the zero stiffness results in singular stiffnessicestrit-
erative approximative techniques have to be employed tueal
late displacements. Therefore, a different approach iseteto
analyse the mechanism properties. The method currenttyisse
to derive the analytical equilibrium equations, and use¢hio
describe the equilibrium path. This is only practically gibte
for relatively simple structures, which can be describeith figw
(generalized) parameters. Even then, not the entire betnasan
be described, as will be illustrated by the example strectur

The synthesis of the statically balanced tensegrity mecha-
nisms will not be discussed in this paper, but we will instead
focus on the analysis of a structure shown to be a statically
balanced tensegrity mechanism [8], using analytical éayiuim
conditions to analyse some aspects of the mechanism piegert

PROTOTYPE ANALYSIS

The structure chosen for the construction of the prototype
model, is a classic tensegrity structure, as shown in Fig.i2 a
spatial structure consisting of three bars and nine cabléeen
constructed with conventional elements, the structurveleits

Figure 2. Rotationally symmetric tensegrity structure. The structure has
a circumscribing radius I, height h and the two parallel equilateral trian-
gles (nodes 1-3 and nodes 4-6) are rotated T[/6 with respect to each
other.

stiffness from the self-stress in the system, as thereseaisin-
finitesimal internal mechanism. Consequently, it would &leit
‘soft’ in some directions.

When replacing all wires by appropriately chosen zero-free:
length springs, the structure will have zero stiffness, it.vill
be statically balanced. The presence of zero-stiffnessemod
tensegrity structures can be predicted using the theowrithesl
in [8]: the structure at hand will have three zero-stiffnesxdes,
i.e. three independent statically balanced displacements

This section will first describe the equilibrium conditions
followed by the structural analysis, showing that the strecin-
deed has no stiffness in certain modes, and is thus a meahanis

Equilibrium analysis

In tensegrity literature, finding an equilibrium positi@re-
ferred to aform finding and many techniques have been devel-
oped [10]. The structure used for the prototype is the sigtple
member of a class of rotationally symmetric prismic teniieg:
For this class, analytical solutions are available and igiygwo
approaches can be distinguished: working from nodal dxuili
rium at each of the nodes (static approach), or by making us
of the property of tensegrities that the cables reach a nuimm
and the bars a maximum length in the equilibrium configuratio
(kinematic approach). In Appendix A a full derivation is pro
vided using the static approach.

The results yield several interesting properties: thettaris
gle a between top and bottom polygons, is independent of thei
circumscribing radius or the heighth of the structure, and is
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merely a function of the number of vertice®f the polygons:

@)

In our case, with three bars, the triangles are thus twisisd
with respect to each other.
bottom radiusr, bar lengthb, and vertical cable length the
tensions are given by

[tv th]:_ [I r} (2)

with ty, t, andty respectively the tension in the vertical ca-
bles, horizontal cables and bars. This becomes interestireg
rewritten in terms oforce densityor tension coefficient

®)

f, = 25|n< )th 4)

where the tension coefficiefitis defined as the tensidnn the
member divided by the length f = | Note that for zero -free-
length springs it is equal to the spring stiffne&s; = l, and
thus when replacing the cables by the zero-free-lengtmggri
the vertical springs of the prototype should be 2gh = v/3
times stiffer than the horizontal ones.

Now, if the structure is deformed symmetrically, while
maintaining the same ratio between bottom and top radiuseof t
structure, the tension coefficients remain constant. Aspinag
stiffness of a zero-free-length spring is equal to its temsioef-
ficient, the prototype structure will then remain in equriliin,
provided that the tension coefficient of the bar also remedms
stant. That is true if the bar length (and thus tension) iariiant.
This behaviour corresponds to the theory developed in j&], a
is a common property of statically balanced tensegrity raech
nisms: only the lengths of zero-free-length springs change

Note that the equilibrium of the structure is modelled under
absence of external loads, and hence when constructedhaith t
zero-free-length springs would collapse under its own tveitn
the demonstration model this is countered by the frictiocde
present.

