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3E4: Modelling Choice

Lecture 7

Introduction to 
nonlinear programming
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Announcements

Solutions to Lecture 4-6 Homework
• will be available from 

http://www.eng.cam.ac.uk/~dr241/3E4

Looking ahead to Lecture 8
• please email me any particularly hard 

questions for review part of lecture
• I’ll hand out a copy of a sample exam paper
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3E4 : Lecture Outline
Lecture 1. Management Science & Optimisation  

Modelling: Linear Programming 
Lecture 2. LP: Spreadsheets and the Simplex Method
Lecture 3. LP: Sensitivity & shadow prices

Reduced cost & shadow price formulae
Lecture 4. Integer LP: branch & bound
Lecture 5. Network flows problems
Lecture 6. Multiobjective LP
Lecture 7 – 8. Introduction to nonlinear programming
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A simple Nonlinear Program
Economic Order Quantity (EOQ) Problem 

for Managing Inventory
• Involves determining the optimal quantity to purchase when 

orders are placed.
• Deals with trade off between carrying or holding cost, and 

ordering cost
• Small orders result in:

– low inventory levels & carrying costs
– frequent orders & higher ordering costs

• Large orders result in:
– higher inventory levels & carrying costs
– infrequent orders & lower ordering costs
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Sample Inventory Profiles
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The standard EOQ model
• Data

– D = annual demand for the item

– C = unit purchase cost for the item

– S = fixed cost of placing an order

– i = cost of holding inventory for a year 

(expressed as a % of C)

• Variable Q: order quantity 

• Minimize Annual Cost: MIN  DC+(D/Q)S+(Q/2)iC
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EOQ Cost Relationships
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Variations of the EOQ Model
• A-level calculus exercise shows that the 

optimal order quantity Q is given by 

iC
2DSQ* =

More realistic variations on the basic 
EOQ model need to account for
– quantity discounts
– storage restrictions
– etc
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Linear functions
• A linear (or rather affine) function is of the 

form 
f(x1,…,xn) = a1x1+… + anxn +c

where a1,...,an and c are data and x1,…xn are 
variables

• In spreadsheets you are not leaving the 
realm of linear formulas if 
– you multiply linear formulas by data or 

constants or add them up
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Nonlinear functions
• You may be leaving the realm of linear 

formulas if you   
– multiply two formulas or divide one by another
– Use the MAX, MIN, or ABS functions
– use the IF or ROUND functions  

• If you do any of the above then your formula 
represents a nonlinear function
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Levels of Nonlinearity
• Differentiable functions 

– If f(x1,…,xn) and gi(y1,…,ym) for i=1, …, n are differentiable 
then f(g1(y),…gn(y)) is a differentiable function of y

– You are not leaving the realm if differentiable functions if 
you apply LN,EXP,^,SIN etc. to differentiable formulas 

– Typically, nonlinear means differentiable (so LP is a subclass 
of NLP)

• Non-differentiable functions
– You may leave the realm of differentiable functions if you 

use MAX, MIN, ABS

• Discontinuous functions
– You may leave the realm of continuous functions if you use 

IF, ROUND, CEILING, FLOOR, INT, LOOKUP
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Nonlinear Programming (NLP)

• NLP problems have a nonlinear objective 
function and/or one or more nonlinear
constraints

• NLP problems are formulated in virtually the 
same way as linear problems.

• The mathematics involved in solving general 
NLPs is quite different to LPs.

• Solver tends to hide this difference but it is 
important to understand the difficulties that 
may be encountered when solving NLPs.
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Solver on Simple NLPs 

• Min cos(πx) starting from
– x = 0.1

– x = 0

– x = –0.1

• Min (x–1)2

– Unconstrained, or
– Subject to x ≥ 0
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General Form of an 
Optimisation Problem

MAX (or MIN): f (X1, X2, …, Xn)
Subject to: g1(X1, X2, …, Xn) <= b1

:                :
gk(X1, X2, …, Xn) >= bk

:                :
gm(X1, X2, …, Xn)  =  bm

Here n and m are fixed dimensions:
n = no. of variables (Xi),   m = no. of constraints.
Each f , g1 , …, gm is a function. If there exists at least one 
nonlinear function the problem is a Nonlinear Program (NLP).
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Unconstrained optimization
The unconstrained minimization problem:

where f : ℜn →ℜ.
• x* is a global minimum if f(x*) ≤ f(x) for 

all x∈ ℜn.
• x* is a local minimum if there exists an

open neighborhood B(x*) of x*, such that
f(x*) ≤ f(x) for all x∈ B(x*) .

