Data Fitting | |
| template<class T1, class T2> | |
| Array< double > & | linfit (Array< T1 > &x, Array< T2 > &y) |
| Linear regression. | |
| template<class T1, class T2, class T3> | |
| Array< double > & | linfit (Array< T1 > &x, Array< T2 > &y, Array< T3 > &w) |
| Weighted linear regression. | |
| template<class T1, class T2, class T3> | |
| Array< double > & | linfit2D (Array< T1 > &x, Array< T2 > &y, Array< T3 > &z) |
| 2D linear regression. | |
| template<class T1, class T2> | |
| Array< double > & | polyfit (Array< T1 > &x, Array< T2 > &y, int n) |
| Polynomial fit. | |
Fourrier transform and filtering | |
| template<typename T> | |
| Array< complex< T > > & | fft_1D (Array< complex< T > > &cplxt, int direction=1) |
| Return the complex fft (1D) of the complex array cplxt. Uses the mixed-radix algorithm. Works only with double, so far. | |
| template<typename T> | |
| Array< complex< T > > & | fft_2D (Array< complex< T > > &cplxt, int direction=1) |
| Return the complex fft (1D or 2D) of the complex array cplxt. Uses the mixed-radix algorithm. Works only with double, so far. | |
| template<typename T> | |
| Array< complex< T > > & | lowPassFirstOrder (long n, T tau) |
| Creates a low pass filter, returns the transfer function. | |
| template<typename T> | |
| Array< complex< T > > & | highPassFirstOrder (long n, T tau) |
| Creates a high pass filter, returns the transfer function. | |
| template<typename T> | |
| Array< complex< T > > & | GaussianFilter (long n, T tau) |
| Creates a low pass filter, returns the transfer function. | |
| template<typename T> | |
| Array< T > & | filter_1D (Array< T > &t, Array< complex< double > > &filt) |
| Filters a 1D signal with the provided filter transfer function. | |
| template<typename T> | |
| Array< T > & | smooth (Array< T > &t, T tau) |
| Smooth a 1D signal with a gaussian filter. It works properly at the boundaries. | |
| Array<double>& linfit2D | ( | Array< T1 > & | x, | |
| Array< T2 > & | y, | |||
| Array< T3 > & | z | |||
| ) | [inline] |
2D linear regression.
/*Linear regression on the set of point defined by (x,y,z): z=a+b*x+c*y
| x | : x coordinates, | |
| y | : y coordinates, | |
| z | : z coordinates. |
1.5.5