Structural analysis

The structure was analysed for its stiffness modes in an ar-

bitrary initial position, using the tangent stiffness nmatf the

structure. The tangent stiffness matKx is a common com-
ponent in structural analysis, and relates infinitesimgpldice-
mentsd to force perturbations

Kid = (5)

For a structure with equal top and

As the tangent stiffness matrix is well-known in structuaahl-
ysis, many different formulations for it exist, e.g. [11]1Dif-
ferent formulations with identical underlying assumpsonill
produce identical numerical results, but may provide aed#ifit
understandingf the stiffness. The formulation used in this pa-
per is derived by [13], and incorporates large strains. Written

as

Ki=K+S

=AGAT+S (6)
whereS is thestressmatrix, K is themodified material stiffness
matrix, A is theequilibrium matrixfor the structure ané is a
diagonal matrix whose entries consist of thedified axial stiff-
nessfor each of the members. The modified axial stiffngss ~
defined as

(7)

whereg is the conventional axial stiffness afithe tension coef-
ficient. For conventional membergwill be little different from
0. It will certainly always be positive, and hence the matix
will always be positive definite. However, for a zero-fresgth
spring, because the tensibis proportional to the length,= gl,
the tension coefficient is equal to the axial stiffndss,t/l =g
and the modified axial stiffnesg=g—{ = 0. Thus structures
constructed with zero-free-length springs will have zeatwng
the diagonal ol corresponding to these members, avill
now only be positivesemidefinite. It is this consequence of the
use of zero-free-length springs, that causes the strigctarex-
hibit zero stiffness.

This derivation of the tangent stiffness matrix differsnfro
the commonly used formulations in that it does not expijatik-
tinguish between the material stiffness and geometritnsst of
the structure. Instead it combines part of the geometifimetis
matrix with the material stiffness, by introducing the st
axial stiffness. This approach was crucial in introducirgoz
free-length springs to structural analysis. The resulStrgss
matrix represents the state of self-stress (it only costgnsion
coefficients) which may stabilize the internal mechanismthe
structures.

Example analysis.  The structure in Fig. 2 was analysed
with r =1 andh = 2. All conventional elements have an ‘ax-
ial stiffness’ ofEA= 100N, the horizontal springs 1N/m and the
vertical springsy’3N/m. The internal tension of the structure is
uniquely prescribed by these spring stiffnesses. The aki#
ness was chosen this low to prevent numerical noise, andis po
sible because the actual stiffness is irrelevant as thecinaths
remain constant in the zero-stiffness modes [8].

Copyright © 2006 by ASME



e

Figure 3. Fully symmetric zero-stiffness mode, with (a) 3D view, (b) top
view and (c) side view. All displacement vectors are of equal magnitude,
and with equal z-component. In this mode the rotation angle between
bottom and top triangle remains constant throughout the displacement.

For the conventional structure all eigenvalues of the tahge
stiffness matrix are positive, and the stress matrix is aofimal
rank. The system has an internal mechanism, which is stab
lized by the state of self-stress. This can be seen in thdifiest
of Tab. 1(a), where th& component is almost zero (it is not
precisely zero because the eigenvectoré @indK, are not pre-
cisely aligned).

When zero-free-length springs are placed in the structure
three new zero-stiffness modes appedf ir- the first three rows
of Tab. 1(b). These modes can be considered in a symmetn
adapted form [14] as a totally symmetric mode, and a pair o
modes that are symmetric and antisymmetric with respect to
dihedral rotation. The fully symmetric mode is shown in RBg.

It corresponds to a mode where the structure is compressied in
x-y plane and expands in the z-direction (or vice versa).

The tangent stiffness of the structure has been found using Mechanism analysis

the formulation of Egn. 6 for two different cases. Firsthitiw
the structure consisting of conventional elements, andrsiy,
when made from conventional compressive bars, but usirgg zer
free-length springs as tension members. The level of selfs—
and thus the stress matrix —is identical for both cases. &hdts
are presented as the stiffness of each of the eigenmoddadexc
ing rigid-body motions) in Tables 1(a) and 1(b).