)(min xf
nx ℜ∈
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Unconstrained optimization:
Optimality conditions

• Any vector d∈ℜn is a descent direction of f at x* if 
there exists α*>0 such that f(x*+αd) < f(x*) for all 
α∈(0, α*)

• First order necessary condition:
If x* is a local minimum then (no descent direction at x*)

∇f(x*)=0.
• Second order necessary condition

If x* is a local minimum then
∇f(x*)=0

and
xT∇2f(x*) x ≥ 0 for all x∈ℜn.
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Unconstrained optimization:
Optimality conditions

• Any point x∈ ℜn satisfying first order 
optimality condition is called stationary.

• Second order sufficient condition
If x* is a stationary point and

xT∇2f(x*) x > 0 
for all x∈ ℜn, with x ≠ 0, then x* is a strict 
local minimum.

18

Typical Optimisation Procedure
• Aim at seeking stationary points.
• Based on idea of Steepest Descent for minimizing an 

unconstrained nonlinear function
• At a given feasible point, find a direction along which 

you can improve your objective value (search 
direction)

• Then search along the direction (line search) until 
you find a better point and re-iterate from this point 

• BUT if that direction leads out of the feasible set then 
must “correct” it (reduced direction)
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Steepest Descent for 
Unconstrained Optimization

• Let f be a continuously differentiable function of 
several variables,  f : ℜn ℜ.

• Consider the unconstrained problem:  min f(x)
• At a given point x, the steepest descent direction is 

d = – f(x)
– gradient of f at x is the vector of partial derivatives:

n

n

Rx
x
f

x
fxf ∈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=∇ )(,...,)(
1• To decrease f :

search along this direction: find a step size t > 0 such 
that f(x+td) < f(x).  
Replace x by x + td and repeat with the new steepest 
descent direction
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In-Class Exercise
Steepest Descent Directions 

What is the steepest descent direction for 
1. cos(πx) at x=0 ?
2. x1/(1+ x2

2) at x=(1,0) ? 
3. 5x1 – 2x2 + x3 ?

For case 1 above, perform 2 steepest descent 
steps starting from x = 1/2 with unit 
stepsize (t = 1).
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Consider the unconstrained problem:  min f(x)
• Initially

– Require a starting vector x0

– Set iteration counter k = 0
• At iteration k

– Descent direction: Let d = – f(xk) 
– Linesearch: find a step size t= tk > 0 such that 

f(xk +td)  <  f(xk).  
– Update: xk+1 = xk + tkd , k = k + 1 and repeat

from above

Steepest Descent Method for 
Unconstrained Optimization
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What does Steepest Descent 
Method achieve ?

Steepest Descent Convergence Theorem
• Given an initial “iterate” (vector) x0, and iteration 

counter k=0:
• If f is bounded below and the step size tk > 0 is 

properly chosen† for each iterate xk, then the 
steepest descent method produces an infinite 
sequence {xk} where

f(xk) zero vector, on some subsequence of {xk} 
– if any subsequence of {xk} converges to a vector x*

(a limit point), then f(x*)  =  0
† The linesearch must not choose tk too large or too small.
Linesearch methods will not be covered here.
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Steepest Descent Method for 
Unconstrained Optimization

• That is, Steepest Descent Method tends to 
find Stationary Points of f
– Remind that all minimizers of f are stationary 

points
• What happens if f(xk)  =  zero vector for 

some iteration k ?
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Constrained optimization
The constrained minimization problem:

where f : ℜn →ℜ,  g : ℜn →ℜm, h : ℜn →ℜp.
• x* ∈ F ={x∈ℜn: g(x) ≤ 0 and h(x) = 0} is a global 

minimum if f(x*) ≤ f(x) for all x∈ F.
• x* ∈ F is a local minimum if there exists an open 

neighborhood B(x*) of x*, such that f(x*) ≤ f(x) for all
x∈ F∩B(x*) .

0)(                 
0)(  subject to

)(            min

=
≤

∈

xh
xg

xf
nRx
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Constrained optimization:
Optimality conditions

Need to define feasible descent 
directions at any point x∈ F.

?

Will see next lecture!
Let’s focus first on the practical side.
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Constrained optimization:
Optimality conditions and descent 

methods
• Any local minimum satisfies some 

necessary conditions, called stationarity 
conditions.

• Any point satisfying stationarity conditions 
is called stationary.

