3E4: Modelling Choice

Lecture 7

Introduction to nonlinear programming

1

2

Announcements

Solutions to Lecture 4-6 Homework

• will be available from http://www.eng.cam.ac.uk/~dr241/3E4

Looking ahead to Lecture 8

- please email me any particularly hard questions for review part of lecture
- I'll hand out a copy of a sample exam paper

3E4 : Lecture Outline

Lecture 1. Management Science & Optimisation Modelling: Linear Programming **Lecture 2.** LP: Spreadsheets and the Simplex Method **Lecture 3.** LP: Sensitivity & shadow prices Reduced cost & shadow price formulae **Lecture 4.** Integer LP: branch & bound **Lecture 5.** Network flows problems **Lecture 6.** Multiobjective LP **Lecture 7 – 8. Introduction to nonlinear programming**

A simple Nonlinear Program Economic Order Quantity (EOQ) Problem for Managing Inventory

- Involves determining the optimal quantity to purchase when orders are placed.
- Deals with trade off between carrying or holding cost, and ordering cost
- Small orders result in:
	- low inventory levels & carrying costs
	- frequent orders & higher ordering costs
- Large orders result in:
	- higher inventory levels & carrying costs
	- infrequent orders & lower ordering costs

4

Levels of Nonlinearity

- Differentiable functions
	- $-$ If $f(x_1,...,x_n)$ and $g_1(y_1,...,y_m)$ for i=1, …, n are differentiable then $f(g_1(y), \ldots, g_n(y))$ is a differentiable function of *y*
	- You are not leaving the realm if differentiable functions if you apply LN,EXP,^,SIN etc. to differentiable formulas
	- Typically, *nonlinear* means *differentiable* (so LP is a subclass of NLP)
- Non-differentiable functions
	- You may leave the realm of differentiable functions if you use MAX, MIN, ABS
- Discontinuous functions
	- You may leave the realm of continuous functions if you use IF, ROUND, CEILING, FLOOR, INT, LOOKUP

Unconstrained optimization: Optimality conditions

- Any vector *d*∈ℜ*ⁿ* is a **descent direction** of *f* at *x** if there exists $\alpha^* > 0$ such that $f(x^* + \alpha d) < f(x^*)$ for all $\alpha \in (0, \alpha^*)$
- First order necessary condition: If *x** is a local minimum then (**no descent direction at x***)

$$
\nabla f(x^*)=0.
$$

• Second order necessary condition

If *x** is a local minimum then

∇*f*(*x**)=0

and

 $x^T \nabla^2 f(x^*)$ $x \ge 0$ for all $x \in \mathbb{R}^n$.

Unconstrained optimization: Optimality conditions

- Any point *x*∈ ℜ*ⁿ* satisfying first order optimality condition is called **stationary**.
- Second order sufficient condition If *x** is a stationary point and $x^T \nabla^2 f(x^*)$ $x > 0$

for all $x \in \mathbb{R}^n$, with $x \neq 0$, then x^* is a strict local minimum.

17

18 *Typical Optimisation Procedure* • Aim at seeking **stationary points**. • Based on idea of **Steepest Descent** for minimizing an unconstrained nonlinear function • At a given feasible point, find a **direction** along which you can improve your objective value (search direction) • Then **search along the direction** (line search) until you find a better point and re-iterate from this point • **BUT** if that direction leads out of the feasible set then must "correct" it (reduced direction)

Consider the unconstrained problem: min $f(x)$ • Initially – Require a starting vector x^0 *Steepest Descent Method for Unconstrained Optimization*

- $-$ Set iteration counter $k = 0$
- At iteration *k*
	- $-$ **Descent direction:** Let $d = -\nabla f(x^k)$
	- **Linesearch:** find a step size $t = t_k > 0$ such that $f(x^k + td) < f(x^k)$.
	- $-$ **Update:** $x^{k+1} = x^k + t_k d$, $k = k + 1$ and **repeat** from above

Constrained optimization: Optimality conditions

Need to define feasible descent directions at any point $x \in F$.