Table 1. Stiffness of each of the eigenmodes, excluding rigid-body mo-
tions, for (a) the conventional structure and (b) the structure with zero-
free-length springs as tension members. The total stiffness Kt is the sum
of the contributions of K and S.

(@ (b)

K K s Kt K S
5630 0017 5613 0.000 0.000 0.000
27.838 26,196 1.642 0.000 0.000 0.000
27.838 26196 1.642 0.000 0.000 0.000
83219 79.195 4.023 5670 0.026 5.643
83.219 79.195 4.023 5670 0.026 5.643
107.376 103.074 4.301 5789 0.017 5.772
107.376 103.074 4.301 6.000 0.000 6.000
113.852 113.535 0.317 6.000 0.000 6.000
132,506 130.474 2.032 6.000 0.000 6.000
132,506 130.474 2.032 75.599 75.372 0.227
176.205 170.205 6.000 75.719 75.362 0.356
225457 225388 0.069 75719 75.362 0.356

The next step is to translate the results from the struc
tural analysis, which are infinitesimal displacements) attual
mechanism information. In [8] it was argued theoreticahstt
the type of zero-stiffness modes found in the numericalyanal
sis are indeed finite, but the question stands how they ate be
interpreted over a large range of motion. For the examplestr
ture, the analytical equilibrium solutions were used tolgsea
the fully symmetric deformation shown in Fig. 3. The two athe
zero-stiffness modes, however, cannot be analysed withetime
approach, and therefore the more general problem remdias: t
current design approach allows the synthesis of tensegritg-
tures, and allows to predict and numerically confirm the nemb
of zero-stiffness modes, but understanding the precigeepties
of the mechanism is currently limited to analytical solago

The analysis of the prototype structure is done by incrgasin
the height of the structure stepwise, and by rewriting Eg2, A
under the assumption of a constant bar length and identeal r
dius for top and bottom polygon, the corresponding radius ca
be found:

b2 — h2
= 2—2cog2m/n+a)

(8)

This analysis is possible, because the bar lengths remain co
stant throughout the displacement. Note that the twisteangl
of the structure also remains constant throughout thisrdefe
tion mode. The range of motion is then expressed in termseof th
normalized parametét/r, which is the ratio of the height over
the radius. Translating the/r ratio into actual values of height
and radius, is done by means of Fig. 4. Along the vertical axe:
usually other normalized parameters are plotted, and iergén
the values need to be multiplied with the bar length to obtiaén
actual values for a given structure.
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Figure 4. Height and radius of the structure, for a given h/r ratio. To
obtain actual values, multiply by the bar length of the structure.

PROTOTYPE DESIGN

A (qualitative) design description is first given, before th
dimensions and the range of motion of the structure are -deter
mined. The choice of bar length and dimensions of the other
components proved to be very much intertwined with the possi
ble range of motion.

Design description

For the static balancing of the tensegrity structure, tteeafis
springs with a zero rest length is a condit&ine qua honHow-
ever, the prototype does not actually feature pretensiaeeat
free-length springs, and their properties are emulated &g
of regular non-pretensioned springs. This choice is mtEa
by the manufacturing difficulties of zero-free-length sgs, and
the physical rest length of the springs which would unnearess
ily limit the range of motion of the structure. The propestief
the zero-free-length spring are emulated by running the axer
the endpoint of the bar, to a conventional spring [1]. By eotly
choosing the total wire length, the spring will be at its tesgth
when the endpoint of the wire coincides with the endpoinhef t
bar, and thus the tension will be proportional to the ‘length
the wire between the two bars it connects.

This translates into a design (schematically shown in Big. 5
where wires run over a yarn guide on the endpoint of the bar,

wrap around a pulley attached to the spring, and are fixed at a

flange. This pulley construction halves the necessary aking
of the spring. The other end of the wire is attached to a piés
the other bar. As the total structure consists of three batime
springs (three vertical and six horizontal), each bar floeechas
three springs attached: a ‘*horizontal’ and ‘vertical’ sgron one

— THAWWWWWO | —
—
—

Figure 5. Conceptual design of the bars of the tensegrity mechanism, in

cross-section view. Only one spring is shown, but two more are attached

in a similar manner, along the circumference of the flanges. Note that this
image is not to scale.