• Iterative (descent) methods look for 
stationary points.
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Constrained Steepest Descent:
Projected Gradient Method

• Let f :Rn R be a continuously differentiable 
• Consider the problem with LP constraints:  

min f(x)  subject to   Ax = b, x nonnegative
• The reduced gradient or projected gradient 

method is just a version of steepest descent for 
optimization problems with constraints
– Given a feasible x, let d = – f(x)
– Motivation: want to decrease f by moving along ray 

x + td where t starts at 0 and increases
– Problem: x + td may be infeasible
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Constrained Steepest Descent:
Projected Gradient Method

Solution is to convert any point of ray x + td to 
a feasible point by projection onto feasible 
set:

• For any step size t > 0, find nearest point y(t) 
in feasible set (polyhedron) to x + td

• Of course, y(t) is feasible
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Constrained Steepest Descent:
Projected Gradient Method

In-class exercise
Let feasible set be the box 0 ≤ x ≤ 1 in R2, 
x = (1,0), and f(x) = 5x1 – 2x2.
1. Sketch the steepest descent ray x + td and 
the projected gradient path y(t).
2. Give a formula or formulae for y(t).
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Why does 
Projected Gradient Method 

Work ?
Result I: Projected Gradient Descent

Either y(t) = x for all t > 0 
Or f(y(t)) < f(x) for small t > 0

Result II: Projected Gradient at a minimum
If x is a local minimum then y(t) = x for all t > 0 

These results say why the projected gradient path y(t) is useful.
A useful by-product:
Definition: 

A point x is stationary for our constrained minimization 
problem if y(t) = x for all t > 0.
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• Consider the problem with LP constraints:  
min f(x)  subject to   Ax = b, x nonnegative

• Initially
– Require a feasible starting vector x0

– Set iteration counter k = 0

• At iteration k
– Descent direction: Let d k = – f(xk) 
– Projected gradient linesearch: find step size t= tk > 0 

such that f(yk(t))  <  f(xk) 
where yk(t) is projection of xk + td k onto feasible set 

– Update: xk+1 = yk(tk), k = k + 1 and repeat from above

Formally:
Projected Gradient Method
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What does 
Projected Gradient Method achieve ?

Direct extension of Steepest Descent Convergence:
Projected Gradient Convergence Theorem
• Given an initial “iterate” (vector) x0, and iteration 

counter k=0:
• If f is bounded below and the step size tk > 0 is 

properly chosen for each iterate xk, then the 
projected gradient method produces an infinite 
sequence {xk} where
– yk(tk) – xk zero vector, on some subsequence of {xk} 
– if any subsequence of {xk} converges to a vector x*

then x* is (feasible and) stationary for the constrained 
problem
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Summary of
Projected Gradient Method

• min f(x)  subject to   Ax = b, x nonnegative
• reduced gradient or projected gradient method 

– Given a feasible x, let d = – f(x)
– For any step size t > 0, find nearest point y(t) in feasible 

set (polyhedron) to x + td
• Fact:

– Either f(y(t)) < f(x) for all small enough t > 0
– Or y(t) = x for all t > 0 … and we say x is a stationary 

point of the above problem
– Note that all minimizers of above problem are stationary

• So projected gradient method makes sense
– can show limit points of iteration sequence are stationary
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Doing it in Excel: Solver
• Solver uses a version of projected gradient 

method this called the Generalized Reduced 
Gradient (GRG) algorithm to solve NLPs.

• GRG will attempt to track nonlinear feasible 
sets, which is generally much more difficult 
than dealing with LP feasible sets

• GRG can also be used on LPs (if you don’t 
select “assume linear model”) but is generally 
slower than the Simplex method.
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Starting Points
• The produced local solution depends on the starting 

point
• If you think there may be a better point, try another 

starting point 
• Instead of assigning an arbitrary value to variable 

cells, start with values which are representative 
of the values you expect in the solution

• Start close to where you expect the optimum to be if 
that information is available
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A note on convergence

• In contrast to the simplex method, NLP methods 
often produce an infinite sequence of iteration 
points that converge to a (local) optimum

• The sequence needs to be stopped !!
• In Excel 8.0 & beyond, the convergence field in 

the Solver Options dialog box can be adjusted
– increase to avoid squillions of iterations
– decrease to avoid early stopping at sub-optimal 

solutions
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Sensitivity Analysis

• Sensitivity report provides
– Reduced Gradient
– Lagrange Multipliers

• The reduced gradient information is the 
equivalent of reduced costs in LP 

• Lagrange multipliers are the equivalent of 
shadow prices in LP 
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Lagrange Multipliers
• Amount by which the objective function would 

improve if the RHS of the constraint was relaxed 
by one unit

• For equality constraints: Amount by which the 
objective function would improve if the RHS of 
the constraint was increased by one unit

• Again: For NLP this is derivative information and 
therefore it isn’t possible to give a range of RHS 
values for which Lagrange multiplier (shadow 
price) is fixed.
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Lagrange Multipliers 
& Shadow Prices I

• Suppose x* is a stationary point of the NLP
min f(x)  subject to  Ax = b,  x ≥ 0