?

Will see next lecture! Let's focus first on the practical side.

Constrained optimization: Optimality conditions and descent methods

- Any local minimum satisfies some necessary conditions, called **stationarity conditions**.
- Any point satisfying stationarity conditions is called **stationary**.
- Iterative (descent) methods look for stationary points.

26

Constrained Steepest Descent: Projected Gradient Method

- Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable
- Consider the problem with LP constraints: min $f(x)$ subject to $Ax = b$, *x* nonnegative
- The **reduced gradient** or **projected gradient method** is just a version of steepest descent for optimization problems with constraints
	- Given a feasible *x*, let $d = -\nabla f(x)$
	- Motivation: want to decrease *f* by moving along ray $x + td$ where *t* starts at 0 and increases
	- $-$ **Problem:** $x + td$ may be **infeasible**

27

Constrained Steepest Descent: Projected Gradient Method

Solution is to convert any point of ray $x + td$ to a feasible point by projection onto feasible set:

- For any step size $t > 0$, find nearest point $y(t)$ in feasible set (polyhedron) to $x + td$
- Of course, *y*(*t*) is feasible

What does Projected Gradient Method achieve ? Direct extension of Steepest Descent Convergence: **Projected Gradient Convergence Theorem** • Given an initial "iterate" (vector) x^0 , and iteration counter *k*=0: • If *f* is bounded below and the step size $t_k > 0$ is properly chosen for each iterate x^k , then the projected gradient method produces an infinite sequence $\{x^k\}$ where $y = y^k(t_k) - x^k \rightarrow$ zero vector, on some subsequence of $\{x^k\}$ – if any subsequence of $\{x^k\}$ converges to a vector x^* then x^* is (feasible and) stationary for the constrained

Doing it in Excel: **Solver**

- Solver uses a version of projected gradient method this called the Generalized Reduced Gradient (GRG) algorithm to solve NLPs.
- GRG will attempt to track nonlinear feasible sets, which is generally much more difficult than dealing with LP feasible sets
- GRG can also be used on LPs (if you don't select "assume linear model") but is generally slower than the Simplex method.

A note on convergence

- In contrast to the simplex method, NLP methods often produce an **infinite** sequence of iteration points that converge to a (local) optimum
- The sequence needs to be stopped !!
- In Excel 8.0 & beyond, the convergence field in the Solver Options dialog box can be adjusted
	- increase to avoid squillions of iterations
	- decrease to avoid early stopping at sub-optimal solutions

37

38 *Sensitivity Analysis* • Sensitivity report provides – Reduced Gradient – Lagrange Multipliers • The reduced gradient information is the equivalent of reduced costs in LP • Lagrange multipliers are the equivalent of shadow prices in LP

Lagrange Multipliers • Amount by which the objective function would improve if the RHS of the constraint was relaxed by one unit

- For equality constraints: Amount by which the objective function would improve if the RHS of the constraint was increased by one unit
- Again: For NLP this is derivative information and therefore it isn't possible to give a range of RHS values for which Lagrange multiplier (shadow price) is fixed.

40

Lagrange Multipliers & Shadow Prices I

- Suppose *x** is a stationary point of the NLP min $f(x)$ subject to $Ax = b$, $x \ge 0$
- Then
	- x^* solves the LP

min $\nabla f(x^*)^T x$ subject to $Ax = b, x \ge 0$.

- Lagrange multiplier for NLP at *x** coincides with shadow cost for LP
- (if one is unique then so is the other)

Automatic Scaling

- Use automatic scaling option since poor scaling can result in breakdown of the method, in particular in NLP
- For automatic scaling to work properly it is important that your initial variables have "typical" values

Solver Messages 2-4 relate to various difficulties

- Will not go over these
- See next 3 slides for descriptions