Figure 6. The three springs corresponding to each bar: two springs (ver-
tical and horizontal) are attached on one end, and one (horizontal) on the
other.

end, and a ‘horizontal’ on the other (see Fig. 6).

An important part of the design is the correct choice of the
springs. Unlike in many spring applications, the preciséngp
stiffness is not relevant in statically balanced tensggriech-
anisms, as the springs balance each other out. A crucial pro
erty of the springs, however, is the required spring stiffntio
between the horizontal and vertical springs as calculatetpr
pendix A: the vertical spring must bg3 times stiffer than the
horizontal spring. From a practical perspective there aneem
requirements to the springs. First of all, the springs neeloket
able to reach a high level of elongation to achieve a maxima
working range. Also, most off-the-shelf springs are prstemed
to some degree. Not only does this complicate assembly as
has to be taken into account for the wire lengths, but theepret
sion would also limit the working range of the mechanism a&s th
force/displacement relationship is cut off sharply whemgpring
reaches its rest length. For these reasons custom-maagspri
without pretension were used. To compensate for manufagtur
imperfections, and to allow individual tuning of the sprntp
obtain the properties of a zero-free-length spring, adjest of
the spring position and wire length was possible.

If perfectly constructed (i.e. friction free, and true zero
free-length springs) the structure would collapse undeovtn
weight, and the aim therefore was to minimize the weight, anc
thus size, of the structure. In the following section a mimm
bar length is determined which, given the constraints irepgdsy/
the components, provides a certain desired working range.

Copyright © 2006 by ASME



0.5

ik
0.45¢ PP
" A/*/F s
0.35 \n /‘( —O— horizontal elongation/bar length
;}Q\& —k— vertical elongation/bar length
2 03 ¥ )
S / E\&
o / S\S\NE\S\S
0.2 7 g
0.15 7‘/ o
sb/*(
0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
h'r

Figure 7. Elongation of springs as ratio of bar length. As a result of the
use of the pulleys, it is half of the length of the corresponding wire.
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Figure 8. Clearance between bars. The horizontal lines indicate how the
estimated required 30mm translates into normalized clearance for a given

Range of motion

Theoretically the structure can deform from a planar config-

uration withh = 0, to almosth = b. In reality, the components
impose constraints on the practically possible range ofanot
First, some assumptions need to be made about the comppnents
before the analysis can be done. In our case the assumed valueontact between wires and flangeA more limiting factor is
for the outer diameter of the bar with the springs, as welhas t
diameter of the flange, was set at 30mm.

spring elongation Due to the use of the pulley, for an unten-

sioned spring, the elongation equals half of the length of
the corresponding wire. These values are plotted as a ra-
tio of the bar length in Fig. 7. As can be seen, the maxi-
mum practical elongation would be roughly 47% of the bar
length. Assuming that the maximum elongation corresponds
to 150% of rest length (which, as a rule of thumb, is the max-
imum allowed elongation), then for an untensioned spring
with touching coils the rest length would be 31%, and the
required distance between the flanges on the bar would thus

bar length.

izontal lines in that figure indicate when the springs would
collide for a given bar length, and thus show the restriction
on the working range.

when the wires come in contact with the flanges; for a low
h/r with the horizontal wires, and for a highyr with the
vertical wires. The flanges cannot be moved away from the
endpoint indefinitely, as that would conflict with the recuair
distance between the flanges to allow for the spring elonga
tion. The angles between wires and bar can be calculate
as a function ofh/r, but more interesting is to show how
far the flanges should be removed from the endpoint to jus
avoid contact. By then plotting the available distance from
the endpoint of the bar for a given bar length, the available
range of motion is found. See Fig. 9.