• Then
– x* solves the LP

min ∇f(x*)Tx subject to  Ax = b, x ≥ 0.
– Lagrange multiplier for NLP at x* coincides 

with shadow cost for LP
– (if one is unique then so is the other)
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• Suppose x* is a stationary point of the NLP:
min f(x)  subject to  h(x) = 0,  x ≥ 0

where f, h :Rn R (single equality constraint)
• Define c = ∇f(x*),   a = ∇h(x*),  b = ∇h(x*)T x* (∈ R)

Lagrange Multipliers 
& Shadow Prices II

• Then
x* solves the following LP with a single equality 

constraint:
min cTx subject to aTx = b, x ≥ 0

Lagrange multiplier for NLP at x* coincides with 
shadow cost for LP

• Technical requirement:  ∂f (x*)/∂xi ≠ 0 for 
some nonzero component of x* 
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• Suppose x* is a stationary point of the NLP:
min f(x)  subject to  h(x) = 0,  x ≥ 0

where h :Rn Rm (m equality constraints),
i.e. h(x) = (h1(x), …, hm(x)).

Q: How do we define the associated LP at x*?

Lagrange Multipliers 
& Shadow Prices III

A: Define
c = ∇f(x*),   
A = matrix of m rows ∇h1(x*)T, …, ∇hm(x*)T

b = ∇h(x*)Tx* (∈ Rm)
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Automatic Scaling

• Use automatic scaling option since poor 
scaling can result in breakdown of the 
method, in particular in NLP

• For automatic scaling to work properly it is 
important that your initial variables have 
“typical” values
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Solver Message 1
“Solver found a solution.  All constraints 
and optimality conditions are satisfied.”
– This means Solver found a “stationary” 

solution at which necessary optimality 
conditions are satisfied

– In most cases such stationary solutions will be 
locally optimal solutions but there is no 
guarantee

– It is not at all guaranteed  that the solution is a 
globally optimal solution

– Run Solver from several different starting 
points to increase the chances that you find the 
global optimal solution to your problem.
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Solver Messages 2-4 relate to 
various difficulties

• Will not go over these
• See next 3 slides for descriptions
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Solver Message 2

“Solver has converged to the current 
solution.  All constraints are satisfied.”
– This means the objective function value 

changed very slowly for the last few iterations. 
– If you suspect the solution is not locally 

optimal, your problem may be poorly scaled.
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Solver Message 3

“Solver cannot improve the current solution.  
All constraints are satisfied.”
– This rare message means that your model is 

degenerate and the Solver is “cycling”  
– Degeneracy can sometimes be eliminated by 

removing redundant constraints in a model.
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Solver Message 4
“Solver could not find a feasible solution.”

– In NLP this can occur in feasible problems.
– Solver is not able to reduce the sum of 

infeasibilities
– Possible remedies: try another starting point, 

include automatic scaling, decrease convergence 
tolerance
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Lecture 7 3E4 Homework
1.  Find all stationary points of 

a) cos(πx)
b) x1/(1+ x2

2)
c) 5x1 – 2x2 + x3

2. What is the steepest descent direction for 
5x1 – 2x2 + x3 ?

3. Perform two steepest descent steps on the 
function cos(πx) starting from 1/2 with unit 
stepsize (t = 1). I.e. take x0 = 1/2 and calculate x1

and x2.
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Lecture 7 3E4 Homework
4. Suppose we want to minimise f(x)= 5x1 – 2x2 

subject to x in the box 0 ≤ x ≤ 1 in R2.  Starting 
from x0 = (1,0), take two steps of the projected 
gradient method with stepsize t=1/3.  Show x0, x1, 
x2 on a sketch of the feasible set.
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Lecture 7 3E4 Homework
5. Consider minimising 5x1 – 2x2 + x3 subject to 

nonnegative variables and x1
2 + x2

2 + x3
2 = 4. 

a) Verify that x* = (0,2,0) is optimal for the LP 
associated with this point.

b) Find the Lagrange multiplier for x* by 
calculating the shadow price of the LP in part (a) 
at this point. 

c) How will the optimal value of the NLP change 
to if the RHS value is changed from 4 to 4.5?

d) Check your answer to part (b) using the Excel 
sensitivity report. 

e) Check your answer to part (c) by re-solving with 
Excel using RHS 4.5. Is there a difference? 
Comment briefly on this.
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Lecture 7 3E4 Homework
Hints for Q5, parts (a), (b): 
• Write down the linear program 

corresponding to x*, as described 
previously 

• Rewrite LP as a max problem, and analyse 
it as described in Lecture 3:

– find reduced cost of x* to show optimality
– find shadow cost

• (How is shadow cost of max LP related to 
shadow cost of min LP? hence to 
Lagrange multiplier of NLP at x* ?)