have to be 78% of the bar length. Additionally some roomis Using Fig. 9 the estimated working range for the final struc-
needed for attachment of spring, pulley and wires, estichate ture, with a bar length of 450mm, was found to hgr =

at 10mm at either end. These values determine a lower [0.5...4.5]. Using Fig. 4 this corresponds to a height range of
bound for the distance between the flanges, to achieve the [113...415mm, and radius range ¢92...225mm. This was
deemed more than sufficient to demonstrate the propertissof

is sufficient, the distance can be adjusted accordingly, and type of structure. A remark is in order about the accuracyef t
estimated working range. The calculations done on the wgrki

maximal working range. If a non-maximal working range

reduced even further by using pretensioned springs.

contact between barsWhen the springs are attached along-

springs of different bars might contact each other durisg di

range assume the structure to be purely pin-jointed with-zer
side the bar, the effective outer diameter increases, and th width bars and wires. In practice the wires do not exit thedtar

the centre line, but at the bar radius. This reduces the acguf

placement. The minimal distance between the centre lines of especially Fig. 9. Nevertheless, the above calculatioogige a
good indication.

the bars is plotted as a function bfr in Fig. 8. The hor-
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Figure 9. Distance from endpoint of the bar to flange, which just avoids

. . . Figure 10. Normalized axial force, due to the elongation of the springs.
contact between wire and flange, for a given flange diameter. The hor- 9 9 pring

When multiplied with the bar length and the horizontal spring stiffness, the

izontal lines indicate the available length from the endpoint for various . .
total axial force is found.

bar lengths (11% -10mm). The intersection of the horizontal line with the
curves provides the working range.

As shown above, the main limitation on the working range is
posed by the contact between flange and wires. This can be im-
proved by moving the flanges away from the endpoint by choos-
ing springs that can reach higher levels of elongation, aneb
ducing the diameter of the flanges by choosing smaller spring
This illustrates there is some leeway for optimization itufe
designs.

Miscellaneous vertical

As mentioned earlier, theoretically the tension coeffigien
and thus length, of the bar remains constant throughouledisp o
ment. This is true if zero-free-length springs are used Wwhie
attached from endpoint to endpoint of the bars. In the ctirren
setup, however, all springs exert axial forces on the battha
axial force is not constant throughout displacement. Thg-ma
imum axial force exerted by the combined elongations of the
springs can be calculated (see Fig. 10) and was checked with
the buckling load of the bar.

Throughout the displacement, the angles the wires make )
with respect to each other change. As a result, the idealatta A
ment position of the springs along the circumference of e b A
changes (see Fig. 11). The angles between the various wées a
plotted in Fig. 12. A reference position was chosen whichanor  Figure 11. Angles between the various springs attached alongside the
or less gave an average angle between the extremes of the workbar. Using Fig. 12 the angles between upper/vertical, vertical/lower, and
ing range. Note that the changing angles mean that the Hatero  upper/lower were respectively chosen as 90°, 125° and 145°.
slightly around their axis during displacement.

upper horizontal
lower horizontal

08
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180¢

can be deformed into a wide range of positions, while remaini
in equilibrium.

—4#—— angle lower/vertical

160 ©— angle upper/lower .. . . : H
angle upperfvertical | The distinguishing feature of this class of mechanisms is

\b% 145
140 %ﬂm&@%ﬁ/ﬁ:‘ that, as a tensegrity, every member is stressed, and itas als
the main source of difficulty when designing and construgtin
120 425 these systems. Tensegrity literature provides a lot ofrtiecies
for finding an initial equilibrium configuration (i.e. forrmfiling)
f 90 and the tools of structural engineering can be used to show |
80 4 a tensegrity structure constructed with zero-free-lerggttings
Z[ T will indeed have zero stiffness, and is thus a mechanism. Th
next step in the process is to analyse the mechanism preperti
20 ]Z of the structure such as the range of motion. For this, the cur
7/ rently used method is to derive the analytical equilibriugua-
tions, and investigate the structure by that means. Thisoapp
f is somewhat limited as it only allows the analysis of faiilpple
0 05 1 15 2 25 3 35 4 45 5 structures, and only part of the total behaviour: e.qg. ferttech-
hir anism described in this paper only the symmetric deformatio
was analysed. The internal forces also require attentiomgu
assembly of the mechanism, as it will only be balanced whien al
springs are tensioned and until then it needs to be firmly fixed
The design of the springs is key in these mechanisms. If th
springs can achieve larger elongations, the working rarge c
As the structure is only in equilibrium when all springs are be increased. Appropriate (and accurately manufactuggtgs
attached in the correct manner, the bars need to be firmly fixed stiffness ratios are also needed, and these are not alwajils av
during assembly. An important part of assembly is also toeanak able in standard spring catalogues. When the friction is-suffi
sure that each spring is properly configured to emulate a zero ciently reduced, the accuracy of the zero rest length ofhegs
free-length spring. The assembly process will become nnove t becomes increasingly important and would require a lot & fin
blesome when the structures become more complex. tuning. It is currently unclear how it would best be done, ¢éo d
termine which springs to adjust, and by how much.
Interesting unanswered (theoretical) questions, incthdée
of the number of DOF of statically balanced tensegrity mecha
nisms. As the structures would be structurally stiff when-co
structed with conventional elements, any degrees of fieegie
introduced by the zero-free-length springs (or equivalgrand
are not covered by any definition of DOF known to the authors
Actuation of these mechanisms has also not been considert
yet. To excite the entire system, multiple actuators ar®daro
bly needed. It is also difficult to determine which of the zero
stiffness modes is actuated. Therefore it would be intergsb
construct a rotationally symmetric model with 5 (or morejsha
as by [8] that would have only one zero-stiffness mode, anttico
possibly be actuated with only one actuator.
A lot of work is left to be done in this field, but the design
of the prototype has already revealed interesting aspéstati
cally balanced tensegrity mechanisms.

100

60

angle between springs on bars (deg)

20

0.

Figure 12. Angles between the wires corresponding to the springs at-
tached alongside the bars. The vertical line indicates the chosen refer-
ence position.

FINAL STRUCTURE

The final structure, shown in Fig. 13, can be deformed into a
continuous range of positions whilst remaining in equilibr.
This includes non-symmetric configurations, due to the -addi
tional two zero-stiffness modes. The structure was notrtaie
the extremes of its working range, as for large extensionkef
springs the wires would often slip out of the pulleys; this te
avoided by a more robust pulley design.

There is a substantial amount of friction in the system. The
upside of the friction is that the structure does not cokapsder
its own weight, and that substantially less fine tuning wasled
to assemble the structure. The downside is that the frictéemus
to be overcome when deforming, so although the structure has
zero stiffness, idoesrequire external work to deform. Another
consequence of the friction is that the structure can beroefd
into positions which should otherwise provide some stigfdn
that respect it does not faithfully demonstrate the properf
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Appendix A: Analytical Equilibrium Conditions

Finding the initial equilibrium configurations for tenségr
structures, is referred to as form finding [10]. Rotatiopalym-
metric, or prismic, tensegrities have been the object afystn
the past and analytical equilibrium solutions exist [9, ITihere
are two general approaches to deriving the equilibrium Eond
tions: statically and kinematically. The former works froxwdal
equilibria, the latter from the premise that in tensegritystures

the bar lengths reach a maximum and cable lengths a minimum.

Here the static method is used.

Equilibrium configuration

The generic rotationally symmetric structure under consid
eration is depicted in Fig. 14. It consists mbars, connecting
the vertices of two regulan-polygons on two parallel planes,
twisted over an angle with respect to each other. The struc-
ture has heighh, top radiusy, and bottom radiusg. With these
values all aspects of the structure can be calculated.

Figure 14. Rotationally symmetric tensegrity structure with N bars,
height h, radii rg and rp, and twist angle 0. Figure copied from [11].

Element lengths.  For the calculation of the element
lengths, the cosine rule was used extensively:

¢? = d? 4 €% — 2decos(y). (A.1)
With Egn. A.1 the bar length is then written as
b2:h2+r§+rﬁ—2rorhcos(2%[+a), (A.2)
10

the vertical cable lengthas

12 = h? +r§ 412 — 2rorhcos(a), (A.3)
but the horizontal cable lengthg and |y, are easier written as
(with eitherrg or ry):

lo = 2rosin(g). (A.4)

Twist angle.  In order to find the twist angle, we consider
the nodal equilibrium at node+ 1 in Fig. 14, with tensioty, in
the bar, tensioly, in the vertical cable anty, t, the tension in the
bottom and top horizontal cables respectively.

First we consider equilibrium in the-direction, which
merely involves the vertical cable and bar:

t—bh+ t—tho (A.5)
b I
which yields that
th
ty=—-—1I. A.6
Vv b ( )

Next the equilibrium in they-direction is derived. Due to
symmetry considerations on the horizontal cables, theritonRt
tions of the bar and vertical cable should cancel each othier o
This analysis yields:

tbi

sin(O()rhtT"Jrsin(%n+or)rhB =0 (A7)
which with Eqn. A.6 becomes
.2 :
rhtEb(Sln(FT[-i-C() —sina) =0. (A.8)
For this to hold for anyx we obtain
. 2T . .
sm(FJra) = sina = sin(mt—a) (A9)
and find that
—+a=T—a
200 = T— an
n
T T
a=z-r. (A.10)
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Note that the twist angle only depends om and is indepen-
dent of the radius and height, and holds as long the strutture
rotationally symmetric with two parallel-polygons.

Equilibrium tensions

With the equilibrium twist angle now known, we wish to
find the corresponding internal tensions. It was alreadyvstio
Egn. A.6 that

tp
ty=——1.
v b
To calculate the tensions in the horizontal cables, thesferi-
librium in x-direction at noden+ 1 is considered. The contribu-
tions of the vertical cable and bar to that equilibriufgyert, can
be written as:

t 21 f
(ro —cosarp) TV + (ro - cos(F +cx)rh> b _ fuvert (A.11)

b
which, when using Egn. A.6 becomes:
<cosu - cos(%’T + a)) rh%b = fyvert. (A.12)
With a = T — I we can write
(cos(g — g) — cos(ng g)) rh%’ = Ty vert (A.13)

and using the following goniometric relationships (withitnary
3 andy)

cos(y+ B) = cosycosp — sinysinf3
cos(y— ) = cosycosp3 + sinysinf

we find

s t
(sm( )+S|n(n)) thb = fyvert

th

. T
fxvert = 23|n(ﬁ)rh6. (A.14)

Next, the effect of the tensions in the horizontal cableshim t
x-direction can be written as:

21 t
2 <r0003(n)r0) % = fxhorz
210\ rot
fxhorz = 2 (1 cos(*- )> % (A.15)

11

Now the two contributions are summed, and the solution tc
fxvert + fxhorz = 0 yields:

21\ rot LT
2(1 cos(— - )) % = —23|n(ﬁ)thb

211 roto e TJ Lb
(1 cos(— ))Zrosm(’n‘)_ sm(n)rhb

(1 cos(znn)>to - —ZSinz(g)rhtEb
(1- 14280 (D))to = —Zsz(f)rhtBb
to = —rh%’ (A.16)
where use is made of
cos(2y) = 1 2sirf (y). (A.17)

Reasoning that in Egn. A.16 thg has to be replaced hy to
obtain the tensioty, all the tensions in the system can be written
as follows:

t
[ty th to = _Bb“ o ) (A.18)
which corresponds to the results found by [11]. With some
rewriting, the equilibrium equations can be written in terof

the tension coefficients:

~ h . /T

th=—2— — )1 A.2
b o Sm(n) n ( O)
o 2

th ro

~=|— A.21
- (%) (n.21)

Spring stiffness ratio

In the analysis of statically balanced tensegrity mechasjs
the cables are replaced by zero-free-length springs. &adslto
the question what the stiffness (ratios) of those springstroa
in order to preserve equilibrium. With the spring stiffnedsa
zero-free-length spring equal to its tension coefficient with
fo=rp = r andfp = f,, = thor we find that

Kver  fver 23'”(%) thor L
= = =2sin( — A.22
Khor  fhor (n> ( )
and for our tensegrity prism with= 3 we obtain:
Kver _ Zsin(E) ~ V3 (A.23)
Khor 3
